
GLFW
Reference Manual

Document release 1.4

 2002-2003 Marcus Geelnard

GLFW Reference Manual 1.4 January 8, 2003

SUMMARY

This document is a function reference manual for the GLFW 2.4 API. For a description
of how to use GLFW you should refer to the GLFW Users Guide.

TRADEMARKS

OpenGL and IRIX are registered trademarks of Silicon Graphics, Inc.
Microsoft, Windows and MS-DOS are registered trademarks of Microsoft Corporation.
Linux is a registered trademark of Linus Torvalds.
Solaris is a trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of The Open Group.
X Window System is a trademark of The Open Group.
POSIX is a trademark of IEEE.
Truevision, TARGA and TGA are registered trademarks of Truevision, Inc.
All other trademarks mentioned in this document are the property of their respective owners.

Page 2/47

GLFW Reference Manual 1.4 January 8, 2003

TABLE OF CONTENTS
1. INTRODUCTION__5

2. FUNCTION REFERENCE___6

2.1 GLFW Initialization and Termination_____________________________________6
2.1.1 glfwInit__6
2.1.2 glfwTerminate__6
2.1.3 glfwGetVersion___7

2.2 Window Handling___8
2.2.1 glfwOpenWindow__8
2.2.2 glfwOpenWindowHint__9
2.2.3 glfwCloseWindow___10
2.2.4 glfwSetWindowTitle__11
2.2.5 glfwSetWindowSize__11
2.2.6 glfwSetWindowPos__12
2.2.7 glfwGetWindowSize__12
2.2.8 glfwSetWindowSizeCallback___13
2.2.9 glfwGetWindowParam__13
2.2.10 glfwSwapBuffers___15
2.2.11 glfwSwapInterval___15

2.3 Video Modes__16
2.3.1 glfwGetVideoModes__16
2.3.2 glfwGetDesktopMode__16

2.4 Input Handling___18
2.4.1 glfwPollEvents__18
2.4.2 glfwGetKey__18
2.4.3 glfwGetMouseButton___20
2.4.4 glfwGetMousePos___20
2.4.5 glfwSetMousePos__21
2.4.6 glfwGetMouseWheel___22
2.4.7 glfwSetMouseWheel__22
2.4.8 glfwSetKeyCallback__22
2.4.9 glfwSetCharCallback___23
2.4.10 glfwSetMouseButtonCallback___24
2.4.11 glfwSetMousePosCallback___25
2.4.12 glfwSetMouseWheelCallback__25
2.4.13 glfwGetJoystickParam___26
2.4.14 glfwGetJoystickPos___27
2.4.15 glfwGetJoystickButtons__28

2.5 Timing___29
2.5.1 glfwGetTime___29
2.5.2 glfwSetTime__29
2.5.3 glfwSleep__30

2.6 OpenGL Extension Support___31
2.6.1 glfwExtensionSupported__31
2.6.2 glfwGetProcAddress___31
2.6.3 glfwGetGLVersion___32

2.7 Threads___33
2.7.1 glfwCreateThread___33
2.7.2 glfwDestroyThread__34
2.7.3 glfwWaitThread___34
2.7.4 glfwGetThreadID__35

2.8 Mutexes__36
2.8.1 glfwCreateMutex__36
2.8.2 glfwDestroyMutex___36
2.8.3 glfwLockMutex___37
2.8.4 glfwUnlockMutex__37

2.9 Condition Variables___38

Page 3/47

GLFW Reference Manual 1.4 January 8, 2003

2.9.1 glfwCreateCond___38
2.9.2 glfwDestroyCond__38
2.9.3 glfwWaitCond__39
2.9.4 glfwSignalCond___39
2.9.5 glfwBroadcastCond__40

2.10 Image and Texture Loading__41
2.10.1 glfwReadImage__41
2.10.2 glfwFreeImage___42
2.10.3 glfwLoadTexture2D___43

2.11 Miscellaneous___45
2.11.1 glfwEnable/glfwDisable__45

2.11.1.1 GLFW_AUTO_POLL_EVENTS__45
2.11.1.2 GLFW_KEY_REPEAT__46
2.11.1.3 GLFW_MOUSE_CURSOR__46
2.11.1.4 GLFW_STICKY_KEYS___46
2.11.1.5 GLFW_STICKY_MOUSE_BUTTONS_______________________________________46
2.11.1.6 GLFW_SYSTEM_KEYS__47

2.11.2 glfwGetNumberOfProcessors___47

Page 4/47

GLFW Reference Manual 1.4 January 8, 2003

1. INTRODUCTION
GLFW is a portable API (Application Program Interface) that handles operating system
specific tasks related to OpenGL programming. While OpenGL in general is portable,
easy to use and often results in tidy and compact code, the operating system specific
mechanisms that are required to set up and manage an OpenGL window are quite the
opposite. GLFW tries to remedy this by providing the following functionality:

� Opening and maintaining an OpenGL window.
� Keyboard, mouse and joystick input.
� A high precision timer.
� Multi threading support.
� Support for querying and using OpenGL extensions.
� Image file loading support.

All this functionality is implemented as a set of easy-to-use functions, which makes it
possible to write an OpenGL application framework in just a few lines of code.

The GLFW API is completely operating system and platform independent, which makes
it very simple to port GLFW based OpenGL applications to a variety of platforms.
Currently supported platforms are:

� Microsoft Windows 95/98/ME/NT/2000/XP/.NET Server.
� Unix or Unix-like systems1 running the X Window System, e.g. Linux,

IRIX and Solaris.

1 For threading support GLFW uses the POSIX threading package (pthread), which is supported by most
modern Unix-like systems.

Page 5/47

GLFW Reference Manual 1.4 January 8, 2003

2. FUNCTION REFERENCE

2.1 GLFW Initialization and Termination
Before any GLFW functions can be used, GLFW must be initialized to ensure proper
functionality, and before a program terminates, GLFW has to be terminated in order to
free up resources etc.

2.1.1 glfwInit
C language syntax

int glfwInit(void)

Parameters
none

Return values
If the function succeeds, GL_TRUE is returned.

If the function fails, GL_FALSE is returned.

Description
The glfwInit function initializes GLFW. No other GLFW functions may be used before
this function has been called.

Notes
This function may take several seconds to complete on some systems, while on other
systems it may take only a fraction of a second to complete.

2.1.2 glfwTerminate
C language syntax

void glfwTerminate(void)

Parameters
none

Return values
none

Description
The function terminates GLFW. Among other things it closes the window, if it is
opened, and kills any running threads. This function must be called before a program
exits.

Notes
none

Page 6/47

GLFW Reference Manual 1.4 January 8, 2003

2.1.3 glfwGetVersion
C language syntax

void glfwGetVersion(int *major, int *minor, int *rev)

Parameters
major

Pointer to an integer that will hold the major version number.

minor
Pointer to an integer that will hold the minor version number.

rev
Pointer to an integer that will hold the revision.

Return values
The function returns the major and minor version numbers and the revision for the
currently linked GLFW library.

Description
The function returns the GLFW library version.

Notes
none

Page 7/47

GLFW Reference Manual 1.4 January 8, 2003

2.2 Window Handling
The main functionality of GLFW is to provide a simple interface to OpenGL window
management. GLFW can open one window, which can be either a normal desktop
window or a fullscreen window.

2.2.1 glfwOpenWindow
C language syntax

int glfwOpenWindow(int width, int height,
int redbits, int greenbits, int bluebits,
int alphabits, int depthbits, int stencilbits,
int mode)

Parameters
width

The width of the window. If width is zero, it will be calculated as 4
3

height if

height is not zero. If both width and height are zero, width will be set to 640.

height

The height of the window. If height is zero, it will be calculated as 3
4

width if

width is not zero. If both width and height are zero, height will be set to 480.

redbits, greenbits, bluebits
The number of bits to use for each color component of the color buffer. For
instance, setting redbits = 5, greenbits = 6, and bluebits = 5 will generate a 16-bit
color buffer, if possible.

alphabits
The number of bits to use for the alpha buffer (0 means no alpha buffer).

depthbits
The number of bits to use for the depth buffer (0 means no depth buffer).

stencilbits
The number of bits to use for the stencil buffer (0 means no stencil buffer).

mode
Selects which type of OpenGL window to use. mode can be either
GLFW_WINDOW, which will generate a normal desktop window, or
GLFW_FULLSCREEN, which will generate a window which covers the entire
screen. When GLFW_FULLSCREEN is selected, the video mode will be changed
to the resolution that closest matches the width and height parameters.

Page 8/47

GLFW Reference Manual 1.4 January 8, 2003

Return values
If the function succeeds, GL_TRUE is returned. If the function fails, GL_FALSE is
returned.

Description
The function opens a window that best matches the parameters given to the function.
How well the resulting window matches the desired window depends mostly on the
available hardware and OpenGL drivers. In general, selecting a fullscreen mode has
better chances of generating a close match than does a normal desktop window, since
GLFW can freely select from all the available video modes. A desktop window is
normally restricted to the video mode of the desktop.

Notes
In fullscreen mode the mouse cursor is hidden by default, and any system screensavers
are prohibited from starting. In windowed mode the mouse cursor is not hidden, and
screensavers are allowed to start. To change the visibility of the mouse cursor, use
glfwEnable or glfwDisable with the argument GLFW_MOUSE_CURSOR.

In order to determine the actual properties of an opened window, use
glfwGetWindowParam and glfwGetWindowSize (or glfwSetWindowSizeCallback).

2.2.2 glfwOpenWindowHint
C language syntax

void glfwOpenWindowHint(int target, int hint)

Parameters
target

Can be any of the constants in the table below:

Name Description
GLFW_REFRESH_RATE Vertical monitor refresh rate in Hz (only used for

fullscreen windows).
GLFW_ACCUM_RED_BITS Number of bits for the red channel of the

accumulator buffer.
GLFW_ACCUM_GREEN_BITS Number of bits for the green channel of the

accumulator buffer.
GLFW_ACCUM_BLUE_BITS Number of bits for the blue channel of the

accumulator buffer.
GLFW_ACCUM_ALPHA_BITS Number of bits for the alpha channel of the

accumulator buffer.
GLFW_AUX_BUFFERS Number of auxiliary buffers.
GLFW_STEREO Specify if stereo rendering should be supported (can

be GL_TRUE or GL_FALSE).

Page 9/47

GLFW Reference Manual 1.4 January 8, 2003

hint
An integer giving the value of the corresponding target (see table above).

Return values
none

Description
The function sets additional properties for a window that is to be opened. For a hint to
be registered, the function must be called before calling glfwOpenWindow. When the
glfwOpenWindow function is called, any hints that were registered with the
glfwOpenWindowHint function are used for setting the corresponding window
properties, and then all hints are reset to “do not care”.

Notes
In order to determine the actual properties of an opened window, use
glfwGetWindowParam (after the window has been opened).

GLFW_STEREO is a hard constraint. If stereo rendering is requested, but no stereo
rendering capable pixel formats / visuals are available, glfwOpenWindow will fail.

GLFW_REFRESH_RATE is only supported under Windows.

The GLFW_REFRESH_RATE property should be used with caution. Most systems have
default values for monitor refresh rates that are optimal for the specific system.
Specifying the refresh rate can override these settings, which can result in suboptimal
operation. The monitor may be unable to display the resulting video signal, or in the
worst case it may even be damaged!

2.2.3 glfwCloseWindow
C language syntax

void glfwCloseWindow(void)

Parameters
none

Return values
none

Description
The function closes an opened window.

Notes
none

Page 10/47

GLFW Reference Manual 1.4 January 8, 2003

2.2.4 glfwSetWindowTitle
C language syntax

void glfwSetWindowTitle(const char *title)

Parameters
title

Pointer to a null terminated ISO 8859-1 (8-bit Latin 1) string that holds the title of
the window.

Return values
none

Description
The function changes the title of the opened window.

Notes
The title property of a window is often used in situations other than for the window title,
such as the title of an application icon when it is in iconified state.

2.2.5 glfwSetWindowSize
C language syntax

void glfwSetWindowSize(int width, int height)

Parameters
width

Width of the window.

height
Height of the window.

Return values
none

Description
The function changes the size of an opened window, and calls the window size callback
function (if one is registered). If the window is in fullscreen mode, the video mode will
be changed to a resolution that closest matches the width and height parameters (the
number of color bits will not be changed).

Notes
none

Page 11/47

GLFW Reference Manual 1.4 January 8, 2003

2.2.6 glfwSetWindowPos
C language syntax

void glfwSetWindowPos(int x, int y)

Parameters
x

Horizontal position of the window, relative to the upper left corner of the desktop.

y
Vertical position of the window, relative to the upper left corner of the desktop.

Return values
none

Description
The function changes the position of an opened window. It does not have any effect on a
fullscreen window.

Notes
none

2.2.7 glfwGetWindowSize
C language syntax

void glfwGetWindowSize(int *width, int *height)

Parameters
width

Pointer to an integer that will hold the width of the window.

height
Pointer to an integer that will hold the height of the window.

Return values
The current width and height of the opened window is returned in the width and height
parameters, respectively.

Description
The function is used for determining the size of an opened window. The returned values
are dimensions of the drawing area of the window (i.e. excluding any window borders).

Notes
Even if the size of a fullscreen window does not change once the window has been
opened, it does not necessarily have to be the same as the size that was requested using
glfwOpenWindow. Therefor it is wise to use this function to determine the true size of
the window once it has been opened.

Page 12/47

GLFW Reference Manual 1.4 January 8, 2003

2.2.8 glfwSetWindowSizeCallback
C language syntax

void glfwSetWindowSizeCallback(GLFWwindowsizefun cbfun)

Parameters
cbfun

Pointer to a callback function which will be called every time the window size
changes. The function should have the following C language prototype:

void GLFWCALL functionname(int width, int height);

Where functionname is the name of the callback function, and width and height
are the window dimension passed to the function.

If cbfun is NULL, any previously selected callback function will be deselected.

Return values
none

Description
The function selects which function to be called upon a window size change event.

Notes
Window size changes are recorded continuously, but only reported when
glfwPollEvents or glfwSwapBuffers is called.

2.2.9 glfwGetWindowParam
C language syntax

int glfwGetWindowParam(int param)

Parameters
param

A token selecting which parameter the function should return (see below).

Return values
The function returns different parameters depending on the value of param. Below is a
table of what valid param values, and their corresponding return values:

Page 13/47

GLFW Reference Manual 1.4 January 8, 2003

Name Return value
GLFW_OPENED GL_TRUE if window is opened, else GL_FALSE.
GLFW_ACTIVE GL_TRUE if window has focus and is active, else

GL_FALSE.
GLFW_ICONIFIED GL_TRUE if window is iconified, else GL_FALSE.
GLFW_ACCELERATED GL_TRUE if window is hardware accelerated.
GLFW_RED_BITS Number of bits for the red color component.
GLFW_GREEN_BITS Number of bits for the green color component.
GLFW_BLUE_BITS Number of bits for the blue color component.
GLFW_ALPHA_BITS Number of bits for the alpha buffer.
GLFW_DEPTH_BITS Number of bits for the depth buffer.
GLFW_STENCIL_BITS Number of bits for the stencil buffer.
GLFW_REFRESH_RATE Vertical monitor refresh rate in Hz. Zero indicates

an unknown or a default refresh rate.
GLFW_ACCUM_RED_BITS Number of bits for the red channel of the

accumulator buffer.
GLFW_ACCUM_GREEN_BITS Number of bits for the green channel of the

accumulator buffer.
GLFW_ACCUM_BLUE_BITS Number of bits for the blue channel of the

accumulator buffer.
GLFW_ACCUM_ALPHA_BITS Number of bits for the alpha channel of the

accumulator buffer.
GLFW_AUX_BUFFERS Number of auxiliary buffers.
GLFW_STEREO GL_TRUE if stereo rendering is supported, else

GL_FALSE.

Description
The function is used for acquiring various properties of an opened window.

Notes
GLFW_ACCELERATED is only supported under Windows. Other systems will always
generate GL_TRUE.

GLFW_REFRESH_RATE is only supported under Windows and XFree86. Other
systems will always generate zero (0). With some Windows drivers, zero (0) may be
returned, indicating a default refresh rate.

Page 14/47

GLFW Reference Manual 1.4 January 8, 2003

2.2.10 glfwSwapBuffers
C language syntax

void glfwSwapBuffers(void)

Parameters
none

Return values
none

Description
The function swaps the back and front color buffers of the window. If
GLFW_AUTO_POLL_EVENTS is enabled (which is the default), glfwPollEvents is
called before swapping the front and back buffers.

Notes
none

2.2.11 glfwSwapInterval
C language syntax

void glfwSwapInterval(int interval)

Parameters
interval

Minimum number of monitor vertical retraces between each buffer swap
performed by glfwSwapBuffers. If interval is zero, buffer swaps will not be
synchronized to the vertical refresh of the monitor (also known as 'VSync off').

Return values
none

Description
The function selects the minimum number of monitor vertical retraces that should occur
between two buffer swaps. If the selected swap interval is one, the rate of buffer swaps
will never be higher than the vertical refresh rate of the monitor. If the selected swap
interval is zero, the rate of buffer swaps is only limited by the speed of the software and
the hardware.

Notes
This function will only have an effect on hardware and drivers that support user
selection of the swap interval.

Page 15/47

GLFW Reference Manual 1.4 January 8, 2003

2.3 Video Modes
Since GLFW supports video mode changes when using a fullscreen window, it also
provides functionality for querying which video modes are supported on a system.

2.3.1 glfwGetVideoModes
C language syntax

int glfwGetVideoModes(GLFWvidmode *list, int maxcount)

Parameters
list

A vector of GLFWvidmode structures, which will be filled out by the function.

maxcount
Maximum number of video modes that the list vector can hold.

Return values
The function returns the number of detected video modes (this number will never
exceed maxcount). The list vector is filled out with the video modes that are supported
by the system.

Description
The function returns a list of supported video modes. Each video mode is represented by
a GLFWvidmode structure, which has the following definition:

typedef struct {
int Width, Height; // Video resolution
int RedBits; // Number of bits for the red color component
int GreenBits; // Number of bits for the green color component
int BlueBits; // Number of bits for the blue color component

} GLFWvidmode;

Width and Height give the resolution of the video mode, and RedBits, GreenBits and
BlueBits give the number of color bits per pixel.

Notes
The returned list is sorted, first by color depth (RedBits + GreenBits + BlueBits), and
then by resolution (Width*Height), with the lowest resolution, fewest bits per pixel
mode first.

2.3.2 glfwGetDesktopMode
C language syntax

void glfwGetDesktopMode(GLFWvidmode *mode)

Parameters
mode

Pointer to a GLFWvidmode structures, which will be filled out by the function.

Page 16/47

GLFW Reference Manual 1.4 January 8, 2003

Return values
The GLFWvidmode structure pointed to by mode is filled out with the desktop video
mode.

Description
The function returns the desktop video mode in a GLFWvidmode structure. See the
description of glfwGetVideoModes for a description of the GLFWvidmode structure.

Notes
The color depth of the desktop display is always reported as the number of bits for each
individual color component (red, green and blue), even if the desktop is not using an
RGB or RGBA color format. For instance, an indexed 256 color display will report
RedBits = 3, GreenBits = 3 and BlueBits = 2, which adds up to 8 bits in total.

Page 17/47

GLFW Reference Manual 1.4 January 8, 2003

2.4 Input Handling
GLFW supports three channels of user input: keyboard input, mouse input and joystick
input.

Keyboard and mouse input can be treated either as events, using callback functions, or
as state, using functions for polling specific keyboard and mouse states. Regardless of
which method is used, all keyboard and mouse input is collected using window event
polling.

Joystick input is asynchronous to the keyboard and mouse input, and does not require
event polling for keeping up to date joystick information. Also, joystick input is
independent of any window, so a window does not have to be opened for joystick input
to be used.

2.4.1 glfwPollEvents
C language syntax

void glfwPollEvents(void)

Parameters
none

Return values
none

Description
The function is used for polling for events, such as user input and window resize events.
Upon calling this function, all window state and keyboard and mouse input state is
updated. If any related callback functions are registered, these are called during the call
to glfwPollEvents.

Notes
glfwPollEvents is called implicitly from glfwSwapBuffers if
GLFW_AUTO_POLL_EVENTS is enabled (default). Thus, if glfwSwapBuffers is
called frequently (which is normally the case), there is no need to call glfwPollEvents.

2.4.2 glfwGetKey
C language syntax

int glfwGetKey(int key)

Parameters
key

A keyboard key identifier, which can be either an uppercase printable ISO 8859-1
(Latin 1) character (e.g. 'A', '3' or '.'), or a special key identifier. The following
tokens are valid special key identifiers:

Page 18/47

GLFW Reference Manual 1.4 January 8, 2003

Name Description
GLFW_KEY_SPACE Space
GLFW_KEY_ESC Escape
GLFW_KEY_Fn Function key n (n can be in the range 1..25).
GLFW_KEY_UP Cursor up
GLFW_KEY_DOWN Cursor down
GLFW_KEY_LEFT Cursor left
GLFW_KEY_RIGHT Cursor right
GLFW_KEY_LSHIFT Left shift key
GLFW_KEY_RSHIFT Right shift key
GLFW_KEY_LCTRL Left control key
GLFW_KEY_RCTRL Right control key
GLFW_KEY_LALT Left alternate function key
GLFW_KEY_RALT Right alternate function key
GLFW_KEY_TAB Tabulator
GLFW_KEY_ENTER Enter
GLFW_KEY_BACKSPACE Backspace
GLFW_KEY_INSERT Insert
GLFW_KEY_DEL Delete
GLFW_KEY_PAGEUP Page up
GLFW_KEY_PAGEDOWN Page down
GLFW_KEY_HOME Home
GLFW_KEY_END End
GLFW_KEY_KP_n Keypad numeric key n (n can be in the range 0..9).
GLFW_KEY_KP_DIVIDE Keypad divide (“/”)
GLFW_KEY_KP_MULTIPLY Keypad multiply (“*”)
GLFW_KEY_KP_SUBTRACT Keypad subtract (“-”)
GLFW_KEY_KP_ADD Keypad add (“+”)
GLFW_KEY_KP_DECIMAL Keypad decimal (“.” or “,” for some languages)
GLFW_KEY_KP_EQUAL Keypad equal (“=”)
GLFW_KEY_KP_ENTER Keypad enter

Return values
The function returns GLFW_PRESS if the key is held down, or GLFW_RELEASE if the
key is not held down.

Page 19/47

GLFW Reference Manual 1.4 January 8, 2003

Description
The function queries the current state of a specific keyboard key. The physical location
of each key depends on the system keyboard layout setting.

Notes
The constant GLFW_KEY_SPACE is equal to 32, which is the ISO 8859-1 code for
space.

Not all key codes are supported on all systems. Also, while some keys are available on
some keyboard layouts, they may not be available on other keyboard layouts.

For systems that do not distinguish between left and right versions of modifier keys
(shift, alt and control), the left version is used (e.g. GLFW_KEY_LSHIFT).

A window must be opened for the function to have any effect, and glfwPollEvents or
glfwSwapBuffers must be called before any keyboard events are recorded and reported
by glfwGetKey.

2.4.3 glfwGetMouseButton
C language syntax

int glfwGetMouseButton(int button)

Parameters
button

A mouse button identifier, which can be one of
GLFW_MOUSE_BUTTON_LEFT, GLFW_MOUSE_BUTTON_RIGHT or
GLFW_MOUSE_BUTTON_MIDDLE.

Return values
The function returns GLFW_PRESS if the mouse button is held down, or
GLFW_RELEASE if the mouse button is not held down.

Description
The function queries the current state of a specific mouse button.

Notes
A window must be opened for the function to have any effect, and glfwPollEvents or
glfwSwapBuffers must be called before any mouse button events are recorded and
reported by glfwGetMouseButton.

2.4.4 glfwGetMousePos
C language syntax

void glfwGetMousePos(int *xpos, int *ypos)

Page 20/47

GLFW Reference Manual 1.4 January 8, 2003

Parameters
xpos

Pointer to an integer that will be filled out with the horizontal position of the
mouse.

ypos
Pointer to an integer that will be filled out with the vertical position of the mouse.

Return values
The function returns the current mouse position in xpos and ypos.

Description
The function returns the current mouse position. If the cursor is not hidden, the mouse
position is the cursor position, relative to the upper left corner of the window and
limited to the client area of the window. If the cursor is hidden, the mouse position is a
virtual absolute position, not limited to any boundaries except to those implied by the
maximum number that can be represented by a signed integer (normally -2147483648 to
+2147483647).

Notes
A window must be opened for the function to have any effect, and glfwPollEvents or
glfwSwapBuffers must be called before any mouse movements are recorded and
reported by glfwGetMousePos.

2.4.5 glfwSetMousePos
C language syntax

void glfwSetMousePos(int xpos, int ypos)

Parameters
xpos

Horizontal position of the mouse.

ypos
Vertical position of the mouse.

Return values
none

Description
The function changes the position of the mouse, and calls the mouse position callback
function (if one is registered). If the cursor is visible (not disabled), the cursor will be
moved to the specified position, relative to the upper left corner of the window client
area. If the cursor is hidden (disabled), only the mouse position that is reported by
GLFW is changed.

Notes
none

Page 21/47

GLFW Reference Manual 1.4 January 8, 2003

2.4.6 glfwGetMouseWheel
C language syntax

int glfwGetMouseWheel(void)

Parameters
none

Return values
The function returns the current mouse wheel position.

Description
The function returns the current mouse wheel position. The mouse wheel can be thought
of as a third mouse axis, which is available as a separate wheel or up/down stick on
some mice.

Notes
A window must be opened for the function to have any effect, and glfwPollEvents or
glfwSwapBuffers must be called before any mouse wheel movements are recorded and
reported by glfwGetMouseWheel.

2.4.7 glfwSetMouseWheel
C language syntax

void glfwSetMousePos(int pos)

Parameters
pos

Position of the mouse wheel.

Return values
none

Description
The function changes the position of the mouse wheel, and calls the mouse wheel
callback function (if one is registered)

Notes
none

2.4.8 glfwSetKeyCallback
C language syntax

void glfwSetKeyCallback(GLFWkeyfun cbfun)

Parameters
cbfun

Page 22/47

GLFW Reference Manual 1.4 January 8, 2003

Pointer to a callback function which will be called every time a key is pressed or
released. The function should have the following C language prototype:

void GLFWCALL functionname(int key, int action);

Where functionname is the name of the callback function, key is a key identifier,
which is an uppercase printable ISO 8859-1 character or a special key identifier
(see glfwGetKey for more information), and action is either GLFW_PRESS or
GLFW_RELEASE.

If cbfun is NULL, any previously selected callback function will be deselected.

Return values
none

Description
The function selects which function to be called upon a keyboard key event. The
callback function is called every time the state of a single key is changed (from released
to pressed or vice versa). The reported keys are unaffected by any modifiers (such as
shift or alt).

Notes
Keyboard events are recorded continuously, but only reported when glfwPollEvents or
glfwSwapBuffers is called.

2.4.9 glfwSetCharCallback
C language syntax

void glfwSetCharCallback(GLFWcharfun cbfun)

Parameters
cbfun

Pointer to a callback function which will be called every time a printable character
is generated by the keyboard. The function should have the following C language
prototype:

void GLFWCALL functionname(int character, int action);

Where functionname is the name of the callback function, character is a Unicode
(ISO 10646) character, and action is either GLFW_PRESS or GLFW_RELEASE.

If cbfun is NULL, any previously selected callback function will be deselected.

Return values
none

Description

Page 23/47

GLFW Reference Manual 1.4 January 8, 2003

The function selects which function to be called upon a keyboard character event. The
callback function is called every time a key that results in a printable Unicode character
is pressed or released. Characters are affected by modifiers (such as shift or alt).

Notes
Character events are recorded continuously, but only reported when glfwPollEvents or
glfwSwapBuffers is called.

Control characters, such as tab and carriage return, are not reported to the character
callback function, since they are not part of the Unicode character set. Use the key
callback function for such events (see glfwSetKeyCallback).

The Unicode character set supports character codes above 255, so never cast a Unicode
character to an eight bit data type (e.g. the C language 'char' type) without first checking
that the character code is less than 256. Also note that Unicode character codes 0 to 255
are equal to ISO 8859-1 (Latin 1).

2.4.10 glfwSetMouseButtonCallback
C language syntax

void glfwSetMouseButtonCallback(GLFWmousebuttonfun cbfun)

Parameters
cbfun

Pointer to a callback function which will be called every time a mouse button is
pressed or released. The function should have the following C language prototype:

void GLFWCALL functionname(int button, int action);

Where functionname is the name of the callback function, button is a mouse
button identifier (GLFW_MOUSE_BUTTON_LEFT,
GLFW_MOUSE_BUTTON_RIGHT, or GLFW_MOUSE_BUTTON_MIDDLE),
and action is either GLFW_PRESS or GLFW_RELEASE.

If cbfun is NULL, any previously selected callback function will be deselected.

Return values
none

Description
The function selects which function to be called upon a mouse button event.

Notes
Mouse button events are recorded continuously, but only reported when glfwPollEvents
or glfwSwapBuffers is called.

Page 24/47

GLFW Reference Manual 1.4 January 8, 2003

2.4.11 glfwSetMousePosCallback
C language syntax

void glfwSetMousePosCallback(GLFWmouseposfun cbfun)

Parameters
cbfun

Pointer to a callback function which will be called every time the mouse is moved.
The function should have the following C language prototype:

void GLFWCALL functionname(int x, int y);

Where functionname is the name of the callback function, and x and y are the
mouse coordinates (see glfwGetMousePos for more information on mouse
coordinates).

If cbfun is NULL, any previously selected callback function will be deselected.

Return values
none

Description
The function selects which function to be called upon a mouse motion event.

Notes
Mouse motion events are recorded continuously, but only reported when
glfwPollEvents or glfwSwapBuffers is called.

2.4.12 glfwSetMouseWheelCallback
C language syntax

void glfwSetMouseWheelCallback(GLFWmousewheelfun cbfun)

Parameters
cbfun

Pointer to a callback function which will be called every time the mouse wheel is
moved. The function should have the following C language prototype:

void GLFWCALL functionname(int pos);

Where functionname is the name of the callback function, and pos is the mouse
wheel position.

If cbfun is NULL, any previously selected callback function will be deselected.

Return values
none

Description
The function selects which function to be called upon a mouse wheel event.

Page 25/47

GLFW Reference Manual 1.4 January 8, 2003

Notes
Mouse wheel events are recorded continuously, but only reported when glfwPollEvents
or glfwSwapBuffers is called.

2.4.13 glfwGetJoystickParam
C language syntax

int glfwGetJoystickParam(int joy, int param)

Parameters
joy

A joystick identifier, which should be GLFW_JOYSTICK_n, where n is in the
range 1 to 16.

param
A token selecting which parameter the function should return (see below).

Return values
The function returns different parameters depending on the value of param. Below is a
table of what valid param values, and their corresponding return values:

Name Return value
GLFW_PRESENT GL_TRUE if the joystick is connected, else

GL_FALSE.
GLFW_AXES Number of axes supported by the joystick.
GLFW_BUTTONS Number of buttons supported by the joystick.

Description
The function is used for acquiring various properties of a joystick.

Notes
The joystick information is updated every time the function is called.

No window has to be opened for joystick information to be valid.

Page 26/47

GLFW Reference Manual 1.4 January 8, 2003

2.4.14 glfwGetJoystickPos
C language syntax

int glfwGetJoystickPos(int joy, float *pos, int numaxes)

Parameters
joy

A joystick identifier, which should be GLFW_JOYSTICK_n, where n is in the
range 1 to 16.

pos
An array that will hold the positional values for all requested axes.

numaxes
Specifies how many axes should be returned.

Return values
The function returns the number of actually returned axes. This is the minimum of
numaxes and the number of axes supported by the joystick. If the joystick is not
supported or connected, the function will return 0 (zero).

Description
The function queries the current position of one or more axes of a joystick. The
positional values are returned in an array, where the first element represents the first axis
of the joystick (normally the X axis). Each position is in the range -1.0 to 1.0. Where
applicable, the positive direction of an axis is right, forward or up, and the negative
direction is left, back or down.

If numaxes exceeds the number of axes supported by the joystick, or if the joystick is
not available, the unused elements in the pos array will be set to 0.0 (zero).

Notes
The joystick state is updated every time the function is called, so there is no need to call
glfwPollEvents for joystick state to be updated.

Use glfwGetJoystickParam to retrieve joystick capabilities, such as joystick
availability and number of supported axes.

No window has to be opened for joystick input to be valid.

Page 27/47

GLFW Reference Manual 1.4 January 8, 2003

2.4.15 glfwGetJoystickButtons
C language syntax

int glfwGetJoystickButtons(int joy, unsigned char *buttons,
int numbuttons)

Parameters
joy

A joystick identifier, which should be GLFW_JOYSTICK_n, where n is in the
range 1 to 16.

buttons
An array that will hold the button states for all requested buttons.

numbuttons
Specifies how many buttons should be returned.

Return values
The function returns the number of actually returned buttons. This is the minimum of
numbuttons and the number of buttons supported by the joystick. If the joystick is not
supported or connected, the function will return 0 (zero).

Description
The function queries the current state of one or more buttons of a joystick. The button
states are returned in an array, where the first element represents the first button of the
joystick. Each state can be either GLFW_PRESS or GLFW_RELEASE.

If numbuttons exceeds the number of buttons supported by the joystick, or if the joystick
is not available, the unused elements in the buttons array will be set to
GLFW_RELEASE.

Notes
The joystick state is updated every time the function is called, so there is no need to call
glfwPollEvents for joystick state to be updated.

Use glfwGetJoystickParam to retrieve joystick capabilities, such as joystick
availability and number of supported buttons.

No window has to be opened for joystick input to be valid.

Page 28/47

GLFW Reference Manual 1.4 January 8, 2003

2.5 Timing

2.5.1 glfwGetTime
C language syntax

double glfwGetTime(void)

Parameters
none

Return values
The function returns the value of the high precision timer. The time is measured in
seconds, and is returned as a double precision floating point value.

Description
The function returns the state of a high precision timer. Unless the timer has been set by
the glfwSetTime function, the time is measured as the number of seconds that have
passed since glfwInit was called.

Notes
The resolution of the timer depends on which system the program is running on. The
worst case resolution is somewhere in the order of 10 ms, while for most systems the
resolution should be better than 1 µs.

2.5.2 glfwSetTime
C language syntax

void glfwSetTime(double time)

Parameters
time

Time (in seconds) that the timer should be set to.

Return values
none

Description
The function sets the current time of the high precision timer to the specified time.
Subsequent calls to glfwGetTime will be relative to this time. The time is given in
seconds.

Notes
none

Page 29/47

GLFW Reference Manual 1.4 January 8, 2003

2.5.3 glfwSleep
C language syntax

void glfwSleep(double time)

Parameters
time

Time, in seconds, to sleep.

Return values
none

Description
The function puts the calling thread to sleep for the requested period of time. Only the
calling thread is put to sleep. Other threads within the same process can still execute.

Notes
There is a system dependent minimum time for which it is possible to sleep. This time is
generally in the range 1 ms to 20 ms. Using a shorter time as a parameter to glfwSleep
can give one of two results: either the thread will sleep for the minimum possible sleep
time, or the thread will not sleep at all (glfwSleep returns immediately). The latter
should only happen when very short sleep times are specified.

Page 30/47

GLFW Reference Manual 1.4 January 8, 2003

2.6 OpenGL Extension Support
One of the great features of OpenGL is its support for extensions, which allow
independent vendors to supply non-standard functionality in their OpenGL
implementations. Using extensions is different under different systems, which is why
GLFW has provided an operating system independent interface to querying and using
OpenGL extensions.

2.6.1 glfwExtensionSupported
C language syntax

int glfwExtensionSupported(const char *extension)

Parameters
ectension

A null terminated string containing the name of an OpenGL extension.

Return values
The function returns GL_TRUE if the extension is supported. Otherwise it returns
GL_FALSE.

Description
The function does a string search in the list of supported OpenGL extensions to find if
the specified extension is listed.

Notes
none

2.6.2 glfwGetProcAddress
C language syntax

void * glfwGetProcAddress(const char *procname)

Parameters
procname

A null terminated string containing the name of an OpenGL extension function.

Return values
The function returns the address to the specified OpenGL function if it is supported,
otherwise NULL is returned.

Description
The function acquires the address of an OpenGL extension function. Some (but not all)
OpenGL extensions define new API functions, which are usually not available through
normal linking. It is therefore necessary to get access to those API functions at runtime.

Page 31/47

GLFW Reference Manual 1.4 January 8, 2003

Notes
glfwGetProcAddress is equivalent to wglGetProcAddress under Windows. Under the
X Window System it can be implemented by one of the following
functions:glXGetProcAddressARB, glXGetProcAddress, glXGetProcAddressEXT,
or dlsym (if none of them is supported, glfwGetProcAddress will always return
NULL).

2.6.3 glfwGetGLVersion
C language syntax

void glfwGetGLVersion(int *major, int *minor, int *rev)

Parameters
major

Pointer to an integer that will hold the major version number.

minor
Pointer to an integer that will hold the minor version number.

rev
Pointer to an integer that will hold the revision.

Return values
The function returns the major and minor version numbers and the revision for the
currently used OpenGL implementation.

Description
The function returns the OpenGL implementation version. This is a convenient function
that parses the version number information from the string returned by calling
glGetString(GL_VERSION). The OpenGL version information can be used to
determine what functionality is supported by the used OpenGL implementation.

Notes
none

Page 32/47

GLFW Reference Manual 1.4 January 8, 2003

2.7 Threads
A thread is a separate execution path within a process. All threads within a process
share the same address space and resources. Threads execute in parallel, either virtually
by means of time-sharing on a single processor, or truly in parallel on several
processors. Even on a multi-processor system, time-sharing is employed in order to
maximize processor utilization and to ensure fair scheduling. GLFW provides an
operating system independent interface to thread management.

2.7.1 glfwCreateThread
C language syntax

GLFWthread glfwCreateThread(GLFWthreadfun fun, void *arg)

Parameters
fun

A pointer to a function which acts as the entry point for the new thread. The
function should have the following C language prototype:

void GLFWCALL functionname(void *arg);

Where functionname is the name of the callback function, and arg is the user
supplied argument (see below).

arg
An arbitrary argument for the thread. arg will be passed as the argument to the
thread function pointed to by fun. For instance, arg can point to data which is to
be processed by the thread.

Return values
The function returns a thread identification number if the thread was created
successfully. This number is always positive. If the function fails, a negative number is
returned.

Description
The function creates a new thread, which executes within the same address space as the
calling process. The thread entry point is specified with the fun argument.

Once the thread function fun returns, the thread dies.

Notes
Even if the function returns a positive thread ID, indicating that the thread was created
successfully, the thread may be unable to execute, for instance if the thread start address
is not a valid thread entry point.

Page 33/47

GLFW Reference Manual 1.4 January 8, 2003

2.7.2 glfwDestroyThread
C language syntax

void glfwDestroyThread(GLFWthread ID)

Parameters
ID

A thread identification handle, which is returned by glfwCreateThread or
glfwGetThreadID.

Return values
none

Description
The function kills a running thread and removes it from the thread list.

Notes
This function is a very dangerous operation, which may interrupt a thread in the middle
of an important operation, and its use is discouraged. You should always try to end a
thread in a graceful way using thread communication, and use glfwWaitThread in
order to wait for the thread to die.

2.7.3 glfwWaitThread
C language syntax

int glfwWaitThread(GLFWthread ID, int waitmode)

Parameters
ID

A thread identification handle, which is returned by glfwCreateThread or
glfwGetThreadID.

waitmode
Can be either GLFW_WAIT or GLFW_NOWAIT.

Return values
The function returns GL_TRUE if the specified thread died after the function was called,
or the thread did not exist, in which case glfwWaitThread will return immediately
regardless of waitmode. The function returns GL_FALSE if waitmode is
GLFW_NOWAIT, and the specified thread exists and is still running.

Description
If waitmode is GLFW_WAIT, the function waits for a thread to die. If waitmode is
GLFW_NOWAIT, the function checks if a thread exists.

Notes
none

Page 34/47

GLFW Reference Manual 1.4 January 8, 2003

2.7.4 glfwGetThreadID
C language syntax

GLFWthread glfwGetThreadID(void)

Parameters
none

Return values
The function returns a thread identifier for the calling thread.

Description
The function determines the thread ID for the calling thread. The ID is the same value as
was returned by glfwCreateThread when the thread was created.

Notes
none

Page 35/47

GLFW Reference Manual 1.4 January 8, 2003

2.8 Mutexes
Mutexes are used to securely share data between threads. A mutex object can only be
owned by one thread at a time. If more than one thread requires access to a mutex
object, all but one thread will be put to sleep until they get access to it.

2.8.1 glfwCreateMutex
C language syntax

GLFWmutex glfwCreateMutex(void)

Parameters
none

Return values
The function returns a mutex handle, or NULL if the mutex could not be created.

Description
The function creates a mutex object, which can be used to control access to certain data.

Notes
none

2.8.2 glfwDestroyMutex
C language syntax

void glfwDestroyMutex(GLFWmutex mutex)

Parameters
mutex

A mutex object handle.

Return values
none

Description
The function destroys a mutex object. After a mutex object has been destroyed, it may
no longer be used by any thread.

Notes
none

Page 36/47

GLFW Reference Manual 1.4 January 8, 2003

2.8.3 glfwLockMutex
C language syntax

void glfwLockMutex(GLFWmutex mutex)

Parameters
mutex

A mutex object handle.

Return values
none

Description
The function will acquire a lock on the selected mutex object. If the mutex is already
locked by another thread, the function will block the calling thread until it is released by
the locking thread. Once the function returns, the calling thread has an exclusive lock on
the mutex. To release the mutex, call glfwUnlockMutex.

Notes
none

2.8.4 glfwUnlockMutex
C language syntax

void glfwUnlockMutex(GLFWmutex mutex)

Parameters
mutex

A mutex object handle.

Return values
none

Description
The function releases the lock of a locked mutex object.

Notes
none

Page 37/47

GLFW Reference Manual 1.4 January 8, 2003

2.9 Condition Variables
Condition variables are used to synchronize threads. A thread can wait for a condition
variable to be signaled by another thread.

2.9.1 glfwCreateCond
C language syntax

GLFWcond glfwCreateCond(void)

Parameters
none

Return values
The function returns a condition variable handle, or NULL if the condition variable
could not be created.

Description
The function creates a condition variable object, which can be used to synchronize
threads.

Notes
none

2.9.2 glfwDestroyCond
C language syntax

void glfwDestroyCond(GLFWcond cond)

Parameters
cond

A condition variable object handle.

Return values
none

Description
The function destroys a condition variable object. After a condition variable object has
been destroyed, it may no longer be used by any thread.

Notes
none

Page 38/47

GLFW Reference Manual 1.4 January 8, 2003

2.9.3 glfwWaitCond
C language syntax

void glfwWaitCond(GLFWcond cond, GLFWmutex mutex,
double timeout)

Parameters
cond

A condition variable object handle.

mutex
A mutex object handle.

timeout
Maximum time to wait for the condition variable. The parameter can either be a
positive time (in seconds), or GLFW_INFINITY.

Return values
none

Description
The function atomically unlocks the mutex specified by mutex, and waits for the
condition variable cond to be signaled. The thread execution is suspended and does not
consume any CPU time until the condition variable is signaled or the amount of time
specified by timeout has passed. If timeout is GLFW_INFINITY, glfwWaitCond will
wait forever for cond to be signaled. Before returning to the calling thread,
glfwWaitCond automatically re-acquires the mutex.

Notes
The mutex specified by mutex must be locked by the calling thread on entrance to
glfwWaitCond.

A condition variable must always be associated with a mutex, to avoid the race
condition where a thread prepares to wait on a condition variable and another thread
signals the condition just before the first thread actually waits on it.

2.9.4 glfwSignalCond
C language syntax

void glfwSignalCond(GLFWcond cond)

Parameters
cond

A condition variable object handle.

Return values
none

Page 39/47

GLFW Reference Manual 1.4 January 8, 2003

Description
The function restarts one of the threads that are waiting on the condition variable cond.
If no threads are waiting on cond, nothing happens. If several threads are waiting on
cond, exactly one is restarted, but it is not specified which.

Notes
When several threads are waiting for the condition variable, which thread is started
depends on operating system scheduling rules, and may vary from system to system and
from time to time.

2.9.5 glfwBroadcastCond
C language syntax

void glfwBroadcastCond(GLFWcond cond)

Parameters
cond

A condition variable object handle.

Return values
none

Description
The function restarts all the threads that are waiting on the condition variable cond.
Nothing happens if no threads are waiting on cond.

Notes
When several threads are waiting for the condition variable, the order in which threads
are started depends on operating system scheduling rules, and may vary from system to
system and from time to time.

Page 40/47

GLFW Reference Manual 1.4 January 8, 2003

2.10 Image and Texture Loading
In order to aid texture file loading, GLFW has support for loading images from files.

2.10.1 glfwReadImage
C language syntax

int glfwReadImage(const char *name, GLFWimage *img, int flags)

Parameters
name

A null terminated ISO 8859-1 (8-bit Latin 1) string holding the name of the file
that should be read.

img
Pointer to a GLFWimage struct, which will hold the information about the loaded
image (if the read was successful).

flags
Flags for controlling the image reading process. Valid flags are:

Name Description
GLFW_NO_RESCALE_BIT Do not rescale image to closest 2m x 2n resolution
GLFW_ORIGIN_UL_BIT Specifies that the origin of the loaded image should be

in the upper left corner (default is the lower left corner)

Return values
The function returns GL_TRUE if the image was loaded successfully. Otherwise
GL_FALSE is returned.

Description
The function reads an image from the file specified by the parameter name and returns
the image information and data in a GLFWimage structure, which has the following
definition:

typedef struct {
int Width, Height; // Image dimensions
int Format; // OpenGL pixel format
int BytesPerPixel; // Number of bytes per pixel
unsigned char *Data; // Pointer to pixel data

} GLFWimage;

Page 41/47

GLFW Reference Manual 1.4 January 8, 2003

Width and Height give the dimensions of the image. Format specifies an OpenGL pixel
format, which can be GL_LUMINANCE (for gray scale images), GL_RGB or
GL_RGBA. BytesPerPixel specifies the number of bytes per pixel. Data is a pointer to
the actual pixel data.

By default the read image is rescaled to the nearest larger 2m x 2n resolution using
bilinear interpolation, if necessary, which is useful if the image is to be used as an
OpenGL texture. This behavior can be disabled by setting the
GLFW_NO_RESCALE_BIT flag.

Unless the flag GLFW_ORIGIN_UL_BIT is set, the first pixel in img->Data is the lower
left corner of the image. If the flag GLFW_ORIGIN_UL_BIT is set, however, the first
pixel is the upper left corner.

Notes
glfwReadImage supports the Truevision Targa version 1 file format (.TGA). Supported
pixel formats are: 8-bit gray scale, 8-bit paletted (24/32-bit color), 24-bit true color and
32-bit true color + alpha.

Paletted images are translated into true color or true color + alpha pixel formats.

2.10.2 glfwFreeImage
C language syntax

void glfwFreeImage(GLFWimage *img)

Parameters
img

Pointer to a GLFWimage struct, which will hold the information about the loaded
image (if the read was successful).

Return values
none

Description
The function frees any memory occupied by a loaded image, and clears all the fields of
the GLFWimage struct. Any image that has been loaded by the glfwReadImage or
glfwReadImageF functions should be deallocated using this function, once the image is
not needed anymore.

Notes
none

Page 42/47

GLFW Reference Manual 1.4 January 8, 2003

2.10.3 glfwLoadTexture2D
C language syntax

int glfwLoadTexture2D(const char *name, int flags)

Parameters
name

An ISO 8859-1 (8-bit Latin 1) string holding the name of the file that should be
loaded.

flags
Flags for controlling the texture loading process. Valid flags are:

Name Description
GLFW_ORIGIN_UL_BIT Specifies that the origin of the loaded image should

be in the upper left corner (default is the lower left
corner)

GLFW_BUILD_MIPMAPS_BIT Automatically build and upload all mipmap levels

Return values
The function returns GL_TRUE if the texture was loaded successfully. Otherwise
GL_FALSE is returned.

Description
The function reads an image from the file specified by the parameter name and uploads
the image to OpenGL texture memory (using the glTexImage2D function).

If the GLFW_BUILD_MIPMAPS_BIT flag is set, all mipmap levels for the loaded
texture are generated and uploaded to texture memory.

Unless the flag GLFW_ORIGIN_UL_BIT is set, the first pixel in img->Data is the lower
left corner of the image. If the flag GLFW_ORIGIN_UL_BIT is set, however, the first
pixel is the upper left corner.

Page 43/47

GLFW Reference Manual 1.4 January 8, 2003

Notes
glfwLoadTexture2D supports the Truevision Targa version 1 file format (.TGA).
Supported pixel formats are: 8-bit gray scale, 8-bit paletted (24/32-bit color), 24-bit true
color and 32-bit true color + alpha.

Paletted images are translated into true color or true color + alpha pixel formats.

The read texture is always rescaled to the nearest larger 2m x 2n resolution using bilinear
interpolation, if necessary, since OpenGL requires textures to have a 2m x 2n resolution.

If the GL_SGIS_generate_mipmap extension, which is usually hardware accelerated, is
supported by the OpenGL implementation it will be used for mipmap generation.
Otherwise the mipmaps will be generated by GLFW in software.

Page 44/47

GLFW Reference Manual 1.4 January 8, 2003

2.11 Miscellaneous

2.11.1 glfwEnable/glfwDisable
C language syntax

void glfwEnable(int token)
void glfwDisable(int token)

Parameters
token

A value specifying a feature to enable or disable. The following values are valid
tokens:

Name Controls Default
GLFW_AUTO_POLL_EVENTS Automatic event polling

when glfwSwapBuffers is
called

Enabled

GLFW_KEY_REPEAT Keyboard key repeat Disabled
GLFW_MOUSE_CURSOR Mouse cursor visibility Enabled in

windowed mode.
Disabled in
fullscreen mode.

GLFW_STICKY_KEYS Keyboard key “stickiness” Disabled
GLFW_STICKY_MOUSE_BUTTONS Mouse button “stickiness” Disabled
GLFW_SYSTEM_KEYS Special system key actions Enabled

Return values
none

Description
glfwEnable is used to enable a certain feature, while glfwDisable is used to disable it.
For a description of each feature, see the following sub-sections.

Notes
none

2.11.1.1 GLFW_AUTO_POLL_EVENTS
When GLFW_AUTO_POLL_EVENTS is enabled, glfwPollEvents is automatically
called each time that glfwSwapBuffers is called.

When GLFW_AUTO_POLL_EVENTS is disabled, calling glfwSwapBuffers will not
result in a call to glfwPollEvents. This can be useful if glfwSwapBuffers needs to be
called from within a callback function, since calling glfwPollEvents from a callback
function is not allowed.

Page 45/47

GLFW Reference Manual 1.4 January 8, 2003

2.11.1.2 GLFW_KEY_REPEAT
When GLFW_KEY_REPEAT is enabled, the key and character callback functions are
called repeatedly when a key is held down long enough (according to the system key
repeat configuration).

When GLFW_KEY_REPEAT is disabled, the key and character callback functions are
only called once when a key is pressed (and once when it is released).

2.11.1.3 GLFW_MOUSE_CURSOR
When GLFW_MOUSE_CURSOR is enabled, the mouse cursor is visible, and mouse
coordinates are relative to the upper left corner of the window and are limited to the
drawing area of the window.

When GLFW_MOUSE_CURSOR is disabled, the mouse cursor is invisible, and mouse
coordinates are not limited to the drawing area of the window.

2.11.1.4 GLFW_STICKY_KEYS
When GLFW_STICKY_KEYS is enabled, keys which are pressed will not be released
until they are physically released and checked with glfwGetKey. This behavior makes it
possible to catch keys which were pressed and then released again between two calls to
glfwPollEvents or glfwSwapBuffers, which would otherwise have been reported as
released. Care should be taken when using this mode, since keys that are not checked
with glfwGetKey will never be released. Note also that enabling
GLFW_STICKY_KEYS does not affect the behavior of the keyboard callback
functionality.

When GLFW_STICKY_KEYS is disabled, the status of a key that is reported by
glfwGetKey is always the physical state of the key.

2.11.1.5 GLFW_STICKY_MOUSE_BUTTONS
When GLFW_STICKY_MOUSE_BUTTONS is enabled, mouse buttons which are
pressed will not be released until they are physically released and checked with
glfwGetMouseButton. This behavior makes it possible to catch mouse buttons which
were pressed and then released again between two calls to glfwPollEvents or
glfwSwapBuffers, which would otherwise have been reported as released. Care should
be taken when using this mode, since mouse buttons that are not checked with
glfwGetMouseButton will never be released. Note also that enabling
GLFW_STICKY_MOUSE_BUTTONS does not affect the behavior of the mouse button
callback functionality.

When GLFW_STICKY_MOUSE_BUTTONS is disabled, the status of a mouse button
that is reported by glfwGetMouseButton is always the physical state of the mouse
button.

Page 46/47

GLFW Reference Manual 1.4 January 8, 2003

2.11.1.6 GLFW_SYSTEM_KEYS
When GLFW_SYSTEM_KEYS is enabled, pressing standard system key combinations,
such as ALT+TAB under Windows, will give the normal behavior. Note that when
ALT+TAB is issued under Windows in this mode so that the GLFW application is
deselected when GLFW is operating in fullscreen mode, the GLFW application window
will be minimized and the video mode will be set to the original desktop mode. When
the GLFW application is re-selected, the video mode will be set to the GLFW video
mode again.

When GLFW_SYSTEM_KEYS is disabled, pressing standard system key combinations
will have no effect, since those key combinations are blocked by GLFW. This mode can
be useful in situations when the GLFW program must not be interrupted (normally for
games in fullscreen mode).

2.11.2 glfwGetNumberOfProcessors
C language syntax

int glfwGetNumberOfProcessors(void)

Parameters
none

Return values
The function returns the number of active processors in the system.

Description
The function determines the number of active processors in the system.

Notes
none

Page 47/47

	SUMMARY
	TABLE OF CONTENTS
	1. INTRODUCTION
	2. FUNCTION REFERENCE
	2.1 GLFW Initialization and Termination
	2.1.1 glfwInit
	2.1.2 glfwTerminate
	2.1.3 glfwGetVersion

	2.2 Window Handling
	2.2.1 glfwOpenWindow
	2.2.2 glfwOpenWindowHint
	2.2.3 glfwCloseWindow
	2.2.4 glfwSetWindowTitle
	2.2.5 glfwSetWindowSize
	2.2.6 glfwSetWindowPos
	2.2.7 glfwGetWindowSize
	2.2.8 glfwSetWindowSizeCallback
	2.2.9 glfwGetWindowParam
	2.2.10 glfwSwapBuffers
	2.2.11 glfwSwapInterval

	2.3 Video Modes
	2.3.1 glfwGetVideoModes
	2.3.2 glfwGetDesktopMode

	2.4 Input Handling
	2.4.1 glfwPollEvents
	2.4.2 glfwGetKey
	2.4.3 glfwGetMouseButton
	2.4.4 glfwGetMousePos
	2.4.5 glfwSetMousePos
	2.4.6 glfwGetMouseWheel
	2.4.7 glfwSetMouseWheel
	2.4.8 glfwSetKeyCallback
	2.4.9 glfwSetCharCallback
	2.4.10 glfwSetMouseButtonCallback
	2.4.11 glfwSetMousePosCallback
	2.4.12 glfwSetMouseWheelCallback
	2.4.13 glfwGetJoystickParam
	2.4.14 glfwGetJoystickPos
	2.4.15 glfwGetJoystickButtons

	2.5 Timing
	2.5.1 glfwGetTime
	2.5.2 glfwSetTime
	2.5.3 glfwSleep

	2.6 OpenGL Extension Support
	2.6.1 glfwExtensionSupported
	2.6.2 glfwGetProcAddress
	2.6.3 glfwGetGLVersion

	2.7 Threads
	2.7.1 glfwCreateThread
	2.7.2 glfwDestroyThread
	2.7.3 glfwWaitThread
	2.7.4 glfwGetThreadID

	2.8 Mutexes
	2.8.1 glfwCreateMutex
	2.8.2 glfwDestroyMutex
	2.8.3 glfwLockMutex
	2.8.4 glfwUnlockMutex

	2.9 Condition Variables
	2.9.1 glfwCreateCond
	2.9.2 glfwDestroyCond
	2.9.3 glfwWaitCond
	2.9.4 glfwSignalCond
	2.9.5 glfwBroadcastCond

	2.10 Image and Texture Loading
	2.10.1 glfwReadImage
	2.10.2 glfwFreeImage
	2.10.3 glfwLoadTexture2D

	2.11 Miscellaneous
	2.11.1 glfwEnable/glfwDisable
	2.11.1.1 GLFW_AUTO_POLL_EVENTS
	2.11.1.2 GLFW_KEY_REPEAT
	2.11.1.3 GLFW_MOUSE_CURSOR
	2.11.1.4 GLFW_STICKY_KEYS
	2.11.1.5 GLFW_STICKY_MOUSE_BUTTONS
	2.11.1.6 GLFW_SYSTEM_KEYS

	2.11.2 glfwGetNumberOfProcessors

