
GLFW
Users Guide

Document release 1.4

 2002-2003 Marcus Geelnard

GLFW Users Guide 1.4 January 8, 2003

SUMMARY

This document describes the general usage of the GLFW 2.4 API. Most of the API
functions are described here, but for a complete list of functions you should refer to the
GLFW Reference Manual.

TRADEMARKS

OpenGL and IRIX are registered trademarks of Silicon Graphics, Inc.
Microsoft, Windows and MS-DOS are registered trademarks of Microsoft Corporation.
Linux is a registered trademark of Linus Torvalds.
Solaris is a trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of The Open Group.
X Window System is a trademark of The Open Group.
POSIX is a trademark of IEEE.
Intel and Pentium are registered trademarks of Intel Corporation.
AMD Athlon is a trademark of Advanced Micro Devices, Inc.
Truevision, TARGA and TGA are registered trademarks of Truevision, Inc.
All other trademarks mentioned in this document are the property of their respective owners.

Page 2/36

GLFW Users Guide 1.4 January 8, 2003

TABLE OF CONTENTS
1. INTRODUCTION___4

2. GETTING STARTED__5

2.1 Initializing GLFW___5
2.2 Opening An OpenGL Window___5
2.3 Using Keyboard Input__6
2.4 Putting It Together: A Minimal GLFW Application___________________________7

3. WINDOW OPERATIONS__8

3.1 Setting Window Properties__8
3.2 Getting Window Properties__9
3.3 Buffer Swapping__11
3.4 Querying Video Modes___12

4. INPUT HANDLING___14

4.1 Event Polling___14
4.2 Keyboard Input___14

4.2.1 Key repeat__16
4.2.2 Special system keys___16

4.3 Mouse Input__16
4.3.1 Mouse position__16
4.3.2 Mouse buttons___17
4.3.3 Mouse wheel__17
4.3.4 Hiding the mouse cursor___18

4.4 Joystick Input___18
4.4.1 Joystick capabilities__18
4.4.2 Joystick position___19
4.4.3 Joystick buttons___19

5. TIMING___20

5.1 High Resolution Timer___20
5.2 Sleep___20

6. OPENGL EXTENSION SUPPORT_______________________________________21

6.1 Compile Time Check___21
6.2 Run Time Check__21
6.3 Fetching Function Pointers__22

6.3.1 About function pointer type definitions____________________________________23

7. IMAGE AND TEXTURE IMPORT______________________________________25

7.1 Texture Loading__25
7.2 Image Loading__26

8. MULTI THREADING___28

8.1 Why Use Multi Threading?__28
8.1.1 Take advantage of multi processor systems________________________________28
8.1.2 Avoid unnecessary waiting___29
8.1.3 Improve real time performance___29

8.2 How To Use Multi Threading__29
8.3 Creating Threads__30
8.4 Data Sharing Using Mutex Objects__32
8.5 Thread Synchronization Using Condition Variables___________________________33
8.6 Is GLFW Thread Safe?___36
8.7 Conclusion___36

Page 3/36

GLFW Users Guide 1.4 January 8, 2003

1. INTRODUCTION
GLFW is a portable API (Application Program Interface) that handles operating system
specific tasks related to OpenGL programming. While OpenGL in general is portable,
easy to use and often results in tidy and compact code, the operating system specific
mechanisms that are required to set up and manage an OpenGL window are quite the
opposite. GLFW tries to remedy this by providing the following functionality:

� Opening and maintaining an OpenGL window.
� Keyboard, mouse and joystick input.
� A high precision timer.
� Multi threading support.
� Support for querying and using OpenGL extensions.
� Image file loading support.

All this functionality is implemented as a set of easy-to-use functions, which makes it
possible to write an OpenGL application framework in just a few lines of code.

The GLFW API is completely operating system and platform independent, which makes
it very simple to port GLFW based OpenGL applications to a variety of platforms.
Currently supported platforms are:

� Microsoft Windows 95/98/ME/NT/2000/XP/.NET Server.
� Unix or Unix-like systems1 running the X Window System, e.g. Linux,

IRIX and Solaris.

1 For threading support GLFW uses the POSIX threading package (pthread), which is supported by most
modern Unix-like systems.

Page 4/36

GLFW Users Guide 1.4 January 8, 2003

2. GETTING STARTED
In this chapter you will learn how to write a simple OpenGL application using GLFW.
We start by initializing GLFW, then we open a window and read some user keyboard
input.

2.1 Initializing GLFW
Before using any of the GLFW functions, it is necessary to call glfwInit. It initializes
internal working variables which are used by other GLFW functions. The C syntax is:

int glfwInit(void)

glfwInit returns GL_TRUE if initialization succeeded, or GL_FALSE if it failed.

When your application is done using GLFW, typically at the very end of the program,
you should call glfwTerminate, which makes a clean up and places GLFW in a non-
initialized state (i.e. it is necessary to call glfwInit again before using any GLFW
functions). The C syntax is:

void glfwTerminate(void)

Among other things, glfwTerminate closes the OpenGL window unless it was closed
manually, and kills any running threads that were created using GLFW.

2.2 Opening An OpenGL Window
Opening an OpenGL window is done with the function glfwOpenWindow. The
function takes nine arguments, which are used to describe the following properties of
the window to open:

� Window dimensions (width and height) in pixels.
� Color and alpha buffer depth.
� Depth buffer (Z-buffer) depth.
� Stencil buffer depth.
� Fullscreen or windowed mode.

The C language syntax for glfwOpenWindow is:

int glfwOpenWindow(int width, int height,
int redbits, int greenbits, int bluebits,
int alphabits, int depthbits, int stencilbits,
int mode)

glfwOpenWindow returns GL_TRUE if the window was opened correctly, or
GL_FALSE if GLFW failed to open the window.

Page 5/36

GLFW Users Guide 1.4 January 8, 2003

GLFW tries to open a window which best matches the requested parameters. Some
parameters may be omitted by setting them to zero, which will result in GLFW either
using a default value, or the related functionality to be disabled. For instance, if width
and height are both zero, GLFW will use a window resolution of 640x480. If depthbits
is zero, the opened window may not have a depth buffer.

The mode argument is used to specify if the window is to be a s.c. fullscreen window, or
a regular window.

If mode is GLFW_FULLSCREEN, the window will cover the entire screen and no
window borders will be visible. If possible, the video mode will be changed to the mode
that closest matches the width, height, redbits, greenbits, bluebits and alphabits
arguments. Furthermore, the mouse pointer will be hidden, and screensavers are
prohibited. This is usually the best mode for games and demos.

If mode is GLFW_WINDOW, the window will be opened as a normal window on the
desktop. The mouse pointer will not be hidden, and screensavers are allowed to be
activated.

To close the window, you can either use glfwTerminate, as described earlier, or you
can use the more explicit approach by calling glfwCloseWindow, which has the C
syntax:

void glfwCloseWindow(void)

2.3 Using Keyboard Input
GLFW provides several means for receiving user input, which will be discussed in more
detail later on in this manual. One of the simplest ways of checking for keyboard input
is to use the function glfwGetKey:

int glfwGetKey(int key)

It queries the current status of individual keyboard keys. The argument key specifies
which key to check, and it can be either an uppercase printable ISO 8859-1 (Latin 1)
character (e.g. 'A', '3' or '.'), or a special key identifier (see the GLFW Reference Manual
for a list of special key identifiers). glfwGetKey returns GLFW_PRESS (or 1) if the key
is currently held down, or GLFW_RELEASE (or 0) if the key is not being held down.
For example:

A_pressed = glfwGetKey(‘A’);
esc_pressed = glfwGetKey(GLFW_KEY_ESC);

In order for glfwGetKey to have any effect, you need to poll for input events on a
regular basis. This can be done in one of two ways:

1. Implicitly by calling glfwSwapBuffers often.
2. Explicitly by calling glfwPollEvents often.

Page 6/36

GLFW Users Guide 1.4 January 8, 2003

In general you do not have to care about this, since you will normally call
glfwSwapBuffers to swap front and back rendering buffers every animation frame
anyway. If, however, this is not the case, you should call glfwPollEvents in the order of
10-100 times per second in order for GLFW to maintain an up to date input state.

2.4 Putting It Together: A Minimal GLFW Application
Now that you know how to initialize GLFW, open a window and poll for keyboard
input, let us exemplify this with a simple OpenGL program. In the following example
error-checking has been omitted for the sake of brevity:

#include <GL/glfw.h>

int main(void)
{

int running = GL_TRUE;

// Initialize GLFW
glfwInit();

// Open an OpenGL window
if(!glfwOpenWindow(300,300, 0,0,0,0,0,0, GLFW_WINDOW))
{

glfwTerminate();
return 0;

}

// Main loop
while(running)
{

// OpenGL rendering goes here...
glClear(GL_COLOR_BUFFER_BIT);

// Swap front and back rendering buffers
glfwSwapBuffers();

// Check if ESC key was pressed or window was closed
running = !glfwGetKey(GLFW_KEY_ESC) &&

glfwGetWindowParam(GLFW_OPENED);
}

// Close window and terminate GLFW
glfwTerminate();

// Exit program
return 0;

}

The program opens a 300x300 window and runs in a loop until the escape key is
pressed, or the window was closed. All the OpenGL “rendering” that is done in this
example is to clear the window, using the glClear function.

Page 7/36

GLFW Users Guide 1.4 January 8, 2003

3. WINDOW OPERATIONS
In this chapter, you will learn more about window related GLFW functionality,
including: setting and getting window properties, buffer swap control and video mode
querying.

3.1 Setting Window Properties
In the previous chapter the glfwOpenWindow function was described, which specifies
the sizes of the color, alpha, depth and stencil buffers. It is also possible to request an
accumulator buffer and/or auxiliary buffers by using the glfwOpenWindowHint
function:

void glfwOpenWindowHint(int target, int hint)

The target argument can be one of the constants listed in the table below, and hint is the
value to assign to the specified target.

Name Description
GLFW_REFRESH_RATE Vertical monitor refresh rate in Hz (only used for

fullscreen windows).
GLFW_ACCUM_RED_BITS Number of bits for the red channel of the

accumulator buffer.
GLFW_ACCUM_GREEN_BITS Number of bits for the green channel of the

accumulator buffer.
GLFW_ACCUM_BLUE_BITS Number of bits for the blue channel of the

accumulator buffer.
GLFW_ACCUM_ALPHA_BITS Number of bits for the alpha channel of the

accumulator buffer.
GLFW_AUX_BUFFERS Number of auxiliary buffers.
GLFW_STEREO Specify if stereo rendering should be supported (can

be GL_TRUE or GL_FALSE).

Table 1: Parameters which are possible to set using glfwOpenWindowHint.

For a hint to have any effect, the glfwOpenWindowHint function must be called before
opening the window with the glfwOpenWindow function.

To request an accumulator buffer, set the GLFW_ACCUM_x_BITS targets to values
greater than zero (usually eight or sixteen bits per component). To request auxiliary
buffers, set the GLFW_AUX_BUFFERS target to a value greater than zero. To request a
stereo rendering capable window, set the GLFW_STEREO target to GL_TRUE. The
GLFW_REFRESH_RATE target should be used with caution, since it may result in
suboptimal operation, or even a blank or damaged screen.

Page 8/36

GLFW Users Guide 1.4 January 8, 2003

Besides the parameters that are given with the glfwOpenWindow and
glfwOpenWindowHint functions, a few more properties of a window can be changed
after the window has been opened, namely the window title, window size, and window
position.

To change the window title of an open window, use the glfwSetWindowTitle function:

void glfwSetWindowTitle(const char *title)

title is a null terminated ISO 8859-1 (8-bit Latin 1) string that will be used as the
window title. It will also be used as the application name (for instance in the application
list when using ALT+TAB under Windows, or as the icon name when the window is
iconified under X11). The default window name is “GLFW Window”, which will be
used unless glfwSetWindowTitle is called after the window has been opened.

To change the size of a window, call glfwSetWindowSize:

void glfwSetWindowSize(int width, int height)

Where width and height are the new dimensions of the window.

To change the position of a window, call glfwSetWindowPos:

void glfwSetWindowPos(int x, int y)

Where x and y are the new desktop coordinates of the window. This function does not
have any effect when in fullscreen mode.

3.2 Getting Window Properties
When opening a window, the opened window will not necessarily have the requested
properties, so you should always check the parameters that your application relies on
(e.g. number of stencil bits) using glfwGetWindowParam, which has the C syntax:

int glfwGetWindowParam(int param)

The argument param can be one of the tokens listed in Table 2, and the return value is
an integer holding the requested value.

Page 9/36

GLFW Users Guide 1.4 January 8, 2003

Name Return value
GLFW_OPENED GL_TRUE if window is opened, else GL_FALSE.
GLFW_ACTIVE GL_TRUE if window is selected and active, else

GL_FALSE.
GLFW_ICONIFIED GL_TRUE if window is iconified, else GL_FALSE.
GLFW_ACCELERATED2 GL_TRUE if window is hardware accelerated.
GLFW_RED_BITS Number of bits for the red color component.
GLFW_GREEN_BITS Number of bits for the green color component.
GLFW_BLUE_BITS Number of bits for the blue color component.
GLFW_ALPHA_BITS Number of bits for the alpha buffer.
GLFW_DEPTH_BITS Number of bits for the depth buffer.
GLFW_STENCIL_BITS Number of bits for the stencil buffer.
GLFW_REFRESH_RATE3 Vertical refresh rate in Hz.
GLFW_ACCUM_RED_BITS Number of bits for the red channel of the

accumulator buffer.
GLFW_ACCUM_GREEN_BITS Number of bits for the green channel of the

accumulator buffer.
GLFW_ACCUM_BLUE_BITS Number of bits for the blue channel of the

accumulator buffer.
GLFW_ACCUM_ALPHA_BITS Number of bits for the alpha channel of the

accumulator buffer.
GLFW_AUX_BUFFERS Number of auxiliary buffers.
GLFW_STEREO GL_TRUE if stereo rendering is supported, else

GL_FALSE.

Table 2: Parameters which are possible to query using glfwGetWindowParam.

Another useful function is glfwSetWindowSizeCallback, which specifies a user
function that will be called every time the window size has changed. The C syntax is:

void glfwSetWindowSizeCallback(GLFWwindowsizefun cbfun)

The user function fun should be of the type:

void GLFWCALL fun(int width, int height)

The first argument passed to the user function is the width of the window, and the
second argument is the height of the window. Here is an example of how to use a
window size callback function:

2 GLFW_ACCELERATED is only supported under Windows.
3 GLFW_REFRESH_RATE is only supported under Windows and Xfree86. Other systems will return zero
when GLFW_REFRESH_RATE is selected.

Page 10/36

GLFW Users Guide 1.4 January 8, 2003

int WinWidth, WinHeight;

void GLFWCALL WindowResize(int width, int height)
{

WinWidth = width;
WinHeight = height;

}

int main(void)
{

...
glfwSetWindowSizeCallback(WindowResize);
...

}

Using a callback function for getting the window size is mostly useful for windowed
applications, since the window size may be changed at any time by the user. It can also
be used to determine the actual fullscreen resolution.

An alternative to using a callback function for getting the window size, is to use the
function glfwGetWindowSize:

void glfwGetWindowSize(int *width, int *height)

The width and height arguments are filled out with the current window dimensions.

3.3 Buffer Swapping
GLFW windows are always double buffered. That means that you have two rendering
buffers; a front buffer and a back buffer. The front buffer is the buffer that is being
displayed, and the back buffer is not displayed. OpenGL lets you select which of these
two buffers you want to render to (with the glDrawBuffer command), but the default
(and preferred) rendering buffer is the back buffer. This way you will avoid flickering
and artifacts caused by graphics being only partly drawn at the same time as the video
raster beam is displaying the graphics on the monitor.

When an entire frame has been rendered to the back buffer, it is time to swap the back
and the front buffers in order to display the rendered frame, and begin rendering a new
frame. This is done with the command glfwSwapBuffers. The C syntax is:

void glfwSwapBuffers(void)

Besides swapping the front and back rendering buffers, glfwSwapBuffers also calls
glfwPollEvents (this behavior can be disabled by calling glfwDisable with the
argument GLFW_AUTO_POLL_EVENTS). This is to ensure frequent polling of events,
such as keyboard and mouse input, and window reshaping events.

Sometimes it can be useful to select when the buffer swap will occur. With the function
glfwSwapInterval it is possible to select the minimum number of vertical retraces the
video raster line should do before swapping the buffers:

void glfwSwapInterval(int interval)

Page 11/36

GLFW Users Guide 1.4 January 8, 2003

If interval is zero, the swap will take place immediately when glfwSwapBuffers is
called, without waiting for a vertical retrace (also known as “vsync off”). Otherwise at
least interval retraces will pass between each buffer swap (also known as “vsync on”).
Using a swap interval of zero can be useful for benchmarking purposes, when it is not
desirable to measure the time it takes to wait for the vertical retrace. However, a swap
interval of 1 generally gives better visual quality.

It should be noted that not all OpenGL implementations and hardware supports this
function, in which case glfwSwapInterval will have no effect. Sometimes it is only
possible to affect the swap interval through driver settings (e.g. the display settings
under Windows, or as an environment variable setting under Unix).

3.4 Querying Video Modes
Although GLFW generally does a good job at selecting a suitable video mode for you
when you open a fullscreen window, it is sometimes useful to know exactly which
modes are available on a certain system. For example, you may want to present the user
with a list of video modes to select from. To get a list of available video modes, you can
use the function glfwGetVideoModes:

int glfwGetVideoModes(GLFWvidmode *list, int maxcount)

The argument list is a vector of GLFWvidmode structures, and maxcount is the
maximum number of video modes that your vector can hold. glfwGetVideoModes will
return the actual number of video modes detected on the system.

The GLFWvidmode structure looks like this:

typedef struct {
int Width, Height; // Video resolution
int RedBits; // Red bits per pixel
int GreenBits; // Green bits per pixel
int BlueBits; // Blue bits per pixel

} GLFWvidmode;

 Here is an example of retrieving all available video modes:

int nummodes;
GLFWvidmode list[200];
nummodes = glfwGetVideoModes(list, 200);

The returned list is sorted, first by color depth (RedBits + GreenBits + BlueBits), and
then by resolution (Width*Height), with the lowest resolution, fewest bits per pixel
mode first.

To get the desktop video mode, use the function glfwGetDesktopMode:

void glfwGetDesktopMode(GLFWvidmode *mode)

Page 12/36

GLFW Users Guide 1.4 January 8, 2003

The function returns the resolution and color depth of the user desktop in the mode
structure. Note that the user desktop mode is independent of the current video mode if a
GLFW fullscreen window has been opened.

Page 13/36

GLFW Users Guide 1.4 January 8, 2003

4. INPUT HANDLING
In this chapter you will learn how to use keyboard, mouse and joystick input, using
either polling or callback functions.

4.1 Event Polling
The first thing to know about input handling in GLFW is that all keyboard and mouse
input is collected by checking for input events. This has do be done manually by calling
either glfwPollEvents or glfwSwapBuffers (which implicitly calls glfwPollEvents for
you). Normally this does not have to be a concern, since glfwSwapBuffers is called
every frame, which should be often enough (about 10-100 times per second for a normal
OpenGL application). One exception is when rendering is paused, and then the program
waits for input to begin animation again. In this case glfwPollEvents has to be called
repeatedly until any new input events arrive.

If it is not desirable that glfwPollEvents is called implicitly from glfwSwapBuffers,
call glfwDisable with the argument GLFW_AUTO_POLL_EVENTS.

Note that for joystick input event polling is not needed, since all relevant joystick state
is gathered every time a joystick function is called.

4.2 Keyboard Input
GLFW gives three options for getting keyboard input:

� Manually polling the state of individual keys.
� Automatically receive new key state for any key, using a callback function.
� Automatically receive characters, using a callback function.

Depending on what the keyboard input will be used for, either of the methods may be
more suitable. The main difference between the two last options is that while characters
are affected by modifier keys (such as shift), key state is independent of any modifier
keys. Also, special keys (such as function keys, cursor keys and modifier keys) are not
reported to the character callback function.

To check if a key is held down or not at any given moment, use the function
glfwGetKey:

int glfwGetKey(int key)

It queries the current status of individual keyboard keys. The argument key specifies
which key to check, and it can be either an uppercase ASCII character, or a special key
identifier. glfwGetKey returns GLFW_PRESS (or 1) if the key is currently held down,
or GLFW_RELEASE (or 0) if the key is not being held down.

Page 14/36

GLFW Users Guide 1.4 January 8, 2003

In most situations, it may be useful to know if a key has been pressed and released
between two calls to glfwGetKey (especially if the animation is fairly slow, which may
allow the user to press and release a key between two calls to glfwGetKey). This can be
accomplished by enabling sticky keys, which is done by calling glfwEnable with the
argument GLFW_STICKY_KEYS, as in the following example:

glfwEnable(GLFW_STICKY_KEYS);

When sticky keys are enabled, a key will not be released until it is checked with
glfwGetKey. To disable sticky keys, call glfwDisable witht the argument
GLFW_STICKY_KEYS. Then all keys that are not currently held down will be released,
and future key releases will take place immediately when the user releases the key,
without waiting for glfwGetKey to be called. By default sticky keys are disabled.

Sticky keys are often very useful and should be used in most cases. There is however a
danger involved with enabling sticky keys, and that is that keys which are pressed by the
user and are not checked with glfwGetKey, may remain pressed for a very long time. A
typical situation where this may be dangerous is in a program that consists of two or
more sections (e.g. a menu section and a game section). If the first section enables sticky
keys but does not check for keys which the second section checks for, there is a
potential of recording many key presses in the first section which will be detected in the
second section. To avoid this problem, always disable sticky keys before leaving a
section of a program.

An alternative to using glfwGetKey is to register a keyboard input callback function
with glfwSetKeyCallback:

void glfwSetKeyCallback(GLFWkeyfun cbfun)

The argument fun is a pointer to a callback function. The callback function shall take
two integer arguments. The first is the key identifier, and the second is the new key
state, which can be GLFW_PRESS or GLFW_RELEASE. To unregister a callback
function, call glfwSetKeyCallback with fun = NULL.

A callback function can be useful in some situations. For instance it can replace multiple
glfwGetKey calls with a switch/case statement.

If the keyboard is to be used as a text input device (e.g. in a user dialog) rather than as a
set of independent buttons, a character callback function is more suitable. To register a
character callback function, use glfwSetCharCallback:

void glfwSetCharCallback(GLFWcharfun cbfun)

The argument fun is a pointer to a callback function. The callback function shall take
two integer arguments. The first is a Unicode character code, and the second is
GLFW_PRESS if the key that generated the character was pressed, or GLFW_RELEASE
if it was released. To unregister a callback function, call glfwSetCharCallback with
fun = NULL.

Page 15/36

GLFW Users Guide 1.4 January 8, 2003

The Unicode character set is an international standard for encoding characters. It is
much more comprehensive than seven or eight bit character sets (e.g. US-ASCII and
Latin 1), and includes characters for most written languages in the world. It should be
noted that Unicode character codes 0 to 255 are the same as for ISO 8859-1 (Latin 1), so
as long as a proper range check is performed on the Unicode character code, it can be
used just as an eight bit Latin 1 character code (which can be useful if full Unicode
support is not possible).

4.2.1 Key repeat
By default, GLFW does not report key repeats when a key is held down. To activate key
repeat, call glfwEnable with the argument GLFW_KEY_REPEAT:

glfwEnable(GLFW_KEY_REPEAT);

This will let a registered key or character callback function receive key repeat events
when a key is held down.

4.2.2 Special system keys
On most systems there are some special system keys that are normally not intercepted by
an application. For instance, under Windows it is possible to switch programs by
pressing ALT+TAB, which brings up a list of running programs to select from. In
certain situations it can be desirable to prevent such special system keys from interfering
with the program. With GLFW it is possible to do by calling glfwDisable with the
argument GLFW_SYSTEM_KEYS:

glfwDisable(GLFW_SYSTEM_KEYS);

By doing so, most system keys will have no effect and will not interfere with your
program. System keys can be re-enabled by calling glfwEnable with the argument
GLFW_SYSTEM_KEYS. By default, system keys are enabled.

4.3 Mouse Input
Just like for keyboard input, mouse input can be realized with either polling or callback
functions.

4.3.1 Mouse position
To read the mouse position, you can use the function glfwGetMousePos:

void glfwGetMousePos(int *x, int *y)

The arguments x and y point to integer variables that will be updated with the current
absolute mouse position. An alternative is to use a callback function instead, which can
be set with glfwSetMousePosCallback:

void glfwSetMousePosCallback(GLFWmouseposfun cbfun)

Page 16/36

GLFW Users Guide 1.4 January 8, 2003

The function that fun points to will be called every time the mouse position changes.
The first argument to the callback function is the mouse x position, and the second
argument is the mouse y position.

4.3.2 Mouse buttons
To query the state of a mouse button, call glfwGetMouseButton:

int glfwGetMouseButton(int button)

The argument button can be one of the following mouse button identifiers:
GLFW_MOUSE_BUTTON_LEFT, GLFW_MOUSE_BUTTON_RIGHT or
GLFW_MOUSE_BUTTON_MIDDLE. glfwGetMouseButton will return
GLFW_PRESS (or 1) if the corresponding mouse button is held down, otherwise it will
return GLFW_RELEASE (or 0).

Just as it is possible to make keys “sticky”, it is also possible to make mouse buttons
appear as held down until the button is checked for with glfwGetMouseButton. To
enable sticky mouse buttons, call glfwEnable with the argument
GLFW_STICKY_MOUSE_BUTTONS. To disable sticky mouse buttons, call
glfwDisable with the same argument.

When sticky mouse buttons are enabled, a mouse button will not be released until it is
checked with glfwGetMouseButton. To disable sticky mouse buttons, call glfwDisable
witht the argument GLFW_STICKY_MOUSE_BUTTONS. Then all mouse buttons that
are not currently held down will be released, and future mouse button releases will take
place immediately when the user releases the mouse button, without waiting for
glfwGetMouseButton to be called. By default sticky mouse buttons are disabled.

There is also a callback function for mouse button activities, which can be set with
glfwSetMouseButtonCallback:

void glfwSetMouseButtonCallback(GLFWmousebuttonfun fun)

The argument fun specifies a function that will be called whenever a mouse button is
pressed or released, or NULL to unregister a callback function. The first argument to the
callback function is a mouse button identifier, and the second is either GLFW_PRESS or
GLFW_RELEASE, depending on the new state of the corresponding mouse button.

4.3.3 Mouse wheel
Some mice have a mouse wheel, which can be thought of as a third mouse axis. To get
the position of the mouse wheel, call glfwGetMouseWheel:

int glfwGetMouseWheel(void)

The function returns an integer that represents the position of the mouse wheel. When
the user turns the wheel, the wheel position will increase or decrease.

Page 17/36

GLFW Users Guide 1.4 January 8, 2003

It is also possible to register a callback function for mouse wheel events with the
glfwSetMouseWheelCallback function:

void glfwSetMouseWheelCallback(GLFWmousewheelfun fun)

The argument fun specifies a function that will be called whenever a mouse wheel is
moved, or NULL to unregister a callback function. The argument to the callback
function is the position of the mouse wheel.

4.3.4 Hiding the mouse cursor
It is possible to hide the mouse cursor with the function call:

glfwDisable(GLFW_MOUSE_CURSOR);

Hiding the mouse cursor has three effects:

1. The cursor becomes invisible.
2. The cursor is guaranteed to be confined to the window.
3. Mouse coordinates are not limited to the window size.

To show the mouse cursor again, call glfwEnable with the argument
GLFW_MOUSE_CURSOR:

glfwEnable(GLFW_MOUSE_CURSOR);

By default the mouse cursor is hidden if a window is opened in fullscreen mode,
otherwise it is not hidden.

4.4 Joystick Input
GLFW has support for up to sixteen joysticks, and an infinite4 number of axes and
buttons per joystick. Unlike keyboard and mouse input, joystick input does not need an
opened window, and glfwPollEvents or glfwSwapBuffers does not have to be called in
order for joystick state to be updated.

4.4.1 Joystick capabilities
First, it is often necessary to determine if a joystick is connected, and what its
capabilities are. To get this information the function glfwGetJoystickParam can be
used:

int glfwGetJoystickParam(int joy, int param)

4There are of course actual limitations posed by the underlying hardware, drivers and operation system.
Page 18/36

GLFW Users Guide 1.4 January 8, 2003

The joy argument specifies which joystick to retrieve the parameter from, and it should
be GLFW_JOYSTICK_n, where n is in the range 1 to 16. The param argument specifies
which parameter to retrieve. To determine if a joystick is connected, param should be
GLFW_PRESENT, which will cause the function to return GL_TRUE if the joystick is
connected, or GL_FALSE if it is not. To determine the number of axes or buttons that
are supported by the joystick, param should be GLFW_JOYSTICK_AXES or
GLFW_JOYSTICK_BUTTONS, respectively.

4.4.2 Joystick position
To get the current axis positions of the joystick, the glfwGetJoystickPos is used:

int glfwGetJoystickPos(int joy, float *pos, int numaxes)

As with glfwGetJoystickParam, the joy argument specifies which joystick to retrieve
information from. The numaxes argument specifies how many axes to return, and the
pos argument specifies an array in which all the axis positions are stored. The function
returns the actual number of axes that were returned, which could be less than numaxes
if the joystick does not support all the requested axes, or if the joystick is not connected.

For instance, to get the position of the first two axes (the X and Y axes) of joystick 1,
the following code can be used:

float Position[2];

glfwGetJoystickPos(GLFW_JOYSTICK_1, Position, 2);

After this call, the first element of the Position array will hold the X axis position of the
joystick, and the second element will hold the Y axis position. In this example we do
not use the information about how many axes were really returned.

The position of an axis can be in the range -1.0 to 1.0, where positive values represent
right, forward or up directions, while negative values represent left, back or down
directions. If a requested axis is not supported by the joystick, the corresponding array
element will be set to zero. The same goes for the situation when the joystick is not
connected (all axes are treated as unsupported).

4.4.3 Joystick buttons
A function similar to the glfwGetJoystickPos function is available for querying the
state of joystick buttons, namely the glfwGetJoystickButtons function:

int glfwGetJoystickButtons(int joy, unsigned char *buttons,
int numbuttons)

The function works just like the glfwGetJoystickAxis function, except that it returns
the state of joystick buttons instead of axis positions. Each button in the array specified
by the buttons argument can be either GLFW_PRESS or GLFW_RELEASE, telling if the
corresponding button is currently held down or not. Unsupported buttons will have the
value GLFW_RELEASE.

Page 19/36

GLFW Users Guide 1.4 January 8, 2003

5. TIMING

5.1 High Resolution Timer
In most applications, it is useful to know exactly how much time has passed between
point A and point B in a program. A typical situation is in a game, where you need to
know how much time has passed between two rendered frames in order to calculate the
correct movement and physics etc. Another example is when you want to benchmark a
certain piece of code.

GLFW provides a high-resolution timer, which reports a double precision floating point
value representing the number of seconds that have passed since glfwInit was called.
The timer is accessed with the function glfwGetTime:

double glfwGetTime(void)

The precision of the timer depends on which computer and operating system you are
running, but it is almost guaranteed to be better than 10 ms, and in most cases it is much
better than 1 ms (on a modern PC you can get resolutions in the order of 1 us).

It is possible to set the value of the high precision timer using the glfwSetTime
function:

void glfwSetTime(double time)

The argument time is the time, in seconds, that the timer should be set to.

5.2 Sleep
Sometimes it can be useful to put a program to sleep for a short time. It can be used to
reduce the CPU load in various situations. For this purpose, there is a function called
glfwSleep, which has the following C syntax:

void glfwSleep(double time)

The function will put a thread5 to sleep for the time specified with the argument time,
which has the unit seconds. When glfwSleep is called, the calling thread will be put in
waiting state, and thus will not consume any CPU time.

Note that there is generally a minimum sleep time that will be recognized by the
operating system, which is usually coupled to the task-switching interval. This
minimum time is often in the range 5 – 20 milliseconds, and it is not possible to make a
thread sleep for less than that time. Specifying a very small sleep time may result in
glfwSleep returning immediately, without putting the thread to sleep.

5 Note that unlike the standard Unix sleep function, which puts an entire process to sleep, glfwSleep will
only put the calling thread to sleep. (For a single threaded program, both functions give the same result).

Page 20/36

GLFW Users Guide 1.4 January 8, 2003

6. OPENGL EXTENSION SUPPORT
One of the benefits of OpenGL is that it is extensible. Independent hardware vendors
(IHVs) may include functionality in their OpenGL implementations which exceed that
of the OpenGL standard.

An extension is defined by:

A) An extension name (e.g. GL_ARB_multitexture).
B) New OpenGL tokens (e.g. GL_TEXTURE1_ARB).
C) New OpenGL functions (e.g. glActiveTextureARB).

A list of official extensions, together with their definitions, can be found at the OpenGL
Extension Registry (http://oss.sgi.com/projects/ogl-sample/registry/).

To use a certain extension, the following steps must be performed:

1. A compile time check for the support of the extension.
2. A run time check for the support of the extension.
3. Fetch function pointers for the extended OpenGL functions (done at run time).

How this is done using GLFW is described in the following sections.

6.1 Compile Time Check
The compile time check is necessary to perform in order to know if the compiler include
files have defined the necessary tokens. It is very easy to do. The include file GL/gl.h
will define a constant with the same name as the extension, if all the extension tokens
are defined. Here is an example of how to check for the extension
GL_ARB_multitexture:

#ifdef GL_ARB_multitexture
// Extension is supported by the include files

#else
// Extension is not supported by the include files
// Update your <GL/gl.h> file!

#endif

6.2 Run Time Check
Even if the compiler include files have defined all the necessary tokens, the target
system may not support the extension (perhaps it has a different graphic card with a
different OpenGL implementation, or it has an older driver). That is why it is necessary
to do a run time check for the extension support as well. This is done with the GLFW
function glfwExtensionSupported, which has the C syntax:

int glfwExtensionSupported(const char *extension)

Page 21/36

http://oss.sgi.com/projects/ogl-sample/registry/

GLFW Users Guide 1.4 January 8, 2003

The argument extension is a null terminated string with the extension name.
glfwExtensionSupported returns GL_TRUE if the extension is supported, otherwise it
returns GL_FALSE.

Let us extend the previous example of checking for support of the extension
GL_ARB_multitexture. This time we add a run time check, and a variable which we set
to GL_TRUE if the extension is supported, or GL_FALSE if it is not supported.

int multitexture_supported;

#ifdef GL_ARB_multitexture
// Check if extension is supported at run time
multitexture_supported =

glfwExtensionSupported(“GL_ARB_multitexture”);
#else

// Extension is not supported by the include files
// Update your <GL/gl.h> file!
multitexture_supported = GL_FALSE;

#endif

Now it is easy to check for the extension within the program, simply do:

if(multitexture_supported)
{

// Use multi texturing
}
else
{

// Use some other solution (or fail)
}

6.3 Fetching Function Pointers
Some extensions (not all) require the use of new OpenGL functions, which are not
necessarily defined by your link libraries. Thus it is necessary to get the function
pointers dynamically at run time. This is done with the GLFW function
glfwGetProcAddress:

void * glfwGetProcAddress(const char *procname)

The argument procname is a null terminated string holding the name of the OpenGL
function. glfwGetProcAddress returns the address to the function if the function is
available, otherwise NULL is returned.

Obviously, fetching the function pointer is trivial. For instance, if we want to obtain the
pointer to glActiveTextureARB, we simply call:

glActiveTextureARB = glfwGetProcAddress(“glActiveTextureARB”);

However, there are many possible naming and type definition conflicts involved with
such an operation, which may result in compiler warnings or errors.

My proposed solution is the following:

Page 22/36

GLFW Users Guide 1.4 January 8, 2003

� Do not use the function name for the variable name. Use something similar
(perhaps with a prefix or suffix), and then use #define to map the function
name to your variable.

� The standard type definition naming convention for function pointers is
PFNxxxxPROC, where xxxx is the uppercase version of the function name (e.g.
PFNGLACTIVETEXTUREARBPROC). Either make sure that a compatible
gl.h and/or glext.h file is used by your compiler and rely on it to do the type
definitions for you, or use a custom type definition naming convention (e.g.
xxxx_T or something) and do the type definitions yourself.

Here is an example of how to do it (here we use our own function pointer type
defintion):

// Type definition of the function pointer
typedef void (APIENTRY * GLACTIVETEXTUREARB_T) (GLenum texture);

// Function pointer
GLACTIVETEXTUREARB_T _ActiveTextureARB;
#define glActiveTextureARB _ActiveTextureARB

int multitexture_supported;

#ifdef GL_ARB_multitexture
// Check if extension is supported at run time
if(glfwExtensionSupported(“GL_ARB_multitexture”))
{

// Get the function pointer
glActiveTextureARB = (GLACTIVETEXTUREARB_T)

glfwGetProcAddress(“glActiveTextureARB”);

multitexture_supported = GL_TRUE;
}
else
{

multitexture_supported = GL_FALSE;
}

#else
// Extension is not supported by the include files
multitexture_supported = GL_FALSE;

#endif

Please note that the code example is not 100% complete. First of all, the
GL_ARB_multitexture extension defines many more functions than the single function
that the code example defines. Secondly, checking if an extension is supported using
glfwExtensionSupported is not enough to ensure that the corresponding functions will
be valid. You also need to check if the function pointers returned by
glfwGetProcAddress are non-NULL values.

6.3.1 About function pointer type definitions
To make a function pointer type definition, you need to know the function prototype.
This can often be found in the extension definitions (e.g. at the OpenGL Extension
Registry). All the functions that are defined for an extensions are listed with their C
prototype definitions under the section New Procedures and Functions in the extension
definition.

Page 23/36

GLFW Users Guide 1.4 January 8, 2003

For instance, if we look at the definition of the GL_ARB_texture_compression
extension, we find a list of new functions. One of the functions looks like this:

void GetCompressedTexImageARB(enum target, int lod, void *img);

Like in most official OpenGL documentation, all the GL and gl prefixes have been left
out. In other words, the real function prototype would look like this:

void glGetCompressedTexImageARB(GLenum target, GLint lod, void *img);

All we have to do to turn this prototype definition into a function pointer type definition,
is to replace the function name with (APIENTRY * xxxx_T), where xxxx is the uppercase
version of the name (according to the proposed naming convention). The keyword
APIENTRY is needed to be compatible between different platforms. The GLFW include
file glfw.h always makes sure that APIENTRY is properly defined, regardless of which
platform the program is compiled on.

In other words, for the function glGetCompressedTexImageARB we get:

typedef void (APIENTRY * GLGETCOMPRESSEDTEXIMAGEARB_T)
(GLenum target, GLint level, void *img);

Page 24/36

GLFW Users Guide 1.4 January 8, 2003

7. IMAGE AND TEXTURE IMPORT
In many, if not most, OpenGL applications you want to use pre-generated 2D images for
surface textures, light maps, transparency maps etc. Typically these images are stored
with a standard image format in a file, which requires the program to decode and load
the image(s) from file(s), which can require much work from the programmer.

To make life easier for OpenGL developers, GLFW has built-in support for loading
images from files.

7.1 Texture Loading
To load a texture from a file, you can use the function glfwLoadTexture2D:

int glfwLoadTexture2D(const char *name, int flags)

This function reads a 2D image from a Truevision Targa format file (.TGA) with the
name given by name, and uploads it to texture memory. It is similar to the OpenGL
function glTexImage2D, except that the image data is read from a file instead of from
main memory, and all the pixel format and data storage flags are handled automatically.

The flags argument can be used to control how the texture is loaded. If flags is zero, the
origin of the texture will be the lower left corner, and only one mipmap level is loaded.
If flags is GLFW_ORIGIN_UL_BIT the origin of the texture will be the upper left
corner. If flags is GLFW_BUILD_MIPMAPS_BIT, all mipmap levels will be generated
and uploaded to texture memory. To combine GLFW_ORIGIN_UL_BIT and
GLFW_BUILD_MIPMAPS_BIT, or them togeter like this: flags =
GLFW_ORIGIN_UL_BIT | GLFW_BUILD_MIPMAPS_BIT.

Here is an example of how to upload a texture from a file to OpenGL texture memroy,
and configure the texture for trilinear interpolation (assuming an OpenGL window has
been opened successfully).

Page 25/36

GLFW Users Guide 1.4 January 8, 2003

GLuint texid;

// Generate texture object for one texture
glGenTextures(1, &texid);

// Bind texture object
glBindTexture(GL_TEXTURE_2D, texid);

// Load texture from file, and build all mipmap levels
glfwLoadTexture2D(“mytexture.tga”, GLFW_BUILD_MIPMAPS_BIT);

// Use trilinear interpolation for minification
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR_MIPMAP_LINEAR);

// Use bilinear interpolation for magnification
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_LINEAR);

// Enable texturing
glEnable(GL_TEXTURE_2D);

As you can see, glfwLoadTexture2D is very easy to use. Since it can also automatically
create mipmaps when required, it is also a very powerful function.

7.2 Image Loading
In certain cases it may be useful to be able to load an image into client memory
(application memory), without directly uploading the image to OpenGL texture
memory. For example, one may wish to retain a copy of the texture in local memory for
future use. Another example is when the image is not to be used as a texture at all, e.g. if
it is to be used as a height map.

GLFW also offers the possibility to load an image to application memory, using the
glfwReadImage function:

int glfwReadImage(const char *name, GLFWimage *img, int flags)

The function reads the image given by the argument name, and upon success stores the
relevant image information and pixel data in the GLFWimage structure img. The
GLFWimage structure is defined as:

typedef struct {
int Width, Height; // Image dimensions
int Format; // OpenGL pixel format
int BytesPerPixel; // Number of bytes per pixel
unsigned char *Data; // Pointer to pixel data

} GLFWimage;

Data points to the loaded pixel data. If the function loaded the image successfully,
GL_TRUE is returned, otherwise GL_FALSE is returned.

Page 26/36

GLFW Users Guide 1.4 January 8, 2003

Possible flags for the flags argument are GLFW_ORIGIN_UL_BIT and
GLFW_NO_RESCALE_BIT. GLFW_ORIGIN_UL_BIT works as described for the
glfwLoadTexture2D function. If the GLFW_NO_RESCALE_BIT flag is set, the image
will not be rescaled to the closest larger 2m x 2n resolution, which is otherwise the
default action for images with non-power-of-two dimenstions.

When an image that was loaded with the glfwReadImage function is not used anymore
(e.g. when it has been uploaded to texture memory), you should use the function
glfwFreeImage to free the allocated memory:

void glfwFreeImage(GLFWimage *img)

Page 27/36

GLFW Users Guide 1.4 January 8, 2003

8. MULTI THREADING
Multi threading may not seem to be related to OpenGL, and thus it may seem to be out
of the scope of GLFW to provide multi threading support. The initial intent of GLFW
was to provide the very basic functionality needed to create an OpenGL application, but
as GLFW grew to be a platform for portable OpenGL applications, it felt natural to
include an operating system independent multi threading layer in GLFW. Hopefully this
will make GLFW more attractive for advanced OpenGL developers, as well as inspire
more programmers to use multi threading.

In this chapter you will learn about multi threading and how you can use GLFW to
create multi threaded applications.

8.1 Why Use Multi Threading?
Multi threading is not a new technology, neither is it an advanced technology. In fact,
multi threading could be found as early as 1985 in consumer computers, namely the
Amiga, whose operating system implemented preemptive multi threading. During the
early and mid 90’s, consumer level operating systems emerged for Intel based PCs that
supported multi threading. Still, over a decade later, many programmers, especially
game programmers, feel reluctant to using threading in their applications. Why?

There are probably many reasons that one can think of to avoid multi threading, but
most of them are based on ignorance and myths. The foremost reason for not using
multi threading is probably that it requires a new way of parallel thinking, but once
accepted, threaded programming can take your program to new performance levels and
solve many problematic timing and synchronization issues.

In the following sections a few key reasons for using multi threaded programming will
be presented.

8.1.1 Take advantage of multi processor systems
If an application is divided into several threads that can execute concurrently, these
threads will automatically execute on separate processors on a SMP (symmetric multi-
processing) system. Multi processor platforms are becoming increasingly common, and
the price to pay is generally not much higher than for a single processor system. A multi
processor system is especially appealing if you consider that in general, for the price of
the fastest processor available you can get two processors which perform only slightly
worse.

To take a few examples (date: 16/10-2001):

� You get two 1.3 GHz AMD Atlons for the price of one 1.5 GHz AMD Athlon.
� You get three 1.6 GHz Pentium 4 CPUs for the price of one 2.0 GHz Pentium 4.
� You get four 1.3 GHz AMD Athlons for the price of one 2.0 GHz Pentium 4.

Page 28/36

GLFW Users Guide 1.4 January 8, 2003

The problem with SMP systems is of course, that if an application is not multi threaded,
only one of the available processors will actually be used. This is probably the most
important aspect of multi threading. For SMP systems to be really useful, programs
must be multi threaded.

If more programs are multi threaded, more SMP systems will be sold and the price for
such systems will drop, and then more multi threaded programs will be written... Let us
write multi threaded applications!

8.1.2 Avoid unnecessary waiting
In many situations, an application is placed in a wait state, waiting for a task to
complete. Examples of such situations are: waiting for a file to load from disk, waiting
for a vertical retrace (when using a double buffered display, such as a GLFW OpenGL
window), waiting for a display to be cleared or data to be sent to the graphic card.

Some or all of these operations can be done asynchronously, if the conditions are right
and the operating system supports it, but a simple and efficient way of avoiding
unnecessary waits is to use multi threading. If there are several active threads in an
application, a thread that was waiting for CPU time can start running as soon as another
thread enters a wait state. This will speed up an application on both single and multi
processor systems.

8.1.3 Improve real time performance
It is a known fact that an application becomes more responsive and exhibits less timing
problems if different jobs are assigned to separate threads.

A typical example is streaming audio: when an audio buffer is empty, it has to be filled
with new sound again within a limited amount of time, or strange sound loops or clicks
may be the result. If a program is displaying graphics, loading files and playing audio at
the same time (a typical game), it is very difficult to guarantee that the program will
update the audio buffers in time if everything is performed in a single thread. On the
other hand, if the audio buffer is updated from a separate thread, it becomes a very
simple task.

8.2 How To Use Multi Threading
Threads are sometimes referred to as “lightweight processes”, which gives you a clue of
what they are. In general, every program runs as a process, which has its own memory
space and its own set of resources, such as opened files etc. As a consequence, each
process is coupled with a fairly large set of state. When the processor changes the
execution from one process to another process, all this state has to be changed too (this
is often referred to as a context switch), which can be quite costly.

Page 29/36

GLFW Users Guide 1.4 January 8, 2003

In contrast, a thread is a separate execution path within a process, which shares the same
memory area and resources. This means that very little state has to be changed when
switching execution between different threads (basically only the stack pointer and the
processor registers). It also means that data exchange between threads is very simple,
and there is little or no overhead in exchanging data, since program variables and data
areas can be shared between threads.

Writing threaded applications may be very awkward before you get used to it, but there
are a few key rules that are fairly simple to follow:

1. ALWAYS assure exclusive access to data that is shared between threads!
2. Make sure that threads are synchronized properly!
3. NEVER busy wait!

…and for OpenGL applications:

4. Calling OpenGL commands from more than one thread is asking for trouble!

In the following sections you will learn how to use the functionality of GLFW to create
threads and meet these rules, and hopefully you will find that it is not very difficult to
write a multi threaded application.

8.3 Creating Threads
Creating a thread in GLFW is very simple. You just call the function
glfwCreateThread:

GLFWthread glfwCreateThread(GLFWthreadfun fun, void *arg)

The argument fun is a pointer to a function which will be executed by the new thread,
and arg is an argument that is passed to the thread. glfwCreateThread returns a
positive thread ID number if the thread was created succesfully, or a negative number if
the thread could not be created.

When the thread function returns, the thread will die. In most cases, you want to know
when the thread has finished. A thread can wait for another thread to die with the
command glfwWaitThread:

int glfwWaitThread(GLFWthread ID, int waitmode)

The argument ID is the thread handle that was obtained when creating the thread. If
waitmode is GLFW_NOWAIT, glfwWaitThread will return immediately with the value
GL_TRUE if the thread died, or GL_FALSE if it is still alive. This can be useful if you
only want to check if the thread is alive. If waitmode is GLFW_WAIT, glfwWaitThread
will wait until the specified thread has died. Regardless of what waitmode is,
glfwWaitThread will return immediately if the thread does not exist (e.g. if the thread
has already died or if ID is an invalid thread handle).

Page 30/36

GLFW Users Guide 1.4 January 8, 2003

In some situations, you may want to brutally kill a thread without waiting for it to finish.
This can be done with glfwDestroyThread:

void glfwDestroyThread(GLFWthread ID)

It should be noted that glfwDestroyThread is a very dangerous operation, which may
interrupt a thread in the middle of an important operation, which can result in lost data
or deadlocks (when a thread is waiting for a condition to be raised, which can never be
raised). In other words, do not use this function unless you really have to do it, and if
you really know what you are doing (and what the thread that you are killing is doing)!

To sum up what we have learned so far, here is an example program which will print
“Hello world!” (error checking has been left out for brevity):

#include <stdio.h>
#include <GL/glfw.h>

void GLFWCALL HelloFun(void *arg)
{

printf(“Hello ”);
}

int main(void)
{

GLFWthread thread;

glfwInit();
thread = glfwCreateThread(HelloFun, NULL);
glfwWaitThread(thread, GLFW_WAIT);
printf(“world!\n”);
glfwTerminate();

return 0;
}

The program starts by initializing GLFW, as always, and then it goes on by creating a
thread that will execute the function HelloFun. The main thread then waits for the
created thread to do its work and finish. Finally the main thread prints “world!”,
terminates GLFW and exits. The result is that “Hello world!” will be printed in the
console window.

That was easy! Multi threading is easy!

You may have noticed that we have already used a simple form of thread
synchronization, by waiting for the child thread to die before we print “world!”. If we
would have placed the wait command after the print command, there would be no way
of knowing which word would be printed first (“Hello” or “world!”). Our program
would then suffer from a race condition, which is a term used to describe a situation
where two (or more) threads are competing to complete a task first.

Later on you will learn how to do advanced thread synchronization using condition
variables, which let threads wait for certain conditions before continuing execution.

Page 31/36

GLFW Users Guide 1.4 January 8, 2003

8.4 Data Sharing Using Mutex Objects
Remember the first rule of multi threading (Alwaus assure exclusive access to data that
is shared between threads)? In many situations you need to protect a certain data area
while reading or modifying it, so that other threads do not start changing or reading the
data while you are only half way through.

For instance, consider that you have a vector vec, and a variable N telling how many
elements there are in the vector. What happens if thread A adds an element to the vector
at the same time as thread B is removing an element from the vector? The following
scenario is possible:

Thread A: N ++;
Thread B: x = vec[N-1];
Thread B: N --;
Thread A: vec[N-1] = y;

We have created a possible race condition. The result in this case is that thread B reads
an invalid element from the vector, and thread A overwrites an already existing element.
Not good!

The solution is to only let one thread have access to the vector at a time. This is done
with mutex objects (mutex stands for mutual exclusion). The proper use of mutexes
eliminates race conditions. To create a mutex object in GLFW, you use the function
glfwCreateMutex:

GLFWmutex glfwCreateMutex(void)

glfwCreateMutex returns NULL if a mutex object could not be created, otherwise a
mutex handle is returned. To destroy a mutex object which is no longer in use, call
glfwDestroyMutex:

void glfwDestroyMutex(GLFWmutex mutex)

Mutex objects by themselves do not contain any useful data. They act as a lock to any
arbitrary data. Any thread can lock access to the data using the function
glfwLockMutex:

void glfwLockMutex(GLFWmutex mutex)

The argument mutex is the mutex handle that was obtained when creating the mutex.
glfwLockMutex will block the calling thread until the specified mutex is available
(which will be immediately, if no other thread has locked it).

Once a mutex has been locked, no other thread is allowed to lock the mutex. Only one
thread at a time can get access to the mutex, and only the thread that has locked the
mutex may use or manipulate the data which the mutex protects. To unlock a mutex, the
thread calls glfwUnlockMutex:

void glfwUnlockMutex(GLFWmutex mutex)

Page 32/36

GLFW Users Guide 1.4 January 8, 2003

As soon as glfwUnlockMutex has been called, other threads may lock it again.

Here is the scenario with the two threads trying to access the same vector again, but this
time they use a mutex object (vecmutex):

Thread A: glfwLockMutex(vecmutex);
Thread A: N ++;
Thread B: glfwLockMutex(vecmutex);
Thread A: vec[N-1] = y;
Thread A: glfwUnlockMutex(vecmutex);
Thread B: x = vec[N-1];
Thread B: N --;
Thread B: glfwUnlockMutex(vecmutex);

In this example, thread A successfully obtains a lock on the mutex and directly starts
modifying the vector data. Next, thread B tries to get a lock on the mutex, but is placed
on hold since thread A has already locked the mutex. Thread A is free to continue its
work, and when it is done it unlocks the mutex. Now thread B locks the mutex and gains
exclusive access to the vector data, performs its work, and unlocks the mutex.

The race condition has been avoided, and the code performs as expected.

That was easy! Multi threading is easy!

8.5 Thread Synchronization Using Condition Variables
Now you know how to create threads and how to safely exchange data between threads,
but there is one thing left to solve for multi threaded programs: conditional waits. Very
often it is necessary for one thread to wait for a condition that will be satisfied by
another thread.

For instance, a thread A may need to wait for both thread B and thread C to finish a
certain task before it can continue. For starters, we can create a mutex protecting a
variable holding the number of completed threads:

GLFWmutex mutex;
int threadsdone;

Now, thread B and C will lock the mutex and increase the threadsdone variable by one
when they are done, and then unlock the mutex again. Thread A can lock the mutex and
check if threadsdone is 2.

If we assume that mutex has been created successfully, the code for the three threads (A,
B and C) could be the following:

Page 33/36

GLFW Users Guide 1.4 January 8, 2003

Thread A: Wait for both thread B and C to finish.
do
{

glfwLockMutex(mutex);
done = (threadsdone == 2);
glfwUnlockMutex(mutex);

}
while(!done);

Thread B and C: Tell thread A that I am done.
glfwLockMutex(mutex);
threadsdone ++;
glfwUnlockMutex(mutex);

The problem is that when thread A discovers that thread B and C are not done, it needs
to check threadsdone over and over again until threadsdone is 2. We have created a
busy waiting loop! (Rule 3: Never busy wait!) Not good!

The method will work without a doubt, but thread A will consume a lot of CPU power
doing nothing. What we need is a way for thread A to halt until thread B or C tells it to
reevaluate the conditions again. This is exactly what condition variables do.

GLFW supports three condition variable operations: wait, signal and broadcast. One or
more threads may wait to be woken up on a condition, and one ore more threads may
signal or broadcast a condition. The difference between signal and broadcast is that
broadcasting a condition wakes up all waiting threads (in an unspecified order, which is
decided by task scheduling rules), while signaling a condition only wakes up one
waiting thread (again, which one is unspecified).

An important property of condition variables, which separates them from other signaling
objects such as events, is that only currently waiting threads are affected by a condition.
A condition is “forgotten” as soon as it has been signaled or broadcasted. That is why a
condition variable is always associated with a mutex, which protects additional
condition information, such as the “done” variable construct described above.

This may all be confusing at first, but you will see that condition variables are both
simple and powerful. They can be used to construct more abstract objects such as
semaphores, events or gates (which is why GLFW does not support semaphores
natively).

Before we go on by solving the busy waiting scenario, let us go through the GLFW
condition variable functions. Just like for mutexes, you can create and destroy condition
variable objects. The functions for doing this are:

GLFWcond glfwCreateCond(void)
void glfwDestroyCond(GLFWcond cond)

glfwCreateCond returns NULL if a condition variable object could not be created,
otherwise a condition variable handle is returned. To destroy a condition variable that is
no longer in use, call glfwDestroyCond.

To wait for a condition variable, you use glfwWaitCond, which has the C syntax:

Page 34/36

GLFW Users Guide 1.4 January 8, 2003

void glfwWaitCond(GLFWcond cond, GLFWmutex mutex,
double timeout)

When glfwWaitCond is called, the locked mutex specified by mutex will be unlocked,
and the thread will be placed in a wait state until it receives the condition cond. As soon
as the waiting thread is woken up, the mutex mutex will be locked again. If timeout is
GLFW_INFINITY, glfwWaitCond will wait until the condition cond is received. If
timemout is a positive time (in seconds), glfwWaitCond will wait until the condition
cond is received or the specified time has passed.

To signal or broadcast a condition variable, you use the functions glfwSignalCond and
glfwBroadcastCond:

void glfwSignalCond(GLFWcond cond)
void glfwBroadcastCond(GLFWcond cond)

glfwSignalCond will wake up one thread that is waiting for the condition cond.
glfwBroadcastCond will wake up all threads that are waiting for the condition cond.

Now that we have the tools, let us see what we can do to resolve the busy waiting
situation. First, we add a condition variable to our data set:

GLFWcond cond;
GLFWmutex mutex;
int threadsdone;

If we assume that mutex and cond have been created successfully, the code for the three
threads (A, B and C) could be the following:

Thread A: Wait for both thread B and C to finish.
glfwLockMutex(mutex);
do
{
done = (threadsdone == 2);
if(!done)
{

glfwWaitCond(cond, mutex, GLFW_INFINITY);
}

}
while(!done);
glfwUnlockMutex(mutex);

Thread B and C: Tell thread A that I am done.
glfwLockMutex(mutex);
threadsdone ++;
glfwUnlockMutex(mutex);
glfwSignalCond(cond);

With the addition of a condition variable (bold lines), the busy waiting loop turned into
a nice condition waiting loop, and thread A no longer wastes any CPU time. Also note
that the mutex locking and unlocking is moved outside of the waiting loop. This is
because glfwWaitCond effectively performs the necessary mutex locking and
unlocking for us.

That was easy! Multi threading is easy!
Page 35/36

GLFW Users Guide 1.4 January 8, 2003

8.6 Is GLFW Thread Safe?
The current version of GLFW (v2.4) is not 100% thread safe. In other words, certain
GLFW API functions may cause conflicts if called from different threads. To avoid
conflicts, only the following GLFW API functions should be regarded as thread safe
(i.e. they can be called from any thread at any time):

1. All functions that deal with threads, mutexes and condition variables (e.g.
glfwCreateThread, glfwLockMutex etc).

2. Timing function glfwSleep.

All other GLFW API function calls should either be done from a single thread, or be
synchronized with mutexes and condition variables to serialize the calls.

8.7 Conclusion
Now you know all you need to know to build advanced multi threaded programs. Of
course, there is a long way to go before you feel comfortable with multi threading, and
there are many pitfalls to fall into.

Hopefully this short introduction has inspired you and helped you on the way to use
multi threading. Multi threading is a huge subject, and there are many articles, books
and tutorials written about it. There are many things to think about when designing
threaded programs, which have not been covered here. Some of them are:

� How to optimally partition a computationally heavy task into several threads?
� Which tasks of a program are suitable to put in separate threads?
� Which standard/non-standard library calls are thread safe?

A hint is that the GLFW threading interface is very closely related to the POSIX
threading package (pthread), so if you find any documentation or article that deals with
POSIX threads, you can easily translate it into GLFW threads.

Page 36/36

	SUMMARY
	TABLE OF CONTENTS
	1. INTRODUCTION
	2. GETTING STARTED
	2.1 Initializing GLFW
	2.2 Opening An OpenGL Window
	2.3 Using Keyboard Input
	2.4 Putting It Together: A Minimal GLFW Application

	3. WINDOW OPERATIONS
	3.1 Setting Window Properties
	3.2 Getting Window Properties
	3.3 Buffer Swapping
	3.4 Querying Video Modes

	4. INPUT HANDLING
	4.1 Event Polling
	4.2 Keyboard Input
	4.2.1 Key repeat
	4.2.2 Special system keys

	4.3 Mouse Input
	4.3.1 Mouse position
	4.3.2 Mouse buttons
	4.3.3 Mouse wheel
	4.3.4 Hiding the mouse cursor

	4.4 Joystick Input
	4.4.1 Joystick capabilities
	4.4.2 Joystick position
	4.4.3 Joystick buttons

	5. TIMING
	5.1 High Resolution Timer
	5.2 Sleep

	6. OPENGL EXTENSION SUPPORT
	6.1 Compile Time Check
	6.2 Run Time Check
	6.3 Fetching Function Pointers
	6.3.1 About function pointer type definitions

	7. IMAGE AND TEXTURE IMPORT
	7.1 Texture Loading
	7.2 Image Loading

	8. MULTI THREADING
	8.1 Why Use Multi Threading?
	8.1.1 Take advantage of multi processor systems
	8.1.2 Avoid unnecessary waiting
	8.1.3 Improve real time performance

	8.2 How To Use Multi Threading
	8.3 Creating Threads
	8.4 Data Sharing Using Mutex Objects
	8.5 Thread Synchronization Using Condition Variables
	8.6 Is GLFW Thread Safe?
	8.7 Conclusion

