EuGL - An OpenGL interface for Euphoria 2.1+

Version 031022
Mic, 2000/2003

Contents

(©7e) Ny 5 N ¥~ J R 2
THE PACKAGE.coiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeee s ae s esaeeeasaeasnsssesenesnsnsnsnsesnnnsnnnnes 3
R4 ST A N7 =3 PR 5
WHAT IS THIS 7. s s sssnsssnsssnsnssnnsnnnnnnnsnnnnnnnsnnnnnsnnnnnnnnnn 8
L8N PP RURPRPURRPRPRPRTRRE 8

BOSTCS ..o 8

Creating an application With EUGL................cccccooiiiiiiiiiiiiiiiieset e 8

GL @XTOHSIONS. ...ttt ettt e e e ettt e e e e 9

WGL @XTONSIONS. ... ettt ettt et e 10
AN EXAMPLE. ...veiiieieeieeitteeeeeeeeeeeeeeaeeeee e e e e eeeeettaaaeeeeeeeeeesasaaeeaeeeeeeesattraaesaeeeeeansasareseseeeeeannasrrrreeeeeeenns 10
WHAT'S DONE SO FAR......ouuurrrreeeeeeeeeiiirreeeeeeeeeteniisssaeeesseseseanissssssseesesesmnisssrsessseeessmnisrrsssseseesemssssrneeees 11
J o0 0o TR 11
THANKS TO..ceieeeettteeeeeee e e e eeeett et e e e e e ee et e e e e e eeeee bt e eeeeeeeeeeasssaaeseeeeeeeeeanasaseeeeeseessanssraneeeseeeesanssrerees 11
APPENDIX A — GLOBAL ROUTINES.ceeitieieieteeeteteteteteeeeeeeeeeeteeeteteeeteteteeeeeteteeeeeteeeteteteteeaeeteeeeeteeeeeeeeeeeees 12

The Package

Core libraries

eugl.ew

gl.ew
glaux.ew
glu.ew
ewin32api.ew

Support libraries

gl asc.e
winbmp.ew

Data files

atmos.bmp
circle.bmp
euglv.bmp
face.bmp
floor.bmp
gumpy.bmp

hippy.bmp
mur(043.bmp

floor.tga
lightmap.tga
teapot.asc

Sample programs

3d_text.exw

accum.exw
anisotropic.exw

bitmap font.exw

bounce.exw
cel shade.exw
circles.exw
dragnet2k.exw
drawf.exw

FEuGLView.exw

fireworks.exw
lit_floor.exw
mouse.exw

multitexture.exw

nurbs.exw
planes.exw
quadrics.exw

The main file, this is the one to include in your programs.
A bunch of constants & functions.

3DStudio ASCII-object loader.
BMP loader used by some of the examples.

Texture used by tunnel.exw.

Texture used by circles.exw.

Sample BMP for use with EuGLView.
Texture used by multitexture.exw and sphere _tex.exw
Texture used by vol fog.exw.

Texture used by multitexture.exw.
Texture used by tex_blend.exw.
Texture used by vol fog.exw.

Texture used by lit_floor.exw

Texture used by lit_floor.exw

Sample mesh for use with EuGLView.

Example of drawing 3-dimensional font characters with the help of
wglUseFontOutlines.
A test program for the g1 Accum function.
Shows anisotropic texture filtering (requires a video card that
supports the GL_EXT texture filter anisotropic extension).
Shows how to use wglUseFontBitmaps to draw text in an
OpenGL scene.
A bouncing lit sphere.

An example of cel (toon) shading.
A bunch of spinning circles that are blended together.

Example of lighting and display lists.
Example of how to use g1Bitmap.
A nice little image-/mesh-viewing program.
A simple fireworks effect.
Shows the usage of some GL and WGL extensions.
An example of using mouse-events in an EuGL program (+fog).
Example of multi-texturing. Requires OpenGL 1.3 or higher to run.
An example of GLU NURBs and surface trimming.
Some paper-planes flying around.
Example of using GLU quadrics for drawing a sphere.

radial_blur.exw
rotating_cube.exw
rotating_quad.exw
scroller.exw

sphere tex.exw
static_tri.exw
tex_blend.exw
tunnel.exw

vol fog.exw

Fake radial blur effect using texture stretching and filtering.
Example of a spinning flat shaded cube.
Example of a spinning gouraud shaded quadangle.
Example of how to use wglUseFontOutlines to create 3D
objects from TrueType fonts.
Example of texture mapping a sphere.
Example of a gouraud shaded triangle.

Shows a transparent texture-mapped cube.
A textured tunnel.
Shows how to get a single-pass volumetric fog using the
GL EXT fog coord extension.

What's new

031022

e QL stuff:

Added some more GL extensions plus all (to me known) WGL extensions.
Added wgl supportsExtension and wgl enableExtension to deal with
WGL extensions.

e Main:

030204

Added euglMouseFunc, euglMotionFunc, euglPassiveMotionFunc and
euglTimerFunc.

Added one new example program: lit_floor.exw, which shows how to use various GL
and WGL extensions.

Fixed a few bugs in the libraries where incorrect parameters were passed to
define c¢ func/proc (eg. NULL).

e GL stuff:

Added glColor3ub, glGetString, glTexEnvf, wglCopyContext,
wglCreatelLayerContext, wglGetCurrentContext, wglGetCurrentDC,
wglGetProcAddress, wglSharelLists, wglSwapBuffers, and
wglSwapLayerBuffers.

Added support for a some GL extensions. Note that you won’t be able to use these
unless you have a card that handles them, like a Radeon or GeForce. I’ve also added two
routines for dealing with extensions: g1 supportsExtension and

gl enableExtension (see the GL extensions section further down in this
document).

Added g1 getVersion to get the version number of your OpenGL implementation.

e QLU stuff:
e Added gluOrtho2D.
e Main:

030130

Started working on a simplified event model 4 la GLUT.

Added four new example programs: anisotropic.exw shows how to do anisotropic
texture filtering. fireworks.exw shows a simple fireworks effect. multitexture.exw shows
how to do (single-pass) multi-texturing using the GL_EXT multitexture extension.

vol fog.exw shows how to get volumetric fog using the GL_EXT fog coord extension.

e QL stuff:

Added glCopyTexImage2D, glGetFloatv, glLightModelf,
glRasterPos2f, and wglUseFontBitmaps.

e Main:

030125

Added four new example programs: bitmap font.exw shows how to draw (2D) text.

cel shade.exw demonstrates basic cel shading. radial blur.exw does a fake radial blur
effect on a rotating spring. tex blend.exw shows how to do alpha blending on a texture-
mapped object.

e QL stuff:

Added glBitmap, glCalllLists, glListBase, glPixelStorei,
glRasterPos2i, glTexGeni and wglUseFontOutlines.

GLU stuff:

Added gluDeleteQuadric, gluLookAt, gluNewQuadric, gluNewTess,
gluOrtho2D, gluQuadricDrawStyle, gluQuadricNormals,
gluQuadricOrientation, gluQuadrictextures, gluScalelImage,
gluSphere, gluTessBeginContour, gluTessBeginPolygon,
gluTessEndContour, gluTessEndPolygon, gluTessCallback,
gluTessProperty and gluTessVertex.

Main:

030124
GL stuff:

Added the ability to set fullscreen video mode. Just set euglDisplayMode to
EUGL_FULLSCREEN and set euglPFD [EUGL_COLORBITS] to the desired number
of bits per pixel before calling EuGLMa1in. See scroller.exw (far bottom) for an
example.

Added six more example programs: 3d_text.exw, bounce.exw, drawf.exw,
quadrics.exw, scroller.exw and sphere tex.exw.

Added glColor4df, glPointSize and glTexEnvi.

GLU stuff:

Added gluBeginPolygon, gluBeginSurface, gluBeginTrim,
gluBuild2DMipmaps, gluCylinder, gluDeleteNurbsRenderer,
gluDisk, gluEndCurve, gluEndPolygon, gluEndSurface,
gluEndTrim, gluNewNurbsRenderer, gluNurbsProperty,
gluNurbsSurface, gluPerspective and gluPwlCurve.

Main:

030122
Main:

000315
GL stuff:

Added 3 new example programs: nurbs.exw, which shows how to use NURBs and
trimming, circles.exw, which shows texture mapping, mipmapping and texture
modulation. And finally tunnel.exw which basically shows the same things as
circles.exw - I just included it cos it looks cool.

Got rid of eugl.dll, it's not needed anymore.

Cleaned up the example programs, added some comments, etc.

Added a new example program: dragnet2k, which shows a lit animated surface.

I've continued working on the "abstraction layer" of OpenGL/GLU functions (i.e. spare
the user from having to use c_proc/c_func calls). The most commonly used
functions have now been given Euphoria-equivalents. So instead of calling e.g. ¢ _proc
(glVertex3f, {0,0,0}) youcancallgl vertex3f ({0,0,0}) (notice the
small 'v' in the Euphoria procedure!). The example programs all use this method of
calling the OpenGL functions, so you can look at them if you run into trouble.

Added about 60-70 functions:

Just about all g1Vertex-functions are now linked and ready for use. The same goes
for gl TexCoord.

GLU stuff:

-(still no NURBS or tesselators..)

GLAUX stuff:

Main:

Added one example program. It doesn't really show anything that the other examples
doesn't use, but I just felt like porting it..

Added a whole bunch of stuff to EuGLView:

e Can now load 3DStudio .asc files for viewing.

e Ability to rotate images/meshes about all 3 axes (not at the same time though..).
e Fog option.

e Perspective-correction option (only affects images when filtering is turned off).
Work has begun on writing an additional layer of code to let the user call OpenGL
functions as a Euphoria-routine (without "c_proc"/"c func").

So far only a few routines have been added (g1Begin, g1End and some others). These
routines are prefixed with "eu", so c_proc (glEnable, { GL LIGHTING })
becomes euglEnable (GL LIGHTING).

000308
o GL stuff:
e Texture-mapping.
e Display lists.
e Fog.
e ..+ lotsa other things.
e GLU stuff:
e One (!) glu function was added (g1luPerspective).
e GLAUX stuff:
o -
e Main:
e Changed interface somewhat.
¢ Added 3 more examples.
e Added lots of constants + functions in ewin32api.ew.
e Went from C to asm in the dll and saved a couple of kB:s.

What is this ?

EuGL is an interface for writing OpenGL applications in Euphoria to be run on a Win32 platform.

Usage

Basics

I haven't had the time to write any OpenGL documentation yet, so you'll have to know OpenGL
already in order to get anything out of EuGL. For those of you who do know OpenGL; here's the
deal:
All routines (and constants) have kept their original names, so if this is the C code:

glBegin(GL TRIANGLES);

then the Euphoria code would be:
c proc(glBegin, { GL TRIANGLES })

or, if you prefer it:
gl begin(GL_TRIANGLES)

Not too difficult..

The big problem is that not all functions have been wrapped yet. Actually, only a subset of the most
common functions is included so far (I you wish to know which functions are included; look at the
bottom of gl.ew).

Creating an application with EuGL

First of all, you need to include eugl.ew. You’ll also need to have gl.ew, glu.ew, glaux.ew and
ewin32api.ew (this particular version — older ones won’t do) in the directory of your program, or in
\Euphoria\include\.

Basically, you have two choices: either you write your own WndProc (i.e. an event handler), or you
let EuGL handle that and pass on certain events to your program. If you choose the first method you
start up your program by calling EuGLMain (integer WndProcID, sequence title,
integer width, integer height), where WndProcIDisthe routine id ofyour
WindowProc. If you choose the latter method you exchange the WndProcID parameter in the
call the EuGLMain with the constant EUGL. HANDLE EVENTS. You also need to set up some
routines for handling those events that are of interest for you. For example:

procedure init ()
-- do stuff
end procedure

euglInitFunc (routine id(“init”))

If you specify an “InitFunc”, it will be called after the main window has been created, but before
ShowWindow has been invoked. For a list of which events your program can receive, see appendix
A.

You can change the members of the window-class (sequence euglWCEX) and
pixelFormatDescriptor (sequence euglPFD) before calling EuGLMain (), if you wish to..

You can set the global variable euglFlags to PFD DOUBLEBUFFER to make EuGL use double
buffering. If you need the window-handle or device-context in some routine of yours, use glhwnd
and g1hDC. If you need a RECT-structure, use glrect.

All of this probably doesn't make any sense, so the best thing would be to check out the example
programs

GL extensions

There are a number of extensions available for OpenGL that enables features such as multi-
texturing, anisotropic filtering, vertex shading and many other things. Some are vendor specific
(ATI, NV, SGI), while other are supported by multiple vendors (EXT). Then there are those
extensions that have been approved by the OpenGL Architecture Review Board and thereby been
promoted to ARB extensions. EuGL supports the use of many of these extensions, but you must
make sure that your video card actually supports the extensions you’re trying to use. For this
purpose I’ve added g1 supportsExtension. The syntax is as follows:

function gl supportsExtension (sequence extension name)

This is not a real OpenGL function but something I’ve added myself. It just retrieves the entire list
of supported extensions and tries to match it against the extension name. If there was a match
it will return non-zero, and zero if there was no match. Once you’ve made sure that an extension is
supported by your hardware you can load all the functions associated with that particular extension
by calling g1 enableExtension:

procedure gl enableExtension (sequence extension name)

After you’ve enabled an extension you can call the functions associated with that particular
extension just like other OpenGL functions. For example:

if not gl supportsExtension (“"GL EXT point parameters”) then

-—- This isn’t supported by hardware - report an error
else

-—- Enable the extension

gl enableExtension (“GL EXT point parameters”)

-— Now use one of the EXT point parameters functions

gl pointParameterfEXT (GL POINT FADE THRESHOLD SIZE EXT, 1.0)
end if

There are two extensions that aren’t real extensions but rather depend only on which version of
OpenGL you have, namely G VERSION 1 2 and GL VERSION 1 3. To check if these are
applicable you don’t use g1 supportsExtensionbutgl getVersion. Anexample:

if gl getVersion() >= 1.2 then
gl enableExtension (“GL VERSION 1 27)
end if

Please note that not all extensions are available in this version of EuGL. An extension might be
reported as supported but cause a crash or not working properly when you try to use it because it
hasn’t been wrapped yet. Those extensions that mainly have been wrapped in this version are
ARB_multitexture, ARB_texture compression, ARB_transpose matrix, EXT multitexture,
EXT point parameters and EXT fog coord. Use f or i versions of the functions rather than d,
and use scalar functions instead of those that operate on vectors.

WGL extensions

To the WGL extensions belong those extensions that are specific to the windowing system. They
deal with things such as rendering contexts, pixel buffers and swap intervals. Using WGL
extensions in EuGL is similar to using GL extensions. The syntax for checking if a particular
extension is supported is:

if wgl supportsExtension (extension) then
—-— supported

else
-— not supported

end if

And to enable a WGL extension you would type:

wgl enableExtension (extension)

Please be careful to use wgl supports/enableExtension with WGL extensions and
gl supports/enableExtension with GL extensions. Mixing one with the other could end
up crashing your program.

An example

A basic EuGL program could look something like this:
include eugl.ew

procedure init ()
-— initialize here.
end procedure

procedure draw ()
-—-draw stuff here.
end procedure

procedure close()
-—- free resources here.
end procedure

procedure key(integer keycode,integer x,integer vy)
if keycode = VK ESCAPE then
ewPostQuitMessage (0)

end if
end procedure

euglFlags = PFD DOUBLEBUFFER -- Use double-buffering (optional)
—-— You can also use other flags

-—- If you want fullscreen, uncomment the next two lines.
-—- euglPFD[EUGL COLORBITS] = 16
-- euglDisplayMode = EUGL FULLSCREEN

euglInitFunc (routine id(“init”))
euglExitFunc (routine id(“close”))
euglDisplayFunc (routine id(“draw”))
euglKeyboardFunc (routine id(“key”))

EuGLMain (EUGL HANDLE EVENTS, "Window title", 320, 240)
-—- The above starts up the application. 320 and 240 are the width
-- and height of the window, respectively.

What's done so far

e Pretty much all constants.

Many GL-, and some GLU functions.
Many GL extensions.

All (?7) WGL extensions.

To do

The rest of the GL functions.

All GLU (and possibly some GLAux) functions.

The rest of the GL extensions.

Write a better interface (hide all c_func/c_proc calls from the user).
Add more event handlers (VisibilityFunc, MenuFunc etc.).

Write some decent documentation.

Thanks to

e hardCode/Bizarre Creations, Blaine Hodge, Shadow, SGI, and others for OpenGL
code/info.

e Todd Riggins, whose ewin32api I tweaked a bit for this release..

e Brian Broker, Jiri Babor & Monty King for pointing out an error to me.

Appendix A - global routines

I’m not listing all the GL/GLU routines here, since there are so many of them. If you want to know
which ones have been wrapped, look in the .ew files.

eugl.ew

procedure EuGLMain (integer WndProcID, integer width, integer
height, sequence title)

This will start up the application for you. It changes the display settings (if
euglDisplayMode = EUGL FULLSCREEN), creates a window with the specified width,
height and title (caption), calls euglInit (if specified), creates and specifies the pixel
format to use, enters the window event loop, and finally calls euglExit (if specified).
WndProcIDisthe routine id ofyour WndProc (i.e. the event handler), or
EUGL HANDLE EVENTS if you’d rather let EuGL handle the events and pass them on to
your program if necessary.

procedure euglInitDisplayMode (integer mode)

Call this before EuGLMain to specify the desired display mode. mode can be a
combination of the following flags:

EUGL SINGLE

EUGL DOUBLE

EUGL WINDOWED

EUGL FULLSCREEN

EUGL BITSS

EUGL BITS15

EUGL BITS16

EUGL BITS24

EUGL BITS32

procedure euglInitWindowPosition (integer x,integer vy)
Call this before EuGLMain to specify the initial position of the main window.

procedure euglSetWindowTitle (sequence title)
Used to change the title (caption) of the main window after it has been created.

procedure euglPostRedisplay ()
Sends a WM_PAINT message to the main window.

procedure euglDisplayFunc (integer id)
id specifies the routine id of a procedure that will be called when the window needs to

be redrawn. The procedure should look like:
procedure myDisplayFunc ()

procedure euglExitFunc (integer id)
id specifies the routine id of a procedure that will be called when the application is

shut down (i.e. after the message loop has finished). The procedure should look like:
procedure myExitFunc ()

procedure euglInitFunc(integer id)
id specifies the routine id ofa procedure that will be called when the application is

starting up (i.e. right after the window has been created). The procedure should look like:
procedure myInitFunc ()

procedure euglKeyboardFunc (integer id)
id specifies the routine id ofa procedure that will be called whenever a key is pressed.
The procedure should look like:
procedure myKeyboardFunc (integer keycode, integer x,
integer vy)
where keycode is the ASCII code and x and y are the coordinates for the mouse
position.

procedure euglMotionFunc (integer id)

procedure euglPassiveMotionFunc (integer id)
id specifies the routine id of a procedure that will be called whenever the mouse
cursor is moved. The procedure should look like:

procedure myMotionFunc (integer x,integer vy)

The motion callback for a window is called when the mouse moves within the window
while one or more mouse buttons are pressed. The passive motion callback for a window is
called when the mouse moves within the window while no mouse buttons are pressed.

procedure euglMouseFunc (integer id)
id specifies the routine id of a procedure that will be called whenever a mouse button
is pressed or released. The procedure should look like:
procedure myMouseFunc (integer button, integer
state, integer x,integer vy)
When a user presses and releases mouse buttons in the window, each press and each release
generates a mouse callback. The but ton parameter is one of EUGL_LEFT BUTTON,
EUGL_MIDDLE BUTTON, or EUGL RIGHT BUTTON. For systems with only two mouse
buttons, it may not be possible to generate EUGL MIDDLE BUTTON callback. For systems
with a single mouse button, it may be possible to generate only a EUGL LEFT BUTTON
callback. The state parameter is either EUGL_UP or EUGL_DOWN indicating whether the
callback was due to a release or press respectively. The x and y callback parameters indicate
the position of the cursor at the time of the event.

procedure euglReshapeFunc (integer id)
id specifies the routine id of a procedure that will be called when the window is

resized. The procedure should look like:
procedure myReshapeFunc (integer width, integer height)

procedure euglTimerFunc (integer msec, integer id,integer timerID)
id specifies the routine id ofa timer callback to be triggered in at least msec
milliseconds. The callback procedure should look like:
procedure myTimerFunc (integer timerID)

The t imer ID parameter to the timer callback will be passed on to the callback. Multiple
timer callbacks at same or differing times may be registered simultaneously.

The number of milliseconds is a lower bound on the time before the callback is generated.
EuGL attempts to deliver the timer callback as soon as possible after the expiration of the

callback's time interval. If a timer callback is registered before EuGLMain is called, it will
be called at the nearest timeout following after the main window has been created.

There is no support for canceling a registered callback. Instead, ignore a callback based on
its value parameter when it is triggered.

ewin32api.ew

function ewBeginPaint (atom hwnd, atom ps)
Calls the Windows API function BeginPaint.

procedure ewCheckMenultem(atom hmenu, atom idm, atom mask)
Calls the Windows API function CheckMenultem.

function ewCreateFont (integer a, integer b, integer ¢, integer d,
integer e, integer f, integer g, integer h,
integer i, integer j, integer k, integer 1,
integer m, sequence n)
Calls the Windows API function CreateFont.

function ewCreateMenu ()
Calls the Windows API function CreateMenu.

function ewCreatePopupMenu ()
Calls the Windows API function CreatePopupMenu.

function ewDefWindowProc (atom hwnd, atom msg, atom wParam, atom
1Param)
Calls the Windows API function DefWindowProc.

procedure ewDestroyMenu (atom hmenu)
Calls the Windows API function DestroyMenu.

procedure ewkEndPaint (atom hwnd, atom ps)
Calls the Windows API function EndPaint.

function ewPostMessage (atom hwnd, atom msg, atom wParam, atom
1lParam)
Calls the Windows API function PostMessage.

procedure ewPostQuitMessage (integer status)
Calls the Windows API function PostQuitMessage.

function ewSelectObject (atom hdc, atom hgdiobj)
Calls the Windows API function SelectObject.

procedure ewSetWindowPos (atom hwnd, atom a, integer x, integer vy,
integer w, integer h, atom b)
Calls the Windows API function SetWindowPos.

procedure ewSetWindowText (atom hwnd, sequence text)
Calls the Windows API function SetWindowText.

function ewSwapBuffers (atom dc)
Calls the Windows API function SwapBuffers.

Appendix B - global variables and constants
eugl.ew

integer euglDisplayMode
Controls the display mode. Can be either EUGL WINDOWED (default) or
EUGL FULLSCREEN.

integer euglDraw
Should contain the routine id of the routine you use to draw the scene. The routine
must be a procedure (i.e. it cannot return anything) and it mustn’t have any arguments.

integer euglExit
If you want to do something when the application is shutting down (e.g. freeing bitmaps),
you can set this variable to the routine id of a procedure that has no arguments.

integer euglFlags
If you want to customize the pixel format used (e.g. if you want double buffering), you can
do that by altering this variable before calling EuGLMain.

integer euglInit
If you want to do some initialisation (e.g. freeing bitmaps), you can set this variable to the
routine id of aprocedure that has no arguments.

atom dmScreenSettings
Points to a DEVMODE structure. The memory isn’t allocated until EuGLMain is called.

atom funcval
A dummy variable used to hold unimportant values returned by function.

atom glhDC
Contains a handle to the main window’s device context. Created by EuGLMain. This
variable is valid at the point where euglInit is called.

atom glhwnd
Used to hold the handle of the main window. This variable is set after the main window has
been created, so it’s valid at the point where your “InitFunc” is called.

atom glrect
Points to a RECT structure. The memory isn’t allocated until EuGLMain is called.

atom hInst
Holds the current instance.

atom pfd
Points to a PIXELFOMATDESCRIPTOR structure. The memory isn’t allocated until
EuGLMain is called.

atom ps

Points to a PAINTSTRUCT structure. The memory isn’t allocated until EuGLMain is
called.

atom wc
Points to a WNDCLASSEX structure. The memory isn’t allocated until EuGLMain is
called.

sequence euglWCEX
Specifies a window class. When EuGLMain creates the application window, the contents of
this sequence is poked into the memory pointed to by wc.

sequence euglPFD
Specifies a pixel format descriptor. When EuGLMa in creates the application window, the
contents of this sequence is poked into the memory pointed to by pfd.

EUGL_HANDLE_EVENTS (= =2)
Tells EuGL to use its own event handler.

EUGL COLORBITS (= 5)
EUGL DEPTHBITS (= 19)
Indexes into the eug1PFD sequence.

EUGL CURSOR (= 8)
EUGL_ICON (= 7)
EUGL_SMALLICON (= 12)
EUGL_WINDOWCOLOR (= 9)

Indexes into the euglWCEX sequence.

EUGL WINDOWED (= 0)
EUGL FULLSCREEN (= 1)
Display mode enumerators.

EUGL SINGLE (= 0)
EUGL DOUBLE (= 2)
Specifies single- or double-buffered mode.

EUGL BITS8 (= 4)
EUGL_BITS15 (= 8)
EUGL BITS16 (= 16)
EUGL_BITSZ4 (32)
EUGL BITS32 (= 64)
Bit count enumerators.

EUGL_LEFT_BUTTON (= 1)
EUGL_RIGHT_BUTTON (=2)
EUGL_MIDDLE_BUTTON (=4)

Mouse button enumerators.

EUGL_UP (= 0)
EUGL_DOWN (= 1)
Mouse button states.

ewin32api.ew

PFD DOUBLEBUFFER (= 1)
PFD_STEREO (= 2)
PFD DRAW TO WINDOW (
PFD DRAW TO BITMAP (
PFD_SUPPORT GDI (= #
PFD_SUPPORT OPENGL (
PFD_GENERIC FORMAT (=
PFD_NEED PALETTE (= #80
PFD NEED SYSTEM PALETTE (= #100)
PFD_SWAP EXCHANGE (= #200)
PFD SWAP COPY (= #400)
PFD SWAP LAYER BUFFERS (= #800)
PFD GENERIC ACCELERATED (= #1000)
PFD_TYPE RGBA (= 0)
PFD TYPE COLORINDEX (= 1)
PFD MAIN PLANE (= 0)
PFD_OVERLAY PLANE (= 1)
PFD UNDERLAY PLANE (= -1)

These are all pixel format descriptor flags.

/Mic, 2003
stabmaster (@hotmail.com

http://www.cyd.liu.se/~micol972/site

