
proudly presents...

Euphoria Programming Language
version 2.3

Reference Manual

(c) 2002 Rapid Deployment Software

Permission is freely granted to anyone
to copy this manual.

A Preface

This work isn't original at all. Before me, better ones like Travis Beaty and Euman
did something like, i.e. an Euphoria docs compilation. Why? Well, maybe like me
they also like things all together in place.

I also like things running fast (don't we all?) and that's a good reason to use
Winhelp format and not HTML Help. As a matter of fact I can do both as easy as
but we can never forget that, despite de fact that it is not so fancy, Winhelp covers
all Windows brands from ancient 3.1x to the latest 32 bit marvel, it's faster and
smaller.

Travis Beaty's Encyclopædia Euphoria impressed me very much. I tried to
translate it into Portuguese (Brazilian), but is to much work and I'm not sure if I'd
have enough public to benefit from it. So I put it on the back burner.

So why do it again? Well, I have some very nice tools and I planned to use them:
one, specifically, is a Help file editor/builder that can also build flat manuals from
the same Help file project! So, this became my major goal: to build a printable
manual out of Euphoria's documentation, that we all agree is very good. Off course
I choose PDF format that can be read/print in all major platforms without any
hassles.

Now, I'm proud to present a new Refman.hlp and a Refman.pdf that you can use
either at your computer or printed as a book. You'll find it very useful as you'll be
able to look at language references printed on paper, while coding your latest app
on your computer.

I also wish to make some acknowledgments: to Travis Beaty, for his inspiration; to
David Cuny et all, for the excellent Win32Lib and IDE; to Euman, for his nice tools,
tips & hints; and all those who welcomed me into the Euphorium.

Special thanks to Davi Tassinari de Figueiredo who was responsible for my
introduction to Euphoria, and to Robert Craig for his fantastic language!

Enjoy!

Euler German
Sete Lagoas, MG, Brazil

If you find any problems or have suggestions, maybe some criticisms (polite,
please), whatever may come, feel free to contact me through Euphoria mailing list,
or write me at: efgerman.eudoc@mailnull.com.

An important message for all BASIC programmers

13 Reasons Why You Are Going to Write Your Next Program in
Euphoria!

• because Euphoria programs run on DOS, Windows and Linux.
• because Euphoria is actually simpler than BASIC
• because Euphoria is 10 to 20 times faster than Microsoft QBasic (see

demo\bench)
• because QBasic limits the size of your program and data to 160K bytes
• because Euphoria checks for uninitialized variables - BASIC just quietly sets

them to 0
• because Euphoria lets you say precisely what values may be stored in each

variable
• because Euphoria has true dynamic storage allocation - you do not wipe out

your data when you re-dimension an array
• because Euphoria is more flexible than BASIC - you can declare types for

your variables or not; you can store objects of any size into an array
(Euphoria sequence); you can have arrays of mixed type of data

• because Euphoria lets you perform operations on entire sequences
• because BASIC is an old "ad-hoc" language that carries 25 years of

redundant, excess baggage along with it
• because there is no effective standard for BASIC across different machines

and there probably never will be
• because QBasic provides no built-in functions for using a mouse
• because QBasic does not support SVGA graphics

An important message for all C/C++ programmers

25 Reasons Why You Are Going to Write Your Next Program in
Euphoria!

• because you are tired of having to re-invent dynamic storage allocation for
each program that you write

• because you'd like to forget about near pointers and far pointers, and the
small, medium, compact, large and huge memory models

• because you have spent too many frustrating hours tracking down malloc
arena corruption bugs

• because you were once plagued for several days by an on-again/off-again
"flaky" bug that eventually was traced to an uninitialized variable

• because no matter how hard you try to eliminate them, there is always one
more storage "leak"

• because you are tired of having the machine "lock up", or your program
come crashing down in flames with no indication of what the error was

• because you know that subscript checking would have saved you from
hours of debugging

• because your program should not be allowed to overwrite random areas in
memory via "wild" pointers

• because you know it would be bad to overflow your fixed-size stack area but
you have no idea of how close you are

• because one time you had this weird bug, where you called a function, that
didn't actually return a value, but instead fell off the end and some random
garbage was "returned"

• because you wish that library routines would stop you from passing in bad
arguments, rather than just setting "errno" or whatever (who looks at errno
after every call?)

• because you would like to "recompile the world" in a fraction of a second
rather than several minutes -- you can work much faster with a cycle of
edit/run rather than edit/compile/link/run.

• because The C++ Programming Language 3rd Ed. by Bjarne Stroustrup is
911 very dense pages, (and doesn't even discuss platform-specific
programming for DOS, Windows, Linux or any other system).

• because you have been programming in C/C++ for a long time now, but
there are still a lot of weird features in the language that you don't feel
confident about using

• because portability is not as easy to achieve as it should be
• because you know the range of legitimate values for each of your variables,

but you have no way of enforcing this at runtime
• because you would like to pass variable numbers of arguments, but you are

put off by the complicated way of doing it in C
• because you would like a clean way of returning multiple values from a

function
• because you want an integrated full-screen source-level debugger that is

so easy to use that you don't have to search through the manual each time,
(or give up and recompile with printf statements)

• because you hate it when your program starts working just because you
added a debug print statement or compiled with the debug option

• because you would like a reliable, accurate statement-level profile to
understand the internal dynamics of your program, and to boost
performance

• because few of your programs have to squeeze every cycle of performance
out of your machine. The speed difference between Euphoria and C/C++ is
not as great as you might think. Try some benchmark tests. We bet you'll be
surprised!

• because you'd rather not clutter up your hard disk with .obj and .exe files
• because you'd rather be running your program, than wading through several

hundred pages of documentation to decide what compiler and linker options
you need

• because your C/C++ package has 57 different routines for memory
allocation, and 67 different routines for manipulating strings and blocks of
memory. How many of these routines does Euphoria need? Answer: zero!
In Euphoria, memory allocation happens automatically and strings are
manipulated just like any other sequences.

Core Language
Introduction

Euphoria is a new programming language with the following advantages over
conventional languages:

• a remarkably simple, flexible, powerful language definition that is easy to
learn and use.

• dynamic storage allocation. Variables grow or shrink without the
programmer having to worry about allocating and freeing chunks of memory.
Objects of any size can be assigned to an element of a Euphoria sequence
(array).

• a high-performance, state-of-the-art interpreter that's at least 10 to 30 times
faster than conventional interpreters such as Microsoft QBasic, Perl and
Python.

• lightning-fast pre-compilation. Your program is checked for syntax and
converted into an efficient internal form at over 35,000 lines per second on
a Pentium-150.

• extensive run-time checking for: out-of-bounds subscripts, uninitialized
variables, bad parameter values for library routines, illegal value assigned to
a variable and many more. There are no mysterious machine exceptions --
you will always get a full English description of any problem that occurs with
your program at run-time, along with a call-stack trace-back and a dump of
all of your variable values. Programs can be debugged quickly, easily and
more thoroughly.

• features of the underlying hardware are completely hidden. Programs are
not aware of word-lengths, underlying bit-level representation of values,
byte-order etc.

• a full-screen source debugger and an execution profiler are included, along
with a full-screen, multi-file editor. On a color monitor, the editor displays
Euphoria programs in multiple colors, to highlight comments, reserved
words, built-in functions, strings, and level of nesting of brackets. It
optionally performs auto-completion of statements, saving you typing effort
and reducing syntax errors. This editor is written in Euphoria, and the source
code is provided to you without restrictions. You are free to modify it, add
features, and redistribute it as you wish.

• Euphoria programs run under Linux, 32-bit Windows, and any DOS
environment, and are not subject to any 640K memory limitations. You can
create programs that use the full multi-megabyte memory of your computer,
and a swap file is automatically used when a program needs more memory
than exists on your machine.

• You can make a single, stand-alone .exe file from your program.
• Euphoria routines are naturally generic. The example program below shows

a single routine that will sort any type of data -- integers, floating-point
numbers, strings etc. Euphoria is not an "object-oriented" language, yet it
achieves many of the benefits of these languages in a much simpler way.

Example Program

The following is an example of a complete Euphoria program.

sequence list, sorted_list

function merge_sort(sequence x)
-- put x into ascending order using a recursive merge sort

integer n, mid
sequence merged, a, b

n = length(x)
if n = 0 or n = 1 then

return x -- trivial case
end if

mid = floor(n/2)
a = merge_sort(x[1..mid]) -- sort first half of x
b = merge_sort(x[mid+1..n]) -- sort second half of x

-- merge the two sorted halves into one
merged = {}
while length(a) 0 and length(b) 0 do

if compare(a[1], b[1]) < 0 then
merged = append(merged, a[1])
a = a[2..length(a)]

else
merged = append(merged, b[1])
b = b[2..length(b)]

end if
end while
return merged & a & b -- merged data plus leftovers

end function

procedure print_sorted_list()
-- generate sorted_list from list

list = {9, 10, 3, 1, 4, 5, 8, 7, 6, 2}
sorted_list = merge_sort(list)
? sorted_list

end procedure

print_sorted_list() -- this command starts the program

The above example contains 4 separate commands that are processed in order.
The first declares two variables: list and sorted_list to be sequences (flexible

arrays). The second defines a function merge_sort(). The third defines a
procedure print_sorted_list(). The final command calls procedure
print_sorted_list().

The output from the program will be:
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

merge_sort() will just as easily sort {1.5, -9, 1e6, 100} or {"oranges", "apples",
"bananas"} .

This example is stored as euphoria\tutorial\example.ex. This is not the fastest
way to sort in Euphoria. Go to the euphoria\demo directory and type "ex allsorts"
to see timings on several different sorting algorithms for increasing numbers of
objects. For a quick tutorial example of Euphoria programming see
euphoria\demo\bench\filesort.ex.

Installation

To install Euphoria on your machine, first read the file install.doc. Installation
simply involves copying the euphoria files to your hard disk under a directory
named "euphoria", and then modifying your autoexec.bat file so that euphoria\bin
is on your search path, and the environment variable EUDIR is set to the euphoria
directory. On DOS/Windows an automatic install program, install.bat is provided
for this purpose. For the latest details, please read the instructions in install.doc
before you run install.bat.

When installed, the euphoria directory will look something like this:

\euphoria
readme.doc
readme.htm

\bin
ex.exe and exw.exe, or exu (Linux), ed.bat, guru.bat, other utilities

\include
standard include files, e.g. graphics.e

\doc
refman.doc, library.doc, and several other plain-text documentation
files

\html
HTML files corresponding to each of the .doc files in the doc directory

\tutorial
small tutorial programs to help you learn Euphoria

\demo
generic demo programs that run on all platforms

\dos32
DOS32-specific demo programs (optional)

\win32
Win32-specific demo programs (optional)

\linux
Linux-specific demo programs (optional)

\langwar
language war game (pixel-graphics version for DOS, or text
version for Linux)

\bench
benchmark programs

\register
information on ordering the Complete Edition

The Linux subdirectory is not included in the DOS/Windows distribution, and the
dos32 and win32 subdirectories are not included in the Linux distribution. In this
manual, directory names are shown using backslash (\). Linux users should
substitute forward slash (/)

Running a Program

Euphoria programs are executed by typing ex, exw or exu followed by the name of
the main Euphoria file. You can type additional words (known as arguments) on
this line, known as the command-line. Your program can call the built-in function
command_line() to read the command-line. The DOS32 version of the Euphoria
interpreter is called ex.exe. The Win32 version is called exw.exe. The Linux
version is called exu. By convention, main Euphoria files have an extension of .ex,
.exw or .exu. Other Euphoria files, that are meant to be included in a larger
program, end in .e or sometimes .ew or .eu. To save typing, you can leave off the
".ex", and the ex command will supply it for you automatically. exw.exe will supply
".exw", and exu will supply ".exu". If the file can't be found in the current directory,
your PATH will be searched. You can redirect standard input and standard output
when you run a Euphoria program, for example:

ex filesort.ex < raw.txt sorted.txt

or simply,

ex filesort < raw.txt sorted.txt

Unlike many other compilers and interpreters, there are no special command-line
options for ex, exw or exu. Only the name of your Euphoria file is expected, and if
you don't supply it, you will be prompted for it.

For frequently-used programs under DOS/Windows you might want to make a
small .bat (batch) file, perhaps called myprog.bat, containing two statements like:

@echo off
ex myprog.ex %1 %2 %3

The first statement turns off echoing of commands to the screen. The second runs
ex myprog.ex with up to 3 command-line arguments. See command_line() for an
example of how to read these arguments. If your program takes more arguments,
you should add %4 %5 etc. Having a .bat file will save you the minor
inconvenience of typing ex (or exw) all the time, i.e. you can just type:

myprog

instead of:

ex myprog

Unfortunately DOS will not allow redirection of standard input and output when you
use a .bat file

Under Linux, you can type the path to the Euphoria interpreter on the first line of
your main file, e.g. if your program is called foo.exu:

#!/home/rob/euphoria/bin/exu

procedure foo()
? 2+2

end procedure

foo()

Then if you make your file executable:

chmod +x foo.exu

You can just type:

foo.exu

to run your program. You could even shorten the name to simply "foo". Euphoria
ignores the first line when it starts with #!. Be careful though that your first line ends
with the Linux-style \n, and not the DOS/Windows-style \r\n, or the Linux shell
might get confused.

You can also run bind.bat (DOS32), or bindw.bat (Win32) or bindu (Linux) to
combine your Euphoria program with ex.exe, exw.exe or exu, to make a stand-
alone executable file (.exe file on DOS/Windows). With a stand-alone .exe file you
can redirect standard input and output. Binding is discussed further in Distributing
a Program.

Either exu or ex.exe and exw.exe are in the euphoria\bin directory which must be
on your search path. The environment variable EUDIR should be set to the main
Euphoria directory, e.g. c:\euphoria.

Running under Windows

You can run Euphoria programs directly from the Windows environment, or from a
DOS shell that you have opened from Windows. By "associating" .ex files with
ex.exe, and .exw files with exw.exe you can simply double-click on a .ex or .exw
file to run it. Under Windows you would define a new file type for .ex, by clicking on
My Computer / View / Options / File Types. It is possible to have several Euphoria
programs active in different windows. If you turn your program into a .exe file, you
can simply double-click on it to run it.

Use of a Swap File

If you run a Euphoria program under Linux or Windows (or in a DOS shell under
Windows), and the program runs out of physical memory, it will start using "virtual
memory". The operating system provides this virtual memory automatically by
swapping out the least-recently-used code and data to a system swap file. To
change the size of the Windows swap file, click on Control Panel / 386 Enhanced /
"virtual memory...". Under OS/2 you can adjust the "DPMI_MEMORY_LIMIT" by
clicking the Virtual DOS machine icon / "DOS Settings" to allocate more extended
memory for your program.

Under pure DOS, outside of Windows, there is no system swap file so the DOS-
extender built in to ex.exe (DOS32) will create one for possible use by your
program. See platform.doc.

Editing a Program

You can use any text editor to edit a Euphoria program. However, Euphoria comes
with its own special editor that is written entirely in Euphoria. Type: ed followed by
the complete name of the file you wish to edit (the .ex/.exw/.exu extension is not
assumed). You can use this editor to edit any kind of text file. When you edit a
Euphoria file, some extra features such as color syntax highlighting and auto-
completion of certain statements, are available to make your job easier.

Whenever you run a Euphoria program and get an error message, during
compilation or execution, you can simply type ed with no file name and you will be
automatically positioned in the file containing the error, at the correct line and
column, and with the error message displayed at the top of the screen.

Under Windows you can associate ed.bat with various kinds of text files that you
want to edit. Color syntax highlighting is provided for .ex, .exw, .exu, .e, .ew, .eu,
and .pro (profile) files.

Most keys that you type are inserted into the file at the cursor position. Hit the Esc
key once to get a menu bar of special commands. The arrow keys, and the
Insert/Delete/Home/End/PageUp/PageDown keys are also active. Under Linux
some keys may not be available, and alternate keys are provided. See the file
euphoria\doc\ed.doc (euphoria\html\ed.htm) for a complete description of the
editing commands. Esc h (help) will let you view ed.doc from your editing session.

If you need to understand or modify any detail of the editor's operation, you can
edit the file ed.ex in euphoria\bin (be sure to make a backup copy so you don't
lose your ability to edit). If the name ed conflicts with some other command on your
system, simply rename the file euphoria\bin\ed.bat to something else. Because
this editor is written in Euphoria, it is remarkably concise and easy to understand.
The same functionality implemented in a language like C, would take far more lines
of code.

ed is a simple text-mode editor that runs on DOS, Linux and the Windows console.
See also David Cuny's excellent ee.ex editor for DOS and Linux. You can
download ee.ex from the Euphoria Web site. There are also some Windows editors
oriented to Euphoria. These are also on the Web site.

Distributing a Program

Euphoria provides you with 4 distinct ways of distributing a program.

In the first method you simply ship your users the Public Domain ex.exe or
exw.exe or exu file, along with your main Euphoria .ex, .exw, or .exu file and any
.e include files that are needed (including any of the standard ones from
euphoria\include). If the Euphoria source files are placed together in one directory
and ex.exe, exw.exe or exu is placed in the same directory or somewhere on the
search path, then your user can run your program by typing ex (exw) or (exu)
followed by the path of your main .ex, .exw, or .exu file. You might also provide a
small .bat file so people won't actually have to type ex (exw). This method
assumes that you are willing to share your Euphoria source code with your users.

The Complete Edition gives you two more methods of distribution. You can shroud
your program, or you can bind your program. Shrouding combines all of the .e
files that your program needs, along with your main file to create a single .ex, .exw,
or .exu file. You can either encrypt/compact your program to conceal it and make it
tamper-proof, or you can leave it readable to allow better diagnostics from your
users. Binding combines your shrouded program with ex.exe, exw.exe, or exu to
create a single, stand-alone executable (.exe) file. For example, if your program
is called "myprog.ex" you can create "myprog.exe" which will run identically. For
more information about shrouding and binding, see bind.doc.

Finally, with the Euphoria To C Translator, you can translate your Euphoria
program into C and then compile it with a C compiler to get an executable (.exe)
file. The Translator is a separate download available on the RDS Web site.

Licensing

You have complete royalty-free rights to distribute any Euphoria programs that you
develop. You are free to distribute the Public Domain Edition ex.exe, exw.exe and
exu files so anyone can run your program. With the Complete Edition, you can
shroud or bind your programs and distribute the resulting files royalty-free.

You may incorporate any Euphoria source files from this package into your
program, either "as is" or with your modifications. (You will probably need at least a
few of the standard include files in any large program).

We would appreciate it if you told people that your program was developed using
Euphoria, and gave them the address: http://www.RapidEuphoria.com of our Web
page, but we do not require any such acknowledgment.

The only Interpreter-related files that you may not distribute are the ex.exe,

exw.exe, bind.ex, bind.bat, bindw.bat, and shroud.bat files that come with the
Complete Edition Interpreter for Win32 + DOS32, and exu, bind.ex, bindu and
shroud that come with the Complete Edition Interpreter for Linux. The sample icon
file, euphoria.ico, that's included with the Win32 + DOS32 Complete Edition, may
be distributed with or without your changes.

The Euphoria Interpreter is written in ANSI C, and can be compiled with many
different C compilers. The source is available for purchase. Before buying it, please
read the Interpreter Source License.

For legal restrictions on the Euphoria To C Translator, please download that
package from our site.

Language Definition

Objects

• Atoms

• Sequences

• Characters Strings

• Individual Characters

• Comments

Atoms and Sequences

All data objects in Euphoria are either atoms or sequences. An atom is a single
numeric value. A sequence is a collection of numeric values.

The objects contained in a sequence can be an arbitrary mix of atoms or
sequences. A sequence is represented by a list of objects in brace brackets,
separated by commas. Atoms can have any integer or double-precision floating
point value. They can range from approximately -1e300 (minus one times 10 to the
power 300) to +1e300 with 15 decimal digits of accuracy. Here are some Euphoria
objects:

-- examples of atoms:

0
1000
98.6
-1e6

-- examples of sequences:

{2, 3, 5, 7, 11, 13, 17, 19}
{1, 2, {3, 3, 3}, 4, {5, {6}}}
{{"jon", "smith"}, 52389, 97.25}
{} -- the 0-element sequence

Numbers can also be entered in hexadecimal. For example:

#FE -- 254
#A000 -- 40960
#FFFF00008 -- 68718428168

-#10 -- -16

Only the capital letters A, B, C, D, E, F are allowed in hex numbers.

Sequences can be nested to any depth, i.e. you can have sequences within
sequences within sequences and so on to any depth (until you run out of memory).
Brace brackets are used to construct sequences out of a list of expressions. These
expressions can be constant or evaluated at run-time. e.g.

{x+6, 9, y*w+2, sin(0.5)}

The "Hierarchical Objects" part of the Euphoria acronym comes from the
hierarchical nature of nested sequences. This should not be confused with the
class hierarchies of certain object-oriented languages.

Why do we call them atoms? Why not just "numbers"? Well, an atom is just a
number, but we wanted to have a distinctive term that emphasizes that they are
indivisible. Of course in the world of physics, atoms were split into smaller parts
many years ago, but in Euphoria you can't split them. They are the basic building
blocks of all the data that a Euphoria program can manipulate. With this analogy,
sequences might be thought of as "molecules", made from atoms and other
molecules. A better analogy would be that sequences are like directories, and
atoms are like files. Just as a directory on your computer can contain both files and
other directories, a sequence can contain both atoms and other sequences (and
those sequences can contain atoms and sequences and so on).

As you will soon discover, sequences make Euphoria very simple and very
powerful. Understanding atoms and sequences is the key to understanding
Euphoria.

Performance Note:

Does this mean that all atoms are stored in memory as 8-byte floating-point
numbers? No. The Euphoria interpreter usually stores integer-valued atoms as
machine integers (4 bytes) to save space and improve execution speed. When
fractional results occur or numbers get too big, conversion to floating-point
happens automatically.

Characters Strings and Individual Characters

A character string is just a sequence of characters. It may be entered using
quotes e.g.

"ABCDEFG"

Character strings may be manipulated and operated upon just like any other
sequences. For example the above string is entirely equivalent to the sequence:

{65, 66, 67, 68, 69, 70, 71}

which contains the corresponding ASCII codes. The Euphoria compiler will
immediately convert "ABCDEFG" to the above sequence of numbers. In a sense,
there are no "strings" in Euphoria, only sequences of numbers. A quoted string is
really just a convenient notation that saves you from having to type in all the ASCII
codes.

It follows that "" is equivalent to {}. Both represent the sequence of length-0, also
known as the empty sequence. As a matter of programming style, it is natural to
use "" to suggest a length-0 sequence of characters, and {} to suggest some other
kind of sequence.

An individual character is an atom. It must be entered using single quotes. There
is a difference between an individual character (which is an atom), and a character
string of length-1 (which is a sequence). e.g.

'B' -- equivalent to the atom 66 - the ASCII code for B
"B" -- equivalent to the sequence {66}

Again, 'B' is just a notation that is equivalent to typing 66. There aren't really any
"characters" in Euphoria, just numbers (atoms).

Keep in mind that an atom is not equivalent to a one-element sequence containing
the same value, although there are a few built-in routines that choose to treat them
similarly.
Special characters may be entered using a back-slash:

\nnewline
\r carriage return
\t tab
\\ backslash
\" double quote
\' single quote

For example, "Hello, World!\n", or '\\'. The Euphoria editor displays character
strings in green.

Comments

Comments are started by two dashes and extend to the end of the current line. e.g.

-- this is a comment

Comments are ignored by the compiler and have no effect on execution speed.
The editor displays comments in red.

On the first line (only) of your program, you can use a special comment beginning
with #!, e.g.

#!/home/rob/euphoria/bin/exu

This informs the Linux shell that your file should be executed by the Euphoria
interpreter, and gives the full path to the interpreter. If you make your file
executable, you can run it, just by typing its name, and without the need to type
"exu". On DOS and Windows this line is treated as a comment.

Expressions

Like other programming languages, Euphoria lets you calculate results by forming
expressions. However, in Euphoria you can perform calculations on entire
sequences of data with one expression, where in most other languages you would
have to construct a loop. In Euphoria you can handle a sequence much as you
would a single number. It can be copied, passed to a subroutine, or calculated
upon as a unit. For example:

{1,2,3} + 5

is an expression that adds the sequence {1,2,3} and the atom 5 to get the resulting
sequence {6,7,8}.

We will see more examples later.

Relational Operators

The relational operators < , > , <= , >= , = and != , each produce a 1 (true) or a 0
(false) result.

8.8 < 8.7 -- 8.8 less than 8.7 (false)
-4.4 > -4.3 -- -4.4 greater than -4.3 (false)
8 <= 7 -- 8 less than or equal to 7 (false)
4 >= 4 -- 4 greater than or equal to 4 (true)
1 = 10 -- 1 equal to 10 (false)
8.7 != 8.8 -- 8.7 not equal to 8.8 (true)

As we will soon see you can also apply these operators to sequences.

Logical Operators

The logical operators and, or, xor, and not are used to determine the "truth" of an
expression. e.g.

1 and 1 -- 1 (true)
1 and 0 -- 0 (false)
0 and 1 -- 0 (false)
0 and 0 -- 0 (false)

1 or 1 -- 1 (true)
1 or 0 -- 1 (true)
0 or 1 -- 1 (true)
0 or 0 -- 0 (false)

1 xor 1 -- 0 (false)
1 xor 0 -- 1 (true)
0 xor 1 -- 1 (true)
0 xor 0 -- 0 (false)

not 1 -- 0 (false)
not 0 -- 1 (true)

You can also apply these operators to numbers other than 1 or 0. The rule is: zero
means false and non-zero means true. So for instance:

5 and -4 -- 1 (true)
not 6 -- 0 (false)

These operators can also be applied to sequences. See below.

In some cases short-circuit evaluation will be used for expressions containing
and or or.

Arithmetic Operators

The usual arithmetic operators are available: add, subtract, multiply, divide, unary
minus, unary plus.

3.5 + 3 -- 6.5
3 - 5 -- -2
6 * 2 -- 12
7 / 2 -- 3.5
-8.1 -- -8.1
+8 -- +8

Computing a result that is too big (i.e. outside of -1e300 to +1e300) will result in
one of the special atoms +infinity or -infinity. These appear as inf or -inf when
you print them out. It is also possible to generate nan or -nan. "nan" means "not a
number", i.e. an undefined value (such as inf divided by inf). These values are
defined in the IEEE floating-point standard. If you see one of these special values
in your output, it usually indicates an error in your program logic, although
generating inf as an intermediate result may be acceptable in some cases. For
instance, 1/inf is 0, which may be the "right" answer for your algorithm.

Division by zero, as well as bad arguments to math library routines, e.g. square
root of a negative number, log of a non-positive number etc. cause an immediate
error message and your program is aborted.

The only reason that you might use unary plus is to emphasize to the reader of
your program that a number is positive. The interpreter does not actually calculate
anything for this.

Operations on Sequences

All of the relational, logical and arithmetic operators described above, as well as
the math routines described in Part II - Library Routines, can be applied to
sequences as well as to single numbers (atoms).

When applied to a sequence, a unary (one operand) operator is actually applied to
each element in the sequence to yield a sequence of results of the same length. If
one of these elements is itself a sequence then the same rule is applied again
recursively. e.g.

x = -{1, 2, 3, {4, 5}} -- x is {-1, -2, -3, {-4, -5}}

If a binary (two-operand) operator has operands which are both sequences then
the two sequences must be of the same length. The binary operation is then

applied to corresponding elements taken from the two sequences to get a
sequence of results. e.g.

x = {5, 6, 7, 8} + {10, 10, 20, 100} -- x is {15, 16, 27, 108}

If a binary operator has one operand which is a sequence while the other is a
single number (atom) then the single number is effectively repeated to form a
sequence of equal length to the sequence operand. The rules for operating on two
sequences then apply. Some examples:

y = {4, 5, 6}

w = 5 * y -- w is {20, 25, 30}

x = {1, 2, 3}

z = x + y -- z is {5, 7, 9}

z = x < y -- z is {1, 1, 1}

w = {{1, 2}, {3, 4}, {5}}

w = w * y -- w is {4, 8}, {15, 20}, {30}}

w = {1, 0, 0, 1} and {1, 1, 1, 0} -- {1, 0, 0, 0}

w = not {1, 5, -2, 0, 0} -- w is {0, 0, 0, 1, 1}

w = {1, 2, 3} = {1, 2, 4} -- w is {1, 1, 0}
-- note that the first '=' is assignment, and the
-- second '=' is a relational operator that tests
-- equality

Subscripting of Sequences

A single element of a sequence may be selected by giving the element number in
square brackets. Element numbers start at 1. Non-integer subscripts are rounded
down to an integer.

For example, if x contains {5, 7.2, 9, 0.5, 13} then x[2] is 7.2. Suppose we assign
something different to x[2]:

x[2] = {11,22,33}

Then x becomes: {5, {11,22,33}, 9, 0.5, 13}. Now if we ask for x[2] we get

{11,22,33} and if we ask for x[2][3] we get the atom 33. If you try to subscript with a
number that is outside of the range 1 to the number of elements, you will get a
subscript error. For example x[0], x[-99] or x[6] will cause errors. So will x[1][3]
since x[1] is not a sequence. There is no limit to the number of subscripts that may
follow a variable, but the variable must contain sequences that are nested deeply
enough. The two dimensional array, common in other languages, can be easily
represented with a sequence of sequences:

x = {
{5, 6, 7, 8, 9}, -- x[1]
{1, 2, 3, 4, 5}, -- x[2]
{0, 1, 0, 1, 0} -- x[3]
}

where we have written the numbers in a way that makes the structure clearer. An
expression of the form x[i][j] can be used to access any element.

The two dimensions are not symmetric however, since an entire "row" can be
selected with x[i], but there is no simple expression to select an entire column.
Other logical structures, such as n-dimensional arrays, arrays of strings, structures,
arrays of structures etc. can also be handled easily and flexibly:

3-D array:

y = {
{{1,1}, {3,3}, {5,5}},
{{0,0}, {0,1}, {9,1}},
{{-1,9},{1,1}, {2,2}}
}

y[2][3][1] is 9

Array of strings:

s = {"Hello", "World", "Euphoria", "", "Last One"}

s[3] is "Euphoria"
s[3][1] is 'E'

A Structure:

employee = {
{"John","Smith"},
45000,
27,
185.5
}

To access "fields" or elements within a structure it is good programming style to
make up a set of constants that name the various fields. This will make your
program easier to read. For the example above you might have:

constant NAME = 1
constant FIRST_NAME = 1, LAST_NAME = 2

constant SALARY = 2
constant AGE = 3
constant WEIGHT = 4

You could then access the person's name with employee[NAME], or if you wanted
the last name you could say employee[NAME][LAST_NAME].

Array of structures:

employees = {
{{"John","Smith"}, 45000, 27, 185.5}, -- a[1]
{{"Bill","Jones"}, 57000, 48, 177.2}, -- a[2]

-- etc.

}

employees[2][SALARY] would be 57000.

Euphoria data structures are almost infinitely flexible. Arrays in other
languages are constrained to have a fixed number of elements, and those
elements must all be of the same type. Euphoria eliminates both of those
restrictions. You can easily add a new structure to the employee sequence above,
or store an unusually long name in the NAME field and Euphoria will take care of it
for you. If you wish, you can store a variety of different employee "structures", with
different sizes, all in one sequence.

Not only can a Euphoria program easily represent all conventional data structures
but you can create very useful, flexible structures that would be extremely hard to

declare in a conventional language. See Euphoria versus Conventional
Languages.

Note that expressions in general may not be subscripted, just variables. For
example: {5+2,6-1,7*8,8+1}[3] is not supported, nor is something like:
date()[MONTH]. You have to assign the sequence returned by date() to a variable,
then subscript the variable to get the month.

Slicing of Sequences

A sequence of consecutive elements may be selected by giving the starting and
ending element numbers. For example if x is {1, 1, 2, 2, 2, 1, 1, 1} then x[3..5] is
the sequence {2, 2, 2}. x[3..3] is the sequence {2}. x[3..2] is also allowed. It
evaluates to the length-0 sequence {}. If y has the value: {"fred", "george", "mary"}
then y[1..2] is {"fred", "george"}.

We can also use slices for overwriting portions of variables. After x[3..5] = {9, 9, 9}
x would be {1, 1, 9, 9, 9, 1, 1, 1}. We could also have said x[3..5] = 9 with the same
effect. Suppose y is {0, "Euphoria", 1, 1}. Then y[2][1..4] is "Euph". If we say
y[2][1..4]="ABCD" then y will become {0, "ABCDoria", 1, 1}.

In general, a variable name can be followed by 0 or more subscripts, followed in
turn by 0 or 1 slices. Only variables may be subscripted or sliced, not expressions.

We need to be a bit more precise in defining the rules for empty slices. Consider a
slice s[i..j] where s is of length n. A slice from i to j, where j = i-1 and i >= 1
produces the empty sequence, even if i = n+1. Thus 1..0 and n+1..n and
everything in between are legal (empty) slices. Empty slices are quite useful in
many algorithms. A slice from i to j where j < i - 1 is illegal , i.e. "reverse" slices
such as s[5..3] are not allowed.

Concatenation of Sequences and Atoms - The & Operator

Any two objects may be concatenated using the & operator. The result is a
sequence with a length equal to the sum of the lengths of the concatenated objects
(where atoms are considered here to have length 1). e.g.

{1, 2, 3} & 4 -- {1, 2, 3, 4}

4 & 5 -- {4, 5}

{{1, 1}, 2, 3} & {4, 5} -- {1, 1}, 2, 3, 4, 5}

x = {}
y = {1, 2}
y = y & x -- y is still {1, 2}

You can delete element i of any sequence s by concatenating the parts of the
sequence before and after i:

s = s[1..i-1] & s[i+1..length(s)]

This works even when i is 1 or length(s), since s[1..0] is a legal empty slice, and so
is s[length(s)+1..length(s)].

Sequence-Formation

Finally, sequence-formation, using braces and commas:

{a, b, c, ... }

is also an operator. It takes n operands, where n is 0 or more, and makes an n-
element sequence from their values. e.g.

x = {apple, orange*2, {1,2,3}, 99/4+foobar}

The sequence-formation operator is listed at the bottom of the precedence chart.

Other Operations on Sequences

Some other important operations that you can perform on sequences have English
names, rather than special characters. These operations are built-in to
ex.exe/exw.exe/exu , so they'll always be there, and so they'll be fast. They are
described in detail in Part II - Library Routines, but are important enough to
Euphoria programming that we should mention them here before proceeding. You
call these operations as if they were subroutines, although they are actually
implemented much more efficiently than that.

length(s)

length() tells you the length of a sequence s. This is the number of elements in s.
Some of these elements may be sequences that contain elements of their own, but
length just gives you the "top-level" count. You'll get an error if you ask for the
length of an atom. e.g.

length({5,6,7}) -- 3
length({1, {5,5,5}, 2, 3}) -- 4 (not 6!)
length({}) -- 0
length(5) -- error!

repeat(item, count)

repeat() makes a sequence that consists of an item repeated count times. e.g.

repeat(0, 100) -- {0,0,0,...,0} i.e. 100 zeros
repeat("Hello", 3) -- {"Hello", "Hello", "Hello"}
repeat(99,0) -- {}

The item to be repeated can be any atom or sequence.

append(s, item) / prepend(s, item)

append() creates a new sequence by adding an item to the end of a sequence s.
prepend() creates a new sequence by adding an element to the beginning of a
sequence s. e.g.

append({1,2,3}, 4) -- {1,2,3,4}
prepend({1,2,3}, 4) -- {4,1,2,3}

append({1,2,3}, {5,5,5}) -- {1,2,3,{5,5,5}}

prepend({}, 9) -- {9}
append({}, 9) -- {9}

The length of the new sequence is always 1 greater than the length of the original
sequence. The item to be added to the sequence can be any atom or sequence.

These two built-in functions, append() and prepend(), have some similarities to
the concatenate operator, &, but there are clear differences. e.g.

-- appending a sequence is different
append({1,2,3}, {5,5,5}) -- {1,2,3,{5,5,5}}
{1,2,3} & {5,5,5} -- {1,2,3,5,5,5}

-- appending an atom is the same
append({1,2,3}, 5) -- {1,2,3,5}
{1,2,3} & 5 -- {1,2,3,5}

Precedence Chart

The precedence of operators in expressions is as follows:

highest precedence: function/type calls
unary- unary+ not
* /
+ -
&
< > <= >= = !=
and or xor

lowest precedence: { , , , }

Thus 2+6*3 means 2+(6*3) rather than (2+6)*3. Operators on the same line above
have equal precedence and are evaluated left to right.

The equals symbol '=' used in an assignment statement is not an operator, it's just
part of the syntax of the language.

Euphoria versus Conventional Languages

By basing Euphoria on this one, simple, general, recursive data structure, a
tremendous amount of the complexity normally found in programming languages
has been avoided. The arrays, structures, unions, arrays of records,
multidimensional arrays, etc. of other languages can all be easily represented in
Euphoria with sequences. So can higher-level structures such as lists, stacks,
queues, trees etc.

Furthermore, in Euphoria you can have sequences of mixed type; you can assign
any object to an element of a sequence; and sequences easily grow or shrink in
length without your having to worry about storage allocation issues. The exact
layout of a data structure does not have to be declared in advance, and can
change dynamically as required. It is easy to write generic code, where, for

instance, you push or pop a mix of various kinds of data objects using a single
stack. Making a flexible list that contains a variety of different kinds of data objects
is trivial in Euphoria, but requires dozens of lines of ugly code in other languages.

Data structure manipulations are very efficient since the Euphoria interpreter will
point to large data objects rather than copy them.

Programming in Euphoria is based entirely on creating and manipulating flexible,
dynamic sequences of data. Sequences are it - there are no other data structures
to learn. You operate in a simple, safe, elastic world of values, that is far removed
from the rigid, tedious, dangerous world of bits, bytes, pointers and machine
crashes.

Unlike other languages such as LISP and Smalltalk, Euphoria's "garbage
collection" of unused storage is a continuous process that never causes random
delays in execution of a program, and does not pre-allocate huge regions of
memory.

The language definitions of conventional languages such as C, C++, Ada, etc. are
very complex. Most programmers become fluent in only a subset of the language.
The ANSI standards for these languages read like complex legal documents.

You are forced to write different code for different data types simply to copy the
data, ask for its current length, concatenate it, compare it etc. The manuals for
those languages are packed with routines such as "strcpy", "strncpy", "memcpy",
"strcat", "strlen", "strcmp", "memcmp", etc. that each only work on one of the many
types of data.

Much of the complexity surrounds issues of data type. How do you define new
types? Which types of data can be mixed? How do you convert one type into
another in a way that will keep the compiler happy? When you need to do
something requiring flexibility at run-time, you frequently find yourself trying to fake
out the compiler.

In these languages the numeric value 4 (for example) can have a different meaning
depending on whether it is an int, a char, a short, a double, an int * etc. In
Euphoria, 4 is the atom 4, period. Euphoria has something called types as we shall
see later, but it is a much simpler concept.

Issues of dynamic storage allocation and deallocation consume a great deal of
programmer coding time and debugging time in these other languages, and make
the resulting programs much harder to understand. Programs that must run
continuously often exhibit storage "leaks", since it takes a great deal of discipline to
safely and properly free all blocks of storage once they are no longer needed.

Pointer variables are extensively used. The pointer has been called the "go to" of
data structures. It forces programmers to think of data as being bound to a fixed

memory location where it can be manipulated in all sorts of low-level, non-portable,
tricky ways. A picture of the actual hardware that your program will run on is never
far from your mind. Euphoria does not have pointers and does not need them.

Declarations

• Identifiers

• Scope

• Specifying the Type of a Variable

Identifiers

Identifiers, which consist of variable names and other user-defined symbols, may
be of any length. Upper and lower case are distinct. Identifiers must start with a
letter and then be followed by letters, digits or underscores. The following reserved
words have special meaning in Euphoria and may not be used as identifiers:

and end include to
by exit not type
constant for or while
do function procedure with
else global return without
elsif if then xor

The Euphoria editor displays these words in blue.
Identifiers can be used in naming the following:

• procedures
• functions
• types
• variables
• constants

procedures

These perform some computation and may have a list of parameters, e.g.

procedure empty()
end procedure

procedure plot(integer x, integer y)
position(x, y)
puts(1, '*')

end procedure

There are a fixed number of named parameters, but this is not restrictive since any
parameter could be a variable-length sequence of arbitrary objects. In many
languages variable-length parameter lists are impossible. In C, you must set up
strange mechanisms that are complex enough that the average programmer
cannot do it without consulting a manual or a local guru.

A copy of the value of each argument is passed in. The formal parameter variables
may be modified inside the procedure but this does not affect the value of the
arguments.

Performance Note:

The interpreter does not actually copy sequences or floating-point numbers
unless it becomes necessary. For example,

y = {1,2,3,4,5,6,7,8.5,"ABC"}
x = y

The statement x = y does not actually cause a new copy of y to be created. Both x
and y will simply "point" to the same sequence. If we later perform x[3] = 9, then a
separate sequence will be created for x in memory (although there will still be just
one shared copy of 8.5 and "ABC"). The same thing applies to "copies" of
arguments passed in to subroutines.

functions

These are just like procedures, but they return a value, and can be used in an
expression, e.g.

function max(atom a, atom b)
if a >= b then

return a
else

return b
end if

end function

Any Euphoria object can be returned. You can, in effect, have multiple return
values, by returning a sequence of objects. e.g.

return {x_pos, y_pos}

We will use the general term "subroutine", or simply "routine" when a remark is
applicable to both procedures and functions.

types

These are special functions that may be used in declaring the allowed values for a
variable. A type must have exactly one parameter and should return an atom that
is either true (non-zero) or false (zero). Types can also be called just like other
functions. See Specifying the Type of a Variable.

variables

These may be assigned values during execution e.g.

-- x may only be assigned integer values
integer x
x = 25

-- a, b and c may be assigned *any* value
object a, b, c
a = {}
b = a
c = 0

When you declare a variable you name the variable (which protects you against
making spelling mistakes later on) and you specify the values that may legally be
assigned to the variable during execution of your program.

constants

These are variables that are assigned an initial value that can never change e.g.

constant MAX = 100
constant Upper = MAX - 10, Lower = 5
constant name_list = {"Fred", "George", "Larry"}

The result of any expression can be assigned to a constant, even one involving
calls to previously defined functions, but once the assignment is made, the value of

the constant variable is "locked in".

Constants may not be declared inside a subroutine.

Scope

A symbol's scope is the portion of the program where that symbol's declaration is
in effect, i.e. where that symbol is visible.

In Euphoria, every symbol must be declared before it is used. You can read a
Euphoria program from beginning to end without encountering any variables or
routines that haven't been defined yet. It is possible to call a routine that comes
later in the source, but you must use the special functions, routine_id(), and either
call_func() or call_proc() to do it. See Part II - Library Routines - Dynamic Calls.

Procedures, functions and types can call themselves recursively. Mutual recursion,
where routine A calls routine B which directly or indirectly calls routine A, requires
the routine_id() mechanism.

A symbol is defined from the point where it is declared to the end of its scope. The
scope of a variable declared inside a procedure or function (a private variable)
ends at the end of the procedure or function. The scope of all other variables,
constants, procedures, functions and types ends at the end of the source file in
which they are declared and they are referred to as local, unless the keyword
global precedes their declaration, in which case their scope extends indefinitely.

When you include a Euphoria file in a main file (see Special Top-Level
Statements), only the variables and routines declared using the global keyword
are accessible or even visible to the main file. The other, non-global, declarations
in the included file are forgotten at the end of the included file, and you will get an
error message, "not declared", if you try to use them in the main file.

Symbols marked as global can be used externally. All other symbols can only be
used internally within their own file. This information is helpful when maintaining or
enhancing the file, or when learning how to use the file. You can make changes to
the internal routines and variables, without having to examine other files, or notify
other users of the include file.

Sometimes, when using include files developed by others, you will encounter a
naming conflict. One of the include file authors has used the same name for a
global symbol as one of the other authors. If you have the source, you can simply
edit one of the include files to correct the problem, but then you'd have repeat this
process whenever a new version of the include file was released. Euphoria has a
simpler way to solve this. Using an extension to the include statement, you can say
for example:

include johns_file.e as john
include bills_file.e as bill

john:x += 1
bill:x += 2

In this case, the variable x was declared in two different files, and you want to refer
to both variables in your file. Using the namespace identifier of either john or bill,
you can attach a prefix to x to indicate which x you are referring to. We sometimes
say that john refers to one namespace, while bill refers to another distinct
namespace. You can attach a namespace identifier to any user-defined variable,
constant, procedure or function. You can do it to solve a conflict, or simply to make
things clearer. A namespace identifier has local scope. It is known only within the
file that declares it, i.e. the file that contains the include statement. Different files
might define different namespace identifiers to refer to the same included file.

Euphoria encourages you to restrict the scope of symbols. If all symbols were
automatically global to the whole program, you might have a lot of naming conflicts,
especially in a large program consisting of files written by many different
programmers. A naming conflict might cause a compiler error message, or it could
lead to a very subtle bug, where different parts of a program accidentally modify
the same variable without being aware of it. Try to use the most restrictive scope
that you can. Make variables private to one routine where possible, and where that
isn't possible, make them local to a file, rather than global to the whole program.

When Euphoria looks up the declaration of a symbol, it first checks the current
routine, then the current file, then globals in other files. Symbols that are more local
will override symbols that are more global. At the end of the scope of the local
symbol, the more global symbol will be visible again.

Constant declarations must be outside of any subroutine. Constants can be global
or local, but not private.

Variable declarations inside a subroutine must all appear at the beginning, before
the executable statements of the subroutine.

Declarations at the top level, outside of any subroutine, must not be nested inside
a loop or if-statement.

The controlling variable used in a for-loop is special. It is automatically declared at
the beginning of the loop, and its scope ends at the end of the for-loop. If the loop
is inside a function or procedure, the loop variable is a private variable and may
not have the same name as any other private variable. When the loop is at the top
level, outside of any function or procedure, the loop variable is a local variable and
may not have the same name as any other local variable in that file. You can use
the same name in many different for-loops as long as the loops aren't nested. You
do not declare loop variables as you would other variables. The range of values

specified in the for statement defines the legal values of the loop variable -
specifying a type would be redundant and is not allowed.

Specifying the Type of a Variable

So far you've already seen some examples of variable types but now we will define
types more precisely.

Variable declarations have a type name followed by a list of the variables being
declared. For example:

object a

global integer x, y, z

procedure fred(sequence q, sequence r)

The types: object, sequence, atom and integer are predefined. Variables of type
object may take on any value. Those declared with type sequence must always
be sequences. Those declared with type atom must always be atoms. Those
declared with type integer must be atoms with integer values from -1073741824 to
+1073741823 inclusive. You can perform exact calculations on larger integer
values, up to about 15 decimal digits, but declare them as atom, rather than
integer.

Note:
In a procedure or function parameter list like the one for fred() above, a type
name may only be followed by a single parameter name.

Performance Note:
Calculations using variables declared as integer will usually be somewhat faster
than calculations involving variables declared as atom. If your machine has
floating-point hardware, Euphoria will use it to manipulate atoms that aren't
representable as integers. If your machine doesn't have floating-point hardware,
Euphoria will call software floating-point arithmetic routines contained in ex.exe
(or in Windows). You can force ex.exe to bypass any floating-point hardware,
by setting an environment variable:

SET NO87=1

The slower software routines will be used, but this could be of some advantage
if you are worried about the floating-point bug in some early Pentium chips.

To augment the predefined types, you can create user-defined types. All you
have to do is define a single-parameter function, but declare it with type ... end
type instead of function ... end function. For example:

type hour(integer x)
return x >= 0 and x <= 23

end type

hour h1, h2

h1 = 10 -- ok
h2 = 25 -- error! program aborts with a message

Variables h1 and h2 can only be assigned integer values in the range 0 to 23
inclusive. After each assignment to h1 or h2 the interpreter will call hour(), passing
the new value. The value will first be checked to see if it is an integer (because of
"integer x"). If it is, the return statement will be executed to test the value of x (i.e.
the new value of h1 or h2). If hour() returns true, execution continues normally. If
hour() returns false then the program is aborted with a suitable diagnostic
message.

"hour" can be used to declare subroutine parameters as well:

procedure set_time(hour h)

set_time() can only be called with a reasonable value for parameter h, otherwise
the program will abort with a message.

A variable's type will be checked after each assignment to the variable (except
where the compiler can predetermine that a check will not be necessary), and the
program will terminate immediately if the type function returns false. Subroutine
parameter types are checked each time that the subroutine is called. This checking
guarantees that a variable can never have a value that does not belong to the type

of that variable.

Unlike other languages, the type of a variable does not affect any calculations on
the variable. Only the value of the variable matters in an expression. The type just
serves as an error check to prevent any "corruption" of the variable.

Type checking can be turned off or on between subroutines using the with
type_check or without type_check special statements. It is initially on by default.

Note to Benchmarkers:
When comparing the speed of Euphoria programs against programs written in
other languages, you should specify without type_check at the top of the file.
This gives Euphoria permission to skip run-time type checks, thereby saving
some execution time. All other checks are still performed, e.g. subscript
checking, uninitialized variable checking etc. Even when you turn off type
checking, Euphoria reserves the right to make checks at strategic places, since
this can actually allow it to run your program faster in many cases. So you may
still get a type check failure even when you have turned off type checking.
Whether type checking is on or off, you will never get a machine-level
exception. You will always get a meaningful message from Euphoria when
something goes wrong. (This might not be the case when you poke directly
into memory, or call routines written in C or machine code.)

Euphoria's method of defining types is simpler than what you will find in other
languages, yet Euphoria provides the programmer with greater flexibility in
defining the legal values for a type of data. Any algorithm can be used to include or
exclude values. You can even declare a variable to be of type object which will
allow it to take on any value. Routines can be written to work with very specific
types, or very general types.

For small programs, there is little advantage to defining new types, and beginners
may wish to stick with the four predefined types, or even declare all variables as
object.
For larger programs, strict type definitions can greatly aid the process of
debugging. Logic errors are caught close to their source and are not allowed to
propagate in subtle ways through the rest of the program. Furthermore, it is much
easier to reason about the misbehavior of a section of code when you are
guaranteed that the variables involved always had a legal value, if not the desired
value.

Types also provide meaningful, machine-checkable documentation about your
program, making it easier for you or others to understand your code at a later date.
Combined with the subscript checking, uninitialized variable checking, and other
checking that is always present, strict run-time type checking makes debugging
much easier in Euphoria than in most other languages. It also increases the
reliability of the final program since many latent bugs that would have survived the
testing phase in other languages will have been caught by Euphoria.

Anecdote 1:
In porting a large C program to Euphoria, a number of latent bugs were
discovered. Although this C program was believed to be totally "correct", we
found: a situation where an uninitialized variable was being read; a place where
element number "-1" of an array was routinely written and read; and a situation
where something was written just off the screen. These problems resulted in
errors that weren't easily visible to a casual observer, so they had survived
testing of the C code.

Anecdote 2:
The Quick Sort algorithm presented on page 117 of Writing Efficient Programs
by Jon Bentley has a subscript error! The algorithm will sometimes read the
element just before the beginning of the array to be sorted, and will sometimes
read the element just after the end of the array. Whatever garbage is read, the
algorithm will still work - this is probably why the bug was never caught. But
what if there isn't any (virtual) memory just before or just after the array?
Bentley later modifies the algorithm such that this bug goes away -- but he
presented this version as being correct. Even the experts need subscript
checking!

Performance Note:
When typical user-defined types are used extensively, type checking adds only
20 to 40 percent to execution time. Leave it on unless you really need the extra
speed. You might also consider turning it off for just a few heavily-executed
routines. Profiling can help with this decision.

Statements

The following kinds of executable statements are available:

• assignment statement

• procedure call

• if statement

• while statement

• for statement

• return statement

• exit statement

Semicolons are not used in Euphoria, but you are free to put as many statements
as you like on one line, or to split a single statement across many lines. You may
not split a statement in the middle of an identifier, string, number or keyword.

Assignment statement

An assignment statement assigns the value of an expression to a simple
variable, or to a subscript or slice of a variable. e.g.

x = a + b

y[i] = y[i] + 1

y[i..j] = {1, 2, 3}

The previous value of the variable, or element(s) of the subscripted or sliced
variable are discarded. For example, suppose x was a 1000-element sequence
that we had initialized with:

object x
x = repeat(0, 1000) -- a sequence of 1000 zeros

and then later we assigned an atom to x with:

x = 7
This is perfectly legal since x is declared as an object. The previous value of x,
namely the 1000-element sequence, would simply disappear. Actually, the space
consumed by the 1000-element sequence will be automatically recycled due to
Euphoria's dynamic storage allocation.

Note that the equals symbol '=' is used for both assignment and for equality testing.
There is never any confusion because an assignment in Euphoria is a statement
only, it can't be used as an expression (as in C).

Assignment with Operator

Euphoria also provides some additional forms of the assignment statement.

To save typing, and to make your code a bit neater, you can combine assignment
with one of the operators:

+ - / * &

For example, instead of saying:

mylongvarname = mylongvarname + 1

You can say:

mylongvarname += 1

Instead of saying:

galaxy[q_row][q_col][q_size] = galaxy[q_row][q_col][q_size] * 10

You can say:

galaxy[q_row][q_col][q_size] *= 10

and instead of saying:

accounts[start..finish] = accounts[start..finish] / 10

You can say:

accounts[start..finish] /= 10

In general, whenever you have an assignment of the form:

left-hand-side = left-hand-side op expression

You can say:

left-hand-side op= expression

where op is one of: + - * / &

When the left-hand-side contains multiple subscripts/slices, the op= form will
usually execute faster than the longer form. When you get used to it, you may find
the op= form to be slightly more readable than the long form, since you don't have
to visually compare the left-hand-side against the copy of itself on the right side.

Procedure call

A procedure call starts execution of a procedure, passing it an optional list of
argument values. e.g.

plot(x, 23)

If statement

An if statement tests a condition to see if it is 0 (false) or non-zero (true) and then
executes the appropriate series of statements. There may be optional elsif and
else clauses. e.g.

if a < b then
x = 1

end if

if a = 9 and find(0, s) then
x = 4
y = 5

else
z = 8

end if

if char = 'a' then
x = 1

elsif char = 'b' or char = 'B' then
x = 2

elsif char = 'c' then
x = 3

else
x = -1

end if

Notice that elsif is a contraction of else if, but it's cleaner because it doesn't
require an end if to go with it. There is just one end if for the entire if statement,
even when there are many elsif's contained in it.

The if and elsif conditions are tested using short-circuit evaluation.

While statement

A while statement tests a condition to see if it is non-zero (true), and while it is
true a loop is executed. e.g.

while x > 0 do
a = a * 2

x = x - 1
end while

Short-Circuit Evaluation

When the condition tested by if, elsif, or while contains and or or operators,
short-circuit evaluation will be used. For example:

if a < 0 and b > 0 then ...

If a < 0 is false, then Euphoria will not bother to test if b is greater than 0. It will
assume that the overall result is false. Similarly:

if a < 0 or b > 0 then ...

if a < 0 is true, then Euphoria will immediately decide that the result true, without
testing the value of b.

In general, whenever we have a condition of the form:

A and B

where A and B can be any two expressions, Euphoria will take a short-cut when A
is false and immediately make the overall result false, without even looking at
expression B.

Similarly, with:

A or B

when A is true, Euphoria will skip the evaluation of expression B, and declare the
result to be true.

If the expression B contains a call to a function, and that function has possible
side-effects, i.e. it might do more than just return a value, you will get a compile-
time warning. Older versions (pre-2.1) of Euphoria did not use short-circuit
evaluation, and it's possible that some old code will no longer work correctly,
although a search of the Euphoria archives did not turn up any programs that
depend on side-effects in this way.

The expression, B, could contain something that would normally cause a run-time
error. If Euphoria skips the evaluation of B, the error will not be discovered. For
instance:

if x != 0 and 1/x > 10 then -- divide by zero error avoided

while 1 or {1,2,3,4,5} do -- illegal sequence result avoided

B could even contain uninitialized variables, out-of-bounds subscripts etc.

This may look like sloppy coding, but in fact it often allows you to write something
in a simpler and more readable way. For instance:

if atom(x) or length(x)=1 then

Without short-circuiting, you would have a problem when x was an atom, since
length is not defined for atoms. With short-circuiting, length(x) will only be checked
when x is a sequence. Similarly:

-- find 'a' or 'A' in s
i = 1
while i <= length(s) and s[i] != 'a' and s[i] != 'A' do

 i += 1
end while

In this loop the variable i might eventually become greater than length(s). Without
short-circuit evaluation, a subscript out-of-bounds error will occur when s[i] is
evaluated on the final iteration. With short-circuiting, the loop will terminate
immediately when i <= length(s) becomes false. Euphoria will not evaluate s[i] != 'a'
and will not evaluate s[i] != 'A'. No subscript error will occur.

Short-circuit evaluation of and and or takes place for if, elsif and while
conditions only. It is not used in other contexts. For example, the assignment
statement:

x = 1 or {1,2,3,4,5}-- x should be set to {1,1,1,1,1}

If short-circuiting were used here, we would set x to 1, and not even look at
{1,2,3,4,5}. This would be wrong. Short-circuiting can be used in if/elsif/while
conditions because we only care if the result is true or false, and conditions are
required to produce an atom as a result.

For statement

A for statement sets up a special loop with a controlling loop variable that runs
from an initial value up or down to some final value. e.g.

for i = 1 to 10 do
? i -- ? is a short form for print()

end for

-- fractional numbers allowed too
for i = 10.0 to 20.5 by 0.3 do

for j = 20 to 10 by -2 do -- counting down
? {i, j}

end for
end for

The loop variable is declared automatically and exists until the end of the loop.
Outside of the loop the variable has no value and is not even declared. If you need
its final value, copy it into another variable before leaving the loop. The compiler
will not allow any assignments to a loop variable. The initial value, loop limit and
increment must all be atoms. If no increment is specified then +1 is assumed. The
limit and increment values are established when the loop is entered, and are not
affected by anything that happens during the execution of the loop. See also the
scope of the loop variable in Scope.

Return statement

A return statement returns immediately from a subroutine. If the subroutine is a
function or type then a value must also be returned. e.g.

return

return {50, "FRED", {}}

Exit statement

An exit statement may appear inside a while-loop or a for-loop. It causes
immediate termination of the loop, with control passing to the first statement after
the loop. e.g.

for i = 1 to 100 do
if a[i] = x then

location = i
exit

end if
end for

It is also quite common to see something like this:

constant TRUE = 1

while TRUE do
...

if some_condition then
exit

end if
...

end while

i.e. an "infinite" while-loop that actually terminates via an exit statement at some
arbitrary point in the body of the loop.

Performance Note:
Euphoria optimizes this type of loop. At run-time, no test is performed at the top
of the loop. There's just a simple unconditional jump from end while back to the
first statement inside the loop.

With ex.exe, if you happen to create a real infinite loop, with no input/output taking
place, there is no easy way to stop it. You will have to type Control-Alt-Delete to
either reboot, or (under Windows) terminate your DOS prompt session. If the
program had files open for writing, it would be advisable to run scandisk to check
your file system integrity. Only when your program is waiting for keyboard input,
will control-c abort the program (unless allow_break(0) was used).

With exw.exe or exu, control-c will always stop your program immediately.

Special Top-Level Statements

Euphoria processes your .ex file in one pass, starting at the first line and
proceeding through to the last line. When a procedure or function definition is
encountered, the routine is checked for syntax and converted into an internal form,
but no execution takes place. When a statement that is outside of any routine is
encountered, it is checked for syntax, converted into an internal form and then
immediately executed. A common practice is to immediately initialize a global
variable, just after its declaration. If your .ex file contains only routine definitions,
but no immediate execution statements, then nothing will happen when you try to
run it (other than syntax checking). You need to have an immediate statement to
call your main routine (see Example Program). It is quite possible to have a .ex file
with nothing but immediate statements, for example you might want to use
Euphoria as a simple calculator, typing in just one print (or ?) statement into a file,
and then executing it.

As we have seen, you can use any Euphoria statement, including for-loops, while-
loops, if statements etc. (but not return), at the top level i.e. outside of any function
or procedure. In addition, the following special statements may only appear at the
top level:

• include
• with / without

Include

When you write a large program it is often helpful to break it up into logically
separate files, by using include statements. Sometimes you will want to reuse
some code that you have previously written, or that someone else has written.
Rather than copy this code into your main program, you can use an include
statement to refer to the file containing the code. The first form of the include
statement is:

include filename

This reads in (compiles) a Euphoria source file.
Any top-level code in the included file will be executed.
Any global symbols that have already been defined in the main file will
be visible in the included file.

N.B. Only those symbols defined as global in the included file will be visible
(accessible) in the remainder of the program.

If an absolute filename is given, Euphoria will use it. When a relative filename is
given, Euphoria will first look for it in the same directory as the main file given
on the ex (or exw or exu) command-line. If it's not there, and you've defined an
environment variable, EUINC, it will search each directory listed in EUINC (from
left to right). Finally, if it still hasn't found the file, it will search
euphoria\include. This directory contains the standard Euphoria include files.
The environment variable EUDIR tells ex.exe/exw.exe/exu where to find your
euphoria directory. EUINC should be a list of directories, separated by
semicolons (colons on Linux), similar in form to your PATH variable. It can be
added to your AUTOEXEC.BAT file, e.g.

SET EUINC=C:\EU\MYFILES;C:\EU\WIN32LIB

This lets you organize your include files according to application areas, and
avoid adding numerous unrelated files to euphoria\include.

An included file can include other files. In fact, you can "nest" included files up
to 10 levels deep.

Include file names typically end in .e, or sometimes .ew or .eu (when they are
intended for use with Windows or Linux). This is just a convention. It is not
required.
Other than possibly defining a new namespace identifier (see below), an

include statement will be quietly ignored if a file with the same name has
already been included.

An include statement must be written on a line by itself. Only a comment can
appear after it on the same line.

The second form of the include statement is:

include filename as namespace_identifier

This is just like the simple include, but it also defines a namespace identifier
that can be attached to global symbols in the included file that you want to refer
to in the main file. This might be necessary to disambiguate references to those
symbols, or you might feel that it makes your code more readable. See Scope
rules for more.

With / Without

These special statements affect the way that Euphoria translates your program into
internal form. They are not meant to change the logic of your program, but they
may affect the diagnostic information that you get from running your program. See
Debugging and Profiling for more information.

with
This turns on one of the options: profile, profile_time, trace,
warning or type_check. Options warning and type_check are
initially on, while profile, profile_time and trace are initially off.

Any warnings that are issued will appear on your screen after your program has
finished execution. Warnings indicate very minor problems. A warning will never
stop your program from executing.

without
This turns off one of the above options.

There is also a special with option where a code number appears after with. RDS
uses this code to make a file exempt from adding to the statement count in the
Public Domain Edition of Euphoria.

You can select any combination of settings, and you can change the settings, but
the changes must occur between subroutines, not within a subroutine. The only
exception is that you can only turn on one type of profiling for a given run of your
program.

An included file inherits the with/without settings in effect at the point where it is

included. An included file can change these settings, but they will revert back to
their original state at the end of the included file. For instance, an included file
might turn off warnings for itself and (initially) for any files that it includes, but this
will not turn off warnings for the main file.

Debugging and Profiling

Debugging

Debugging in Euphoria is much easier than in most other programming languages.
Extensive run-time checking provided by the Euphoria interpreter catches many
bugs that in other languages might take hours of your time to track down. When
the interpreter catches an error, you will always get a brief report on your screen,
and a detailed report in a file called ex.err. These reports include a full English
description of what happened, along with a call-stack traceback. The file ex.err will
also have a dump of all variable values, and optionally a list of the most recently
executed statements. For extremely large sequences, only a partial dump is
shown. If ex.err is not convenient, you can choose another file name, anywhere on
your system, by calling crash_file().

In addition, you are able to create user-defined types that precisely determine the
set of legal values for each of your variables. An error report will occur the moment
that one of your variables is assigned an illegal value.

Sometimes a program will misbehave without failing any run-time checks. In any
programming language it may be a good idea to simply study the source code and
rethink the algorithm that you have coded. It may also be useful to insert print
statements at strategic locations in order to monitor the internal logic of the
program. This approach is particularly convenient in an interpreted language like
Euphoria since you can simply edit the source and rerun the program without
waiting for a re-compile/re-link.

The interpreter provides you with additional powerful tools for debugging. Using
trace(1) you can trace the execution of your program on one screen while you
witness the output of your program on another. trace(2) is the same as trace(1) but
the trace screen will be in monochrome. Finally, using trace(3), you can log all
executed statements to a file called ctrace.out.

The full trace facility is part of the Euphoria Complete Edition, but it's enabled in the
Public Domain Edition for programs up to 300 statements.

with trace / without trace special statements select the parts of your program that
are available for tracing. Often you will simply insert a with trace statement at the
very beginning of your source code to make it all traceable. Sometimes it is better
to place the first with trace after all of your user-defined types, so you don't trace
into these routines after each assignment to a variable. At other times, you may
know exactly which routine or routines you are interested in tracing, and you will
want to select only these ones. Of course, once you are in the trace window, you
can skip viewing the execution of any routine by pressing down-arrow on the
keyboard rather than Enter.

Only traceable lines can appear in ctrace.out or in ex.err as "Traced lines leading

up to the failure" should a run-time error occur. If you want this information and
didn't get it, you should insert a with trace and then rerun your program. Execution
will be slower when lines compiled with trace are executed, especially when
trace(3) is used.

After you have predetermined the lines that are traceable, your program must then
dynamically cause the trace facility to be activated by executing a trace()
statement. You could simply say:

with trace
trace(1)

at the top of your program, so you can start tracing from the beginning of
execution. More commonly, you will want to trigger tracing when a certain routine is
entered, or when some condition arises. e.g.

if x < 0 then
trace(1)

end if

You can turn off tracing by executing a trace(0) statement. You can also turn it off
interactively by typing 'q' to quit tracing. Remember that with trace must appear
outside of any routine, whereas trace() can appear inside a routine or outside.

You might want to turn on tracing from within a type. Suppose you run your
program and it fails, with the ex.err file showing that one of your variables has
been set to a strange, although not illegal value, and you wonder how it could have
happened. Simply create a type for that variable that executes trace(1) if the value
being assigned to the variable is the strange one that you are interested in. e.g.

type positive_int(integer x)
if x = 99 then

trace(1) -- how can this be???
return 1 -- keep going

else
return x > 0

end if
end type

When positive_int() returns, you will see the exact statement that caused your
variable to be set to the strange value, and you will be able to check the values of
other variables. You will also be able to check the output screen to see what has
happened up to this precise moment. If you define positive_int() so it returns 0 for
the strange value (99) instead of 1, you can force a diagnostic dump into ex.err.

The Trace Screen

Here is a screen shot of a trace screen. Try clicking on some of its menu items to
see other screen shots it may have (same to those underlined items at key listing
below:

When a trace(1) or trace(2) statement is executed by the interpreter, your main
output screen is saved and a trace screen appears. It shows a view of your
program with the statement that will be executed next highlighted, and several
statements before and after showing as well. Several lines at the bottom of the
screen are reserved for displaying variable names and values. The top line shows
the commands that you can enter at this point:

Keys Action Screenshot
F1 display main output

screen - take a look
at your program's
output so far

F2 redisplay trace
screen. Press this
key while viewing
the main output
screen to return to
the trace display

Enter execute the
currently-
highlighted
statement only

down-
arrow

continue execution and break when any statement coming
after this one in the source listing is about to be executed.
This lets you skip over subroutine calls. It also lets you stop
on the first statement following the end of a for-loop or while-
loop without having to witness all iterations of the loop

? display the value of
a variable. Many
variables are
displayed
automatically as
they are assigned a
value, but
sometimes you will
have to explicitly
ask for one that is
not on display. After hitting ? you will be prompted for the
name of the variable. Variables that are not defined at this
point cannot be shown. Variables that have not yet been
initialized will have "< NO VALUE >" beside their name. Only
variables, not general expressions, can be displayed

q quit tracing and resume normal execution. Tracing will start
again when the next trace(1) is executed

Q quit tracing and let the program run freely to its normal
completion. trace() statements will be ignored

! this will abort execution of your program. A traceback and
dump of variable values will go to ex.err.

As you trace your program, variable names and values appear automatically in the
bottom portion of the screen. Whenever a variable is assigned-to, you will see its
name and new value appear at the bottom. This value is always kept up-to-date.
Private variables are automatically cleared from the screen when their routine
returns. When the variable display area is full, least-recently referenced variables
will be discarded to make room for new variables. The value of a long sequence
will be cut off after 80 characters.

For your convenience, numbers that are in the range of printable ASCII characters
(32-127) are displayed along with the ASCII character itself. The ASCII character
will be in a different color (or in quotes in a mono display). This is done for all
variables, since Euphoria does not know in general whether you are thinking of a
number as an ASCII character or not. You will also see ASCII characters (in
quotes) in ex.err. This can make for a rather "busy" display, but the ASCII
information is often very useful.

The trace screen adopts the same graphics mode as the main output screen. This
makes flipping between them quicker and easier.

When a traced program requests keyboard input, the main output screen will
appear, to let you type your input as you normally would. This works fine for gets()
(read one line) input. When get_key() (quickly sample the keyboard) is called you
will be given 8 seconds to type a character, otherwise it is assumed that there is no
input for this call to get_key(). This allows you to test the case of input and also the
case of no input for get_key().

See also: The Trace File

The Trace File

When your program calls trace(3), tracing to a file is activated. The file, ctrace.out
will be created in the current directory. It contains the last 500 Euphoria statements
that your program executed. It is set up as a circular buffer that holds a maximum
of 500 statements. Whenever the end of ctrace.out is reached, the next statement
is written back at the beginning. The very last statement executed is always
followed by "=== THE END ===". Because it's circular, the last statement executed
could appear anywhere in ctrace.out. The statement coming after "=== THE END
===" is the 500th-last.

This form of tracing is supported by both the interpreter and the Complete Edition
of the Euphoria To C Translator. It is particularly useful when a machine-level error
occurs that prevents Euphoria from writing out an ex.err diagnostic file. By looking
at the last statement executed, you may be able to guess why the program
crashed. Perhaps the last statement was a poke() into an illegal area of memory.
Perhaps it was a call to a C routine. In some cases it might be a bug in the

interpreter or the Translator.

The source code for a statement is written to ctrace.out, and flushed, just before
the statement is performed, so the crash will likely have happened during
execution of the final statement that you see in ctrace.out.

Profiling (complete edition only)

If you specify with profile (DOS32, Win32 or Linux), or with profile_time (DOS32
only) then a special listing of your program, called a profile, will be produced by
the interpreter when your program finishes execution. This listing is written to the
file ex.pro in the current directory.

There are two types of profiling available: execution-count profiling, and time
profiling. You get execution-count profiling when you specify with profile. You get
time profiling when you specify with profile_time. You can't mix the two types of
profiling in a single run of your program. You need to make two separate runs.

We ran the sieve.ex benchmark program in demo\bench under both types of
profiling. The results are in sieve1.pro (execution-count profiling) and sieve2.pro
(time profiling).

Execution-count profiling shows precisely how many times each statement in your
program was executed. If the statement was never executed the count field will be
blank.

Time profiling (DOS32 only) shows an estimate of the total time spent executing
each statement. This estimate is expressed as a percentage of the time spent
profiling your program. If a statement was never sampled, the percentage field will
be blank. If you see 0.00 it means the statement was sampled, but not enough to
get a score of 0.01.
Only statements compiled with profile or with profile_time are shown in the
listing. Normally you will specify either with profile or with profile_time at the top
of your main .ex file, so you can get a complete listing. View this file with the
Euphoria editor to see a color display.

Profiling can help you in many ways:

• it lets you see which statements are heavily executed, as a clue to speeding
up your program

• it lets you verify that your program is actually working the way you intended
• it can provide you with statistics about the input data
• it lets you see which sections of code were never tested - don't let your

users be the first!

Sometimes you will want to focus on a particular action performed by your
program. For example, in the Language War game, we found that the game in
general was fast enough, but when a planet exploded, shooting 2500 pixels off in
all directions, the game slowed down. We wanted to speed up the explosion
routine. We didn't care about the rest of the code. The solution was to call profile(0)
at the beginning of Language War, just after with profile_time, to turn off profiling,
and then to call profile(1) at the beginning of the explosion routine and profile(0) at
the end of the routine. In this way we could run the game, creating numerous
explosions, and logging a lot of samples, just for the explosion effect. If samples
were charged against other lower-level routines, we knew that those samples
occurred during an explosion. If we had simply profiled the whole program, the
picture would not have been clear, as the lower-level routines would also have
been used for moving ships, drawing phasors etc. profile() can help in the same
way when you do execution-count profiling.

Some Further Notes on Time Profiling

With each click of the system clock, an interrupt is generated. When you specify
with profile_time Euphoria will sample your program to see which statement is
being executed at the exact moment that each interrupt occurs.

These interrupts normally occur 18.2 times per second, but if you call tick_rate()
you can choose a much higher rate and thus get a more accurate time profile,
since it will be based on more samples. By default, if you haven't called tick_rate(),
then tick_rate(100) will be called automatically when you start profiling. You can set
it even higher (up to say 1000) but you may start to affect your program's
performance.

Each sample requires 4 bytes of memory and buffer space is normally reserved for
25000 samples. If you need more than 25000 samples you can request it:

with profile_time 100000

will reserve space for 100000 samples (for example). If the buffer overflows you'll
see a warning at the top of ex.pro. At 100 samples per second your program can
run for 250 seconds before using up the default 25000 samples. It's not feasible for
Euphoria to dynamically enlarge the sample buffer during the handling of an
interrupt. That's why you might have to specify it in your program. After completing
each top-level executable statement, Euphoria will process the samples
accumulated so far, and free up the buffer for more samples. In this way the profile
can be based on more samples than you have actually reserved space for.

The percentages shown in the left margin of ex.pro, are calculated by dividing the
number of times that a particular statement was sampled, by the total number of
samples taken. e.g. if a statement were sampled 50 times out of a total of 500

samples, then a value of 10.0 (10 per cent) would appear in the margin beside that
statement. When profiling is disabled with profile(0), interrupts are ignored, no
samples are taken and the total number of samples does not increase.

By taking more samples you can get more accurate results. However, one situation
to watch out for is the case where a program synchronizes itself to the clock
interrupt, by waiting for time() to advance. The statements executed just after the
point where the clock advances might never be sampled, which could give you a
very distorted picture. e.g.

while time() < LIMIT do
end while
x += 1 -- This statement will never be sampled

Sometimes you will see a significant percentage beside a return statement. This is
usually due to time spent deallocating storage for temporary and private variables
used within the routine. Significant storage deallocation time can also occur when
you assign a new value to a large sequence.

If disk swapping starts to happen, you may see large times attributed to statements
that need to access the swap file, such as statements that access elements of a
large swapped-out sequence.

Library Routines
Introduction

A large number of library routines are provided. Some are built right into the
interpreter, ex.exe, exw.exe or exu. Others are written in Euphoria and you must
include one of the .e files in euphoria\include to use them. Where this is the case,
the appropriate include file is noted in the "Syntax" part of the description. Of
course an include file need only be included once in your program. The editor
displays in magenta those routines that are built into the interpreter, and require no
include file. You can override the definition of these built-in routines by defining
your own routine with the same name. You will get a suppressible warning if you
do this.

To indicate what kind of object may be passed in and returned, the following
prefixes are used:

Prefix Object

x - a general object (atom or sequence)
s - a sequence
a - an atom
i - an integer
fn - an integer used as a file number
st - a string sequence, or single-character atom

Some routines are only available on one or two of the three platforms. This is noted
with "Platform: DOS32" or "Platform: Win32" or "Platform: Linux" in the description
of the routine, and with (DOS32) or (Win32) or (Linux) in some other places.

A run-time error message will usually result if an illegal argument value is passed
to any of these routines.

Predefined Types

As well as declaring variables with these types, you can also call them just like
ordinary functions, in order to test if a value is a certain type.

integer - test if an object is an integer
atom - test if an object is an atom
sequence - test if an object is a sequence
object - test if an object is an object (always true)

Sequence Manipulation

length - return the length of a sequence
repeat - repeat an object n times to form a sequence of length n

reverse - reverse a sequence
append - add a new element to the end of a sequence
prepend - add a new element to the beginning of a sequence

Searching and Sorting

compare - compare two objects
equal - test if two objects are identical
find - find an object in a sequence
match - find a sequence as a slice of another sequence
sort - sort the elements of a sequence into ascending order
custom_sort - sort the elements of a sequence based on a compare

function that you supply

Pattern Matching

lower - convert an atom or sequence to lower case
upper - convert an atom or sequence to upper case
wildcard_match - match a pattern containing ? and * wildcards
wildcard_file - match a file name against a wildcard specification

Math

These routines can be applied to individual atoms or to sequences of values. See
Operations on Sequences.

sqrt - calculate the square root of an object
rand - generate random numbers
sin - calculate the sine of an angle
arcsin - calculate the angle with a given sine
cos - calculate the cosine of an angle
arccos - calculate the angle with a given cosine
tan - calculate the tangent of an angle
arctan - calculate the arc tangent of a number
log - calculate the natural logarithm
floor - round down to the nearest integer
remainder - calculate the remainder when a number is divided by another
power - calculate a number raised to a power
PI - the mathematical value PI (3.14159...)

Bitwise Logical Operations

These routines treat numbers as collections of binary bits, and logical operations
are performed on corresponding bits in the binary representation of the numbers.
There are no routines for shifting bits left or right, but you can achieve the same
effect by multiplying or dividing by powers of 2.

and_bits - perform logical AND on corresponding bits
or_bits - perform logical OR on corresponding bits
xor_bits - perform logical XOR on corresponding bits
not_bits - perform logical NOT on all bits

File and Device I/O

To do input or output on a file or device you must first open the file or device, then
use the routines below to read or write to it, then close the file or device. open() will
give you a file number to use as the first argument of the other I/O routines. Certain
files/devices are opened for you automatically (as text files):

0 - standard input
1 - standard output
2 - standard error

Unless you redirect them on the command-line, standard input comes from the
keyboard, standard output and standard error go to the screen. When you write
something to the screen it is written immediately without buffering. If you write to a
file, your characters are put into a buffer until there are enough of them to write out
efficiently. When you close() or flush() the file or device, any remaining characters
are written out. Input from files is also buffered. When your program terminates,
any files that are still open will be closed for you automatically.

Note:
If a program (written in Euphoria or any other language) has a file open for
writing, and you are forced to reboot your computer for any reason, you should
immediately run scandisk to repair any damage to the file system that may
have occurred.

open - open a file or device
close - close a file or device
flush - flush out buffered data to a file or device
lock_file - lock a file or device
unlock_file - unlock a file or device
print - print a Euphoria object with {,,} to show the structure
? x - shorthand for print(1, x)

sprint - return a printed Euphoria object as a string sequence
printf - formatted print to a file or device
sprintf - formatted print returned as a string sequence
puts - output a string sequence to a file or device
getc - read the next character from a file or device
gets - read the next line from a file or device
get_bytes - read the next n bytes from a file or device
prompt_string - prompt the user to enter a string
get_key - check for key pressed by the user, don't wait
wait_key - wait for user to press a key
get - read the representation of any Euphoria object from a file
prompt_number - prompt the user to enter a number
value - read the representation of any Euphoria object from a string
seek - move to any byte position within an open file
where - report the current byte position in an open file
current_dir - return the name of the current directory
chdir - change to a new current directory
dir - return complete info on all files in a directory
walk_dir - recursively walk through all files in a directory
allow_break - allow control-c/control-Break to terminate your program or

not
check_break - check if user has pressed control-c or control-Break

Mouse Support (DOS32)

get_mouse - return mouse "events" (clicks, movements)
mouse_events - select mouse events to watch for
mouse_pointer - display or hide the mouse pointer

Operating System

time - number of seconds since a fixed point in the past
tick_rate - set the number of clock ticks per second (DOS32)
date - current year, month, day, hour, minute, second etc.
command_line - command-line used to run this program
getenv - get value of an environment variable
system - execute an operating system command line
system_exec - execute a program and get its exit code
abort - terminate execution
sleep - suspend execution for a period of time
platform - find out which operating system are we running on

Special Machine-Dependent Routines

machine_func - specialized internal operations with a return value
machine_proc - specialized internal operations with no return value

Debugging Routines

trace - dynamically turns tracing on or off
profile - dynamically turns profiling on or off

Graphics & Sound

The following routines let you display information on the screen. The PC screen
can be placed into one of many graphics modes. See the top of
include\graphics.e for a description of the modes. There are two basic types of
graphics mode available. Text modes divide the screen up into lines, where
each line has a certain number of characters. Pixel-graphics modes divide the
screen up into many rows of dots, or "pixels". Each pixel can be a different color. In
text modes you can display text only, with the choice of a foreground and a
background color for each character. In pixel-graphics modes you can display
lines, circles, dots, and also text.

For DOS32 we've included a routine for making sounds on your PC speaker. To
make more sophisticated sounds, get the Sound Blaster library developed by
Jacques Deschenes. It's available on the Euphoria Web page.

The following routines work in all text and pixel-graphics modes:

clear_screen - clear the screen
position - set cursor line and column
get_position - return cursor line and column
graphics_mode - select a new pixel-graphics or text mode (DOS32)
video_config - return parameters of current mode
scroll - scroll text up or down
wrap - control line wrap at right edge of screen
text_color - set foreground text color
bk_color - set background color
palette - change color for one color number (DOS32)
all_palette - change color for all color numbers (DOS32)
get_all_palette - get the palette values for all colors (DOS32)
read_bitmap - read a bitmap (.bmp) file and return a palette and a 2-d

sequenceof pixels
save_bitmap - create a bitmap (.bmp) file, given a palette and a 2-d

sequence of pixels
get_active_page - return the page currently being written to (DOS32)
set_active_page - change the page currently being written to (DOS32)
get_display_page - return the page currently being displayed (DOS32)
set_display_page - change the page currently being displayed (DOS32)
sound - make a sound on the PC speaker (DOS32)

The following routines work in text modes only:

cursor - select cursor shape
text_rows - set number of lines on text screen
get_screen_char - get one character from the screen (DOS32, Linux)
put_screen_char - put one or more characters on the screen (DOS32, Linux)
save_text_image - save a rectangular region from a text screen (DOS32, Linux)
display_text_image - display an image on the text screen (DOS32, Linux)

The following routines work in pixel-graphics modes only (DOS32):

pixel - set color of a pixel or set of pixels
get_pixel - read color of a pixel or set of pixels
draw_line - connect a series of graphics points with a line
polygon - draw an n-sided figure
ellipse - draw an ellipse or circle
save_screen - save the screen to a bitmap (.bmp) file
save_image - save a rectangular region from a pixel-graphics screen
display_image - display an image on the pixel-graphics screen

Machine Level Interface

We've grouped here a number of routines that you can use to access your machine
at a low-level. With this low-level machine interface you can read and write to
memory. You can also set up your own 386+ machine language routines and call
them.

Some of the routines listed below are unsafe, in the sense that Euphoria can't
protect you if you use them incorrectly. You could crash your program or even your
system. Under DOS32, if you reference a bad memory address it will often be
safely caught by the CauseWay DOS extender, and you'll get an error message on
the screen plus a dump of machine-level information in the file cw.err. Under
Win32, the operating system will usually pop up a termination box giving a
diagnostic message plus register information. Under Linux you'll typically get a

segmentation violation.

Note:
To assist programmers in debugging code involving these unsafe routines, we
have supplied safe.e, an alternative to machine.e. If you copy
euphoria\include\safe.e into the directory containing your program, and you
rename safe.e as machine.e in that directory, your program will run using safer
(but slower) versions of these low-level routines. safe.e can catch many errors,
such as poking into a bad memory location. See the comments at the top of
safe.e for complete instructions on how to use it. When using a package such
as Win32Lib that does not use Euphoria's allocate() function, you can only
make limited use of safe.e.

These machine-level-interface routines are important because they allow Euphoria
programmers to access low-level features of the hardware and operating system.
For some applications this is essential.

Machine code routines can be written by hand, or taken from the disassembled
output of a compiler for C or some other language. Pete Eberlein has written a
"mini-assembler" for use with Euphoria. See The Archive. Remember that your
machine code will be running in 32-bit protected mode. See
demo\dos32\callmach.ex for an example.

peek - read one or more bytes from memory
peek4s - read 4-byte signed values from memory
peek4u - read 4-byte unsigned values from memory
poke - write one or more bytes to memory
poke4 - write 4-byte values into memory
mem_copy - copy a block of memory
mem_set - set a block of memory to a value
call - call a machine language routine
dos_interrupt - call a DOS software interrupt routine (DOS32)
allocate - allocate a block of memory
free - deallocate a block of memory
allocate_low - allocate a block of low memory (address less than 1Mb)

(DOS32)
free_low - free a block allocated with allocate_low (DOS32)
allocate_string - allocate a string of characters with 0 terminator
register_block - register an externally-allocated block of memory
unregister_block - unregister an externally-allocated block of memory
get_vector - return address of interrupt handler (DOS32)
set_vector - set address of interrupt handler (DOS32)
lock_memory - ensure that a region of memory will never be swapped out

(DOS32)
int_to_bytes - convert an integer to 4 bytes
bytes_to_int - convert 4 bytes to an integer
int_to_bits - convert an integer to a sequence of bits

bits_to_int - convert a sequence of bits to an integer
atom_to_float64 - convert an atom, to a sequence of 8 bytes in IEEE 64-bit

floating-point format
atom_to_float32 - convert an atom, to a sequence of 4 bytes in IEEE 32-bit

floating-point format
float64_to_atom - convert a sequence of 8 bytes in IEEE 64-bit floating-point

format, to an atom
float32_to_atom - convert a sequence of 4 bytes in IEEE 32-bit floating-point

format, to an atom
set_rand - set the random number generator so it will generate a

repeatable series of random numbers
use_vesa - force the use of the VESA graphics standard (DOS32)
crash_file - specify the file for writing error diagnostics if Euphoria

detects an error in your program.
crash_message - specify a message to be printed if Euphoria detects an error

in your program

Dynamic Calls

These routines let you call Euphoria procedures and functions using a unique
integer known as a routine identifier, rather than by specifying the name of the
routine.

routine_id - get a unique identifying number for a Euphoria routine
call_proc - call a Euphoria procedure using a routine id
call_func - call a Euphoria function using a routine id

Calling C Functions

See platform.doc for a description of Win32 and Linux programming in Euphoria.

open_dll - open a Windows dynamic link library (.dll file) or Linux
shared library (.so file)

define_c_proc - define a C function that is VOID (no value returned), or
whose value your program will ignore

define_c_func - define a C function that returns a value that your program will
use

define_c_var - get the memory address of a C variable.
c_proc - call a C function, ignoring any return value
c_func - call a C function and get the return value
call_back - get a 32-bit machine address for a Euphoria routine for use

as a call-back address
message_box - pop up a small window to get a Yes/No/Cancel response

from the user
free_console - delete the console text window
instance - get the instance handle for the current program

Euphoria Database
System - Introduction

Many people have expressed an interest in accessing databases using Euphoria
programs. Those people have either wanted to access a name-brand database
management system from Euphoria, or they've wanted a simple, easy-to-use,
Euphoria-oriented database for storing data. EDS is the latter. It provides a simple,
very flexible, database system for use by Euphoria programs.

Structure of an EDS database

In EDS, a database is a single file with ".edb" file type. An EDS database contains
0 or more tables. Each table has a name, and contains 0 or more records. Each
record consists of a key part, and a data part. The key can be any Euphoria object
- an atom, a sequence, a deeply-nested sequence, whatever. Similarly the data
can be any Euphoria object. There are no contraints on the size or structure of the
key or data. Within a given table, the keys are all unique. That is, no two records in
the same table can have the same key part.

The records of a table are stored in ascending order of key value. An efficient
binary search is used when you refer to a record by key. You can also access
records directly, with no search, if you know the current record number within the
table. Record numbers are from 1 to the length (current number of records), of the
table.

The keys and data parts are stored in a compact form, but no accuracy is lost
when saving or restoring floating-point numbers or any other Euphoria data.

database.e will work as is, on Windows, DOS or Linux. The code runs twice as
fast on Linux as it does on DOS or Windows. EDS database files can be shared
between Linux and DOS/Windows.

Example:

database: "mydata.edb"

first table: "passwords"

record #1: key: "jones"
data: "euphor123"

record #2: key: "smith"
data: "billgates"

second table: "parts"

record #1: key: 134525
data: {"hammer", 15.95, 500}

record #2: key: 134526
data: {"saw", 25.95, 100}

record #3: key: 134530
data: {"screw driver", 5.50, 1500}

It's up to you to interpret the meaning of the key and data. In keeping with the spirit
of Euphoria, you have total flexibility. Unlike most other database systems, an EDS
record is not required to have either a fixed number of fields, or fields with a preset
maximum length.

In many cases there will not be any natural key value for your records. In those
cases you should simply create a meaningless, but unique, integer to be the key.
Remember that you can always access the data by record number. It's easy to
loop through the records looking for a particular field value.

How to use these routines

To reduce the number of parameters that you have to pass, there is a notion of the
current database, and current table. Most routines use these "current" values
automatically. You normally start by opening (or creating) a database file, then
selecting the table that you want to work with.

You can map a key to a record number using db_find_key(). It uses an efficient
binary search. Most of the other record-level routines expect the record number as
an argument. You can very quickly access any record, given it's number. You can
access all the records by starting at record number 1 and looping through to the
record number returned by db_table_size().

How does storage get recycled?

When you delete something, such as a record, the space for that item gets put on
a free list, for future use. Adjacent free areas are combined into larger free areas.
When more space is needed, and no suitable space is found on the free list, the
file will grow in size. Currently there is no automatic way that a file will shrink in
size, but you can use db_compress() to completely rewrite a database, removing
the unused spaces.

Security / Multi-user Access

This release provides a simple way to lock an entire database to prevent unsafe
access by other processes.

Scalability

Internal pointers are 4 bytes. That limits the size of a database file to 4 Gb.

The current algorithm allocates 4 bytes of memory per record in the current table.
So you'll need at least 4Mb RAM per million records on disk.

The binary search for keys should work reasonably well for large tables.

Inserts and deletes take slightly longer as a table gets larger.

At the low end of the scale, it's possible to create extremely small databases
without incurring much disk space overhead.

Disclaimer

Do not store valuable data without a backup. RDS will not be responsible for any
damage or data loss.

Database Routines

db_create - create a new database
db_open - open an existing database
db_select - select a database to be the current one
db_close - close a database
db_create_table - create a new table within a database
db_select_table - select a table to be the current one
db_delete_table - delete a table
db_table_list - get a list of all the table names in a database
db_table_size - get the number of records in the current table
db_find_key - quickly find the record with a certain key value
db_record_key - get the key portion of a record
db_record_data - get the data portion of a record
db_insert - insert a new record into the current table
db_delete_record - delete a record from the current table

db_replace_data - replace the data portion of a record
db_compress - compress a database
db_dump - print the contents of a database
db_fatal_id - handle fatal database errors

Listing of Routines

?

Syntax: ? x

Description: This is just a shorthand way of saying: print(1, x) - i.e. printing the
value of an expression to the standard output.

Example: ? {1, 2} + {3, 4} -- will display {4, 6}

Comments: ? differs slightly from print() since it will add new-lines to make the
output more readable on your screen or wherever you have directed
standard output.

See also: print

abort

Syntax: abort(i)

Description: Abort execution of the program. The argument i is a small integer
status value to be returned to the operating system. A value of 0
generally indicates successful completion of the program. Other
values can indicate various kinds of errors. DOS batch (.bat)
programs can read this value using the errorlevel feature. A
Euphoria program can read this value using system_exec().

Comments: abort() is useful when a program is many levels deep in subroutine
calls, and execution must end immediately, perhaps due to a severe
error that has been detected.

If you don't use abort(), ex.exe/exw.exe/exu will normally return an
exit status code of 0. If your program fails with a Euphoria-detected
compile-time or run-time error then a code of 1 is returned.

Example: if x = 0 then
puts(ERR, "can't divide by 0 !!!\n")
abort(1)

else
z = y / x

end if

See also: crash_message • system_exec

all_palette

Platform: DOS32

Syntax: include graphics.e
all_palette(s)

Description: Specify new color intensities for the entire set of colors in the current
graphics mode. s is a sequence of the form:

{r,g,b}, {r,g,b}, ..., {r,g,b}}

Each element specifies a new color intensity {red, green, blue} for
the corresponding color number, starting with color number 0. The
values for red, green and blue must be in the range 0 to 63.

Comments: This executes much faster than if you were to use palette() to set the
new color intensities one by one. This procedure can be used with
read_bitmap() to quickly display a picture on the screen.

Example
Program: demo\dos32\bitmap.ex

See also: get_all_palette • palette • read_bitmap • video_config •
graphics_mode

allocate

Syntax: include machine.e
a = allocate(i)

Description: Allocate i contiguous bytes of memory. Return the address of the
block of memory, or return 0 if the memory can't be allocated. The
address returned will be at least 4-byte aligned.

Example: buffer = allocate(100)
for i = 0 to 99 do

poke(buffer+i, 0)
end for

See also: free • allocate_low • peek • poke • call

allocate_low

Platform: DOS32

Syntax: include machine.e
i2 = allocate_low(i1)

Description: Allocate i1 contiguous bytes of low memory, i.e. conventional
memory (address below 1 megabyte). Return the address of the
block of memory, or return 0 if the memory can't be allocated.

Comments: Some DOS software interrupts require that you pass one or more
addresses in registers. These addresses must be conventional
memory addresses for DOS to be able to read or write to them.

Example
Program: demo\dos32\dosint.ex

See also: dos_interrupt • free_low • allocate • peek • poke

allocate_string

Syntax: include machine.e
a = allocate_string(s)

Description: Allocate space for string sequence s. Copy s into this space along
with a 0 terminating character. This is the format expected for C
strings. The memory address of the string will be returned. If there is
not enough memory available, 0 will be returned.

Comments: To free the string, use free().

Example: atom title

title = allocate_string("The Wizard of Oz")

Example
Program: demo\win32\window.exw

See also: allocate • free

allow_break

Syntax: include file.e
allow_break(i)

Description: When i is 1 (true) control-c and control-Break can terminate your
program when it tries to read input from the keyboard. When i is 0
(false) your program will not be terminated by control-C or control-
Break.

Comments: DOS will display ^C on the screen, even when your program cannot
be terminated.

Initially your program can be terminated at any point where it tries to
read from the keyboard. It could also be terminated by other
input/output operations depending on options the user has set in his
config.sys file. (Consult an MS-DOS manual for the BREAK
command.) For some types of program this sudden termination
could leave things in a messy state and might result in loss of data.
allow_break(0) lets you avoid this situation.

You can find out if the user has pressed control-c or control-Break
by calling check_break().

Example: allow_break(0) -- don't let the user kill me!

See also: check_break

and_bits

Syntax: x3 = and_bits(x1, x2)

Description: Perform the logical AND operation on corresponding bits in x1 and
x2. A bit in x3 will be 1 only if the corresponding bits in x1 and x2 are
both 1.

Comments: The arguments to this function may be atoms or sequences. The
rules for operations on sequences apply.

The arguments must be representable as 32-bit numbers, either
signed or unsigned.

If you intend to manipulate full 32-bit values, you should declare
your variables as atom, rather than integer. Euphoria's integer type

is limited to 31-bits.

Results are treated as signed numbers. They will be negative when
the highest-order bit is 1.

To understand the binary representation of a number you should
display it in hexadecimal notation. Use the %x format of printf().

Example 1: a = and_bits(#0F0F0000, #12345678)
-- a is #02040000

Example 2: a = and_bits(#FF, {#123456, #876543, #2211})
-- a is {#56, #43, #11}

Example 3: a = and_bits(#FFFFFFFF, #FFFFFFFF)
-- a is -1
-- Note that #FFFFFFFF is a positive number, but the result of a
bitwise logical operation is interpreted as a signed 32-bit number, so
it's negative.

See also: or_bits • xor_bits • not_bits • int_to_bits

append

Syntax: s2 = append(s1, x)

Description: Create a new sequence identical to s1 but with x added on the end
as the last element. The length of s2 will be length(s1) + 1.

Comments: If x is an atom this is equivalent to s2 = s1 & x. If x is a sequence it
is not equivalent.

The extra storage is allocated automatically and very efficiently with
Euphoria's dynamic storage allocation. The case where s1 and s2
are actually the same variable (as in Example 1 below) is highly
optimized.

Example 1: You can use append() to dynamically grow a sequence, e.g.

sequence x

x = {}
for i = 1 to 10 do

x = append(x, i)
end for

-- x is now {1,2,3,4,5,6,7,8,9,10}

Example 2: Any kind of Euphoria object can be appended to a sequence, e.g.

sequence x, y, z

x = {"fred", "barney"}
y = append(x, "wilma")
-- y is now {"fred", "barney", "wilma"}

z = append(append(y, "betty"), {"bam", "bam"})
-- z is now {"fred", "barney", "wilma", "betty", {"bam", "bam"}}

See also: prepend • concatenation operator & • sequence-formation operator

arccos

Syntax: include misc.e
x2 = arccos(x1)

Description: Return an angle with cosine equal to x1.

Comments: The argument, x1, must be in the range -1 to +1 inclusive.

A value between 0 and PI radians will be returned.

This function may be applied to an atom or to all elements of a
sequence.

arccos() is not as fast as arctan().

Example: s = arccos({-1,0,1})
-- s is {3.141592654, 1.570796327, 0}

See also: cos • arcsin • arctan

arcsin

Syntax: include misc.e
x2 = arcsin(x1)

Description: Return an angle with sine equal to x1.

Comments: The argument, x1, must be in the range -1 to +1 inclusive.

A value between -PI/2 and +PI/2 (radians) will be returned.

This function may be applied to an atom or to all elements of a
sequence.

arcsin() is not as fast as arctan().

Example: s = arcsin({-1,0,1})
-- s is {-1.570796327, 0, 1.570796327}

See also: sin • arccos • arctan

arctan

Syntax: x2 = arctan(x1)

Description: Return an angle with tangent equal to x1.

Comments: A value between -PI/2 and PI/2 (radians) will be returned.

This function may be applied to an atom or to all elements of a
sequence.

arctan() is faster than arcsin() or arccos().

Example: s = arctan({1,2,3})
-- s is {0.785398, 1.10715, 1.24905}

See also: tan • arcsin • arccos

atom

Syntax: i = atom(x)

Description: Return 1 if x is an atom else return 0.

Comments: This serves to define the atom type. You can also call it like an
ordinary function to determine if an object is an atom.

Example 1: atom a
a = 5.99

Example 2: object line

line = gets(0)
if atom(line) then

puts(SCREEN, "end of file\n")
end if

See also: sequence • object • integer • atoms and sequences

atom_to_float32

Syntax: include machine.e
s = atom_to_float32(a1)

Description: Convert a Euphoria atom to a sequence of 4 single-byte values.
These 4 bytes contain the representation of an IEEE floating-point
number in 32-bit format.

Comments: Euphoria atoms can have values which are 64-bit IEEE floating-
point numbers, so you may lose precision when you convert to 32-
bits (16 significant digits versus 7). The range of exponents is much
larger in 64-bit format (10 to the 308, versus 10 to the 38), so some
atoms may be too large or too small to represent in 32-bit format. In
this case you will get one of the special 32-bit values: inf or -inf
(infinity or -infinity). To avoid this, you can use atom_to_float64().

Integer values will also be converted to 32-bit floating-point format.

Example: fn = open("numbers.dat", "wb")
puts(fn, atom_to_float32(157.82)) -- write 4 bytes to a file

See also: atom_to_float64 • float32_to_atom

atom_to_float64

Syntax: include machine.e
s = atom_to_float64(a1)

Description: Convert a Euphoria atom to a sequence of 8 single-byte values.
These 8 bytes contain the representation of an IEEE floating-point
number in 64-bit format.

Comments: All Euphoria atoms have values which can be represented as 64-bit
IEEE floating-point numbers, so you can convert any atom to 64-bit
format without losing any precision.

Integer values will also be converted to 64-bit floating-point format.

Example: fn = open("numbers.dat", "wb")
puts(fn, atom_to_float64(157.82)) -- write 8 bytes to a file

See also: atom_to_float32 • float64_to_atom

bits_to_int

Syntax: include machine.e
a = bits_to_int(s)

Description: Convert a sequence of binary 1's and 0's into a positive number.
The least-significant bit is s[1].

Comments: If you print s the bits will appear in "reverse" order, but it is
convenient to have increasing subscripts access bits of increasing
significance.

Example: a = bits_to_int({1,1,1,0,1}) -- a is 23 (binary 10111)

See also: int_to_bits • operations on sequences

bk_color

Syntax: include graphics.e
bk_color(i)

Description: Set the background color to one of the 16 standard colors. In pixel-
graphics modes the whole screen is affected immediately. In text
modes any new characters that you print will have the new
background color.

Comments: The 16 standard colors are defined as constants in graphics.e

In pixel-graphics modes, color 0 which is normally BLACK, will be
set to the same {r,g,b} palette value as color number i.

In some pixel-graphics modes, there is a border color that appears

at the edges of the screen. In 256-color modes, this is the 17th color
in the palette. You can control it as you would any other color.

In text modes, to restore the original background color when your
program finishes, e.g. 0 - BLACK, you must call bk_color(0). If the
cursor is at the bottom line of the screen, you may have to actually
print something before terminating your program. Printing '\n' may
be enough.

Example: bk_color(BLACK)

See also: text_color • palette

bytes_to_int

Syntax: include machine.e
a = bytes_to_int(s)

Description: Convert a 4-element sequence of byte values to an atom. The
elements of s are in the order expected for a 32-bit integer on the
386+, i.e. least-significant byte first.

Comments: The result could be greater than the integer type allows, so you
should assign it to an atom.

s would normally contain positive values that have been read using
peek() from 4 consecutive memory locations.

Example: atom int32

int32 = bytes_to_int({37,1,0,0}) -- int32 is 37 + 256*1 = 293

See also: int_to_bytes • bits_to_int • peek • peek4s • peek4u • poke

call

Syntax: call(a)

Description: Call a machine language routine that starts at address a. This
routine must execute a RET instruction #C3 to return control to
Euphoria. The routine should save and restore any registers that it
uses.

Comments: You can allocate a block of memory for the routine and then poke in
the bytes of machine code. You might allocate other blocks of
memory for data and parameters that the machine code can operate
on. The addresses of these blocks could be poked into the machine
code.

Example
Program: demo\dos32\callmach.ex

See Also: allocate • free • peek • poke • poke4

call_back

Platform: Win32, Linux

Syntax: include dll.e
a = call_back(i)

Description: Get a machine address for the Euphoria routine with routine id i.
This address can be used by Windows, or an external C routine in a
Windows .dll, or Linux shared library (.so), as a 32-bit "call-back"
address for calling your Euphoria routine.

Comments: You can set up as many call-back functions as you like, but they
must all be Euphoria functions (or types) with 0 to 9 arguments.
When your routine is called, the argument values will all be 32-bit
unsigned (positive) values. You should declare each parameter of
your routine as atom, unless you want to impose tighter checking.
Your routine must return a 32-bit integer value.

Example
Program: demo\win32\window.exw, demo\linux\qsort.exu

See Also: routine_id • platform.doc

c_func

Platform: Win32, Linux

Syntax: a = c_func(i, s)

Description: Call the C function with routine id i. i must be a valid routine id
returned by define_c_func(). s is a sequence of argument values of

length n, where n is the number of arguments required by the
function. a will be the result returned by the C function.

Comments: If the C function does not take any arguments then s should be {}. If
you pass an argument value which contains a fractional part, where
the C function expects a C integer type, the argument will be
rounded towards 0. e.g. 5.9 will be passed as 5, -5.9 will be passed
as -5. The C function could be part of a .dll created by the Euphoria
To C Translator.

Example: atom user32, hwnd, ps, hdc
integer BeginPaint

-- open user32.dll - it contains the BeginPaint C function
user32 = open_dll("user32.dll")

-- the C function BeginPaint takes a C int argument and
-- a C pointer, and returns a C int as a result:
BeginPaint = define_c_func(user32, "BeginPaint",

{C_INT, C_POINTER}, C_INT)

-- call BeginPaint, passing hwnd and ps as the arguments,
-- hdc is assigned the result:
hdc = c_func(BeginPaint, {hwnd, ps})

See Also: c_proc • define_c_func • open_dll • platform.doc

c_proc

Platform: Win32, Linux

Syntax: c_proc(i, s)

Description: Call the C function with routine id i. i must be a valid routine id
returned by define_c_proc(). s is a sequence of argument values of
length n, where n is the number of arguments required by the
function.

Comments: If the C function does not take any arguments then s should be {}. If
you pass an argument value which contains a fractional part, where
the C function expects a C integer type, the argument will be
rounded towards 0. e.g. 5.9 will be passed as 5, -5.9 will be passed
as -5. The C function could be part of a .dll created by the Euphoria
To C Translator.

Example: atom user32, hwnd, rect
integer GetClientRect

-- open user32.dll - it contains the GetClientRect C function
user32 = open_dll("user32.dll")

-- GetClientRect is a VOID C function that takes a C int
-- and a C pointer as its arguments:
GetClientRect = define_c_proc(user32, "GetClientRect",

{C_INT, C_POINTER})

-- pass hwnd and rect as the arguments
c_proc(GetClientRect, {hwnd, rect})

See Also: c_func • define_c_proc • open_dll • platform.doc

call_func

Syntax: x = call_func(i, s)

Description: Call the user-defined Euphoria function with routine id i. i must be a
valid routine id returned by routine_id(). s must be a sequence of
argument values of length n, where n is the number of arguments
required by function i. x will be the result returned by function i.

Comments: If function i does not take any arguments then s should be {}.

Example
Program: demo\csort.ex

See Also: call_proc • routine_id

call_proc

Syntax: call_proc(i, s)

Description: Call the user-defined Euphoria procedure with routine id i. i must be
a valid routine id returned by routine_id(). s must be a sequence of
argument values of length n, where n is the number of arguments
required by procedure i.

Comments: If procedure i does not take any arguments then s should be {}.

Example: global integer
foo_id

procedure x()
call_proc(foo_id, {1, "Hello World\n"})

end procedure

procedure foo(integer a, sequence s)
puts(a, s)

end procedure

foo_id = routine_id("foo")

x()

See Also: call_func • routine_id

chdir

Syntax: include file.e
i = chdir(s)

Description: Set the current directory to the path given by sequence s. s must
name an existing directory on the system. If successful, chdir()
returns 1. If unsuccessful, chdir() returns 0.

Comments: By setting the current directory, you can refer to files in that directory
using just the file name.

The function current_dir() will return the name of the current
directory.

On DOS32 and Win32 the current directory is a global property
shared by all the processes running under one shell. On Linux, a
subprocess can change the current directory for itself, but this won't
affect the current directory of its parent process.

Example: if chdir("c:\\euphoria") then
f = open("readme.doc", "r")

else
puts(1, "Error: No euphoria directory?\n")

end if

See Also: current_dir

check_break

Syntax: include file.e
i = check_break()

Description: Return the number of times that control-c or control-Break have
been pressed since the last call to check_break(), or since the
beginning of the program if this is the first call.

Comments: This is useful after you have called allow_break(0) which prevents
control-c or control-Break from terminating your program. You can
use check_break() to find out if the user has pressed one of these
keys. You might then perform some action such as a graceful
shutdown of your program.

Neither control-c nor control-Break will be returned as input
characters when you read the keyboard. You can only detect them
by calling check_break().

Example: k = get_key()
if check_break() then

temp = graphics_mode(-1)
puts(1, "Shutting down...")
save_all_user_data()
abort(1)

end if

See Also: allow_break • get_key

clear_screen

Syntax: clear_screen()

Description: Clear the screen using the current background color (may be set by
bk_color()).

Comments: This works in all text and pixel-graphics modes.

See Also: bk_color • graphics_mode

close

Syntax: close(fn)

Description: Close a file or device and flush out any still-buffered characters.

Comments: Any still-open files will be closed automatically when your program
terminates.

See Also: open • flush

command_line

Syntax: s = command_line()

Description: Return a sequence of strings, where each string is a word from the
command-line that started your program. The first word will be the
path to either the Euphoria executable, ex.exe, exw.exe or exu, or
to your bound executable file. The next word is either the name of
your Euphoria main file, or (again) the path to your bound
executable file. After that will come any extra words typed by the
user. You can use these words in your program.

Comments: The Euphoria interpreter itself does not use any command-line
options. You are free to use any options for your own program.

The user can put quotes around a series of words to make them into
a single argument.

If you bind your program you will find that all command-line
arguments remain the same, except for the first two, even though
your user no longer types "ex" on the command-line (see examples
below).

Example 1: -- The user types: ex myprog myfile.dat 12345 "the end"

cmd = command_line()

-- cmd will be:

{
"C:\EUPHORIA\BIN\EX.EXE",
"myprog",

"myfile.dat",
"12345",
"the end"
}

Example 2: -- Your program is bound with the name "myprog.exe"
-- and is stored in the directory c:\myfiles
-- The user types: myprog myfile.dat 12345 "the end"

cmd = command_line()

-- cmd will be:

{
"C:\MYFILES\MYPROG.EXE",
"C:\MYFILES\MYPROG.EXE", -- spacer
"myfile.dat",
"12345",
"the end"
}

-- Note that all arguments remain the same as example 1
-- except for the first two. The second argument is always
-- the same as the first and is inserted to keep the numbering
-- of the subsequent arguments the same, whether your program
-- is bound as a .exe or not.

See Also: getenv

compare

Syntax: i = compare(x1, x2)

Description: Return 0 if objects x1 and x2 are identical, 1 if x1 is greater than x2,
-1 if x1 is less than x2. Atoms are considered to be less than
sequences. Sequences are compared "alphabetically" starting with
the first element until a difference is found.

Example 1: x = compare({1,2,{3,{4}},5}, {2-1,1+1,{3,{4}},6-1})
-- identical, x is 0

Example 2: if compare("ABC", "ABCD") < 0 then -- -1
-- will be true: ABC is "less" because it is shorter

end if

Example 3: x = compare({12345, 99999, -1, 700, 2},
{12345, 99999, -1, 699, 3, 0})

-- x will be 1 because 700 > 699

Example 4: x = compare('a', "a")
-- x will be -1 because 'a' is an atom
-- while "a" is a sequence

See Also: equal • relational operators • operations on sequences

cos

Syntax: x2 = cos(x1)

Description: Return the cosine of x1, where x1 is in radians.

Comments: This function may be applied to an atom or to all elements of a
sequence.

Example: x = cos({.5, .6, .7})
-- x is {0.8775826, 0.8253356, 0.7648422}

See Also: sin • tan • log • sqrt

crash_file

Syntax: include machine.e
crash_file(s)

Description: Specify a file name, s, for holding error diagnostics if Euphoria must
stop your program due to a compile-time or run-time error.

Comments: Normally Euphoria prints a diagnostic message such as "syntax
error" or "divide by zero" on the screen, as well as dumping
debugging information into ex.err in the current directory. By calling
crash_file() you can control the directory and file name where the
debugging information will be written.

s may be empty, i.e. "". In this case no diagnostics or debugging
information will be written to either a file or the screen. s might also
be "NUL" or "/dev/null", in which case diagnostics will be written to
the screen, but the ex.err information will be discarded.

You can call crash_file() as many times as you like from different
parts of your program. The file specified by the last call will be the
one used.

Example: crash_file("\\tmp\\mybug")

See Also: abort • crash_message • debugging and profiling

crash_message

Syntax: include machine.e
crash_message(s)

Description: Specify a string, s, to be printed on the screen in the event that
Euphoria must stop your program due to a compile-time or run-time
error.

Comments: Normally Euphoria prints a diagnostic message such as "syntax
error" or "divide by zero" on the screen, as well as dumping
debugging information into ex.err. Euphoria's error messages will
not be meaningful for your users unless they happen to be Euphoria
programmers. By calling crash_message() you can control the
message that will appear on the screen. Debugging information will
still be stored in ex.err. You won't lose any information by doing this.

s may contain '\n', new-line characters, so your message can span
several lines on the screen. Euphoria will switch to the top of a clear
text-mode screen before printing your message.

You can call crash_message() as many times as you like from
different parts of your program. The message specified by the last
call will be the one displayed.

Example: crash_message("An unexpected error has occurred!\n" &
 "Please contact john_doe@whoops.com\n" &
 "Do not delete the file \"ex.err\".\n")

See Also: abort • crash_file • debugging and profiling

current_dir

Syntax: include file.e
s = current_dir()

Description: Return the name of the current working directory.

Example: sequence s
s = current_dir()
-- s would have "C:\EUPHORIA\DOC" if you were in that directory

See Also: dir • chdir • getenv

cursor

Syntax: include graphics.e
cursor(i)

Description: Select a style of cursor. graphics.e contains:

global constant
NO_CURSOR = #2000,
UNDERLINE_CURSOR = #0607,
THICK_UNDERLINE_CURSOR = #0507,
HALF_BLOCK_CURSOR = #0407,
BLOCK_CURSOR = #0007

The second and fourth hex digits (from the left) determine the top
and bottom rows of pixels in the cursor. The first digit controls
whether the cursor will be visible or not. For example, #0407 turns
on the 4th through 7th rows.

Comments: In pixel-graphics modes no cursor is displayed.

Example: cursor(BLOCK_CURSOR)

See Also: graphics_mode • text_rows

custom_sort

Syntax: include sort.e
s2 = custom_sort(i, s1)

Description: Sort the elements of sequence s1, using a compare function with
routine id i.

Comments: Your compare function must be a function of two arguments similar

to Euphoria's compare(). It will compare two objects and return -1, 0
or +1.

Example
Program: demo\csort.ex

See Also: sort • compare • routine_id

date

Syntax: s = date()

Description: Return a sequence with the following information:
{
 year, -- since 1900
 month, -- January = 1
day, -- day of month, starting at 1
hour, -- 0 to 23
minute, -- 0 to 59
second, -- 0 to 59
day of the week, -- Sunday = 1
day of the year -- January 1st = 1
}

Example: now = date()
-- now has: {95,3,24,23,47,38,6,83}
-- i.e. Friday March 24, 1995 at 11:47:38pm, day 83 of the year

Comments: The value returned for the year is actually the number of years since
1900 (not the last 2 digits of the year). In the year 2000 this value
will be 100. In 2001 it will be 101, etc.

See Also: time

define_c_func

Platform: Win32, Linux

Syntax: include dll.e
i1 = define_c_func(a, s1, s2, i2)

Description: Define the characteristics of a C function that you wish to call from
your Euphoria program. A small integer, known as a routine id, will

be returned, or -1 if the function can't be found. a is an address
returned by open_dll(). s1 is the name of the function. s2 is a list of
the parameter types for the function. i2 is the return type of the
function. A list of C types is contained in dll.e:

global constant C_CHAR = #01000001,
C_UCHAR = #02000001,
C_SHORT = #01000002,
C_USHORT = #02000002,
C_INT = #01000004,
C_UINT = #02000004,
C_LONG = C_INT,
C_ULONG = C_UINT,
C_POINTER = C_ULONG,
C_FLOAT = #03000004,
C_DOUBLE = #03000008

The C function that you define could be one created by the Euphoria
To C Translator, in which case you can pass Euphoria data to it, and
receive Euphoria data back. A list of Euphoria types is contained in
dll.e:

global constant E_INTEGER = #06000004,
E_ATOM = #07000004,
E_SEQUENCE = #08000004,
E_OBJECT = #09000004

Comments: The routine id, i1, can be passed to c_func() when you want to call
the C function.

You can pass or return any C integer type or pointer type. You can
also pass a Euphoria atom as a C double or float, and get a C
double or float returned to you as a Euphoria atom.

In C (on Win32 and Linux), parameter types which use 4 bytes or
less are all passed the same way, so it is not necessary to be exact.
However the distinction between signed and unsigned may be
important when you specify the return type of a function.

Currently, there is no way to pass a C structure by value or get a C
structure as a return result. You can only pass a pointer to a
structure and get a pointer to a structure as a result.

If you are not interested in using the value returned by the C
function, you should instead define it with define_c_proc() and call it
with c_proc().

Example: atom user32
integer LoadIcon

-- open user32.dll - it contains the LoadIconA C function
user32 = open_dll("user32.dll")

-- It takes a C pointer and a C int as parameters.
-- It returns a C int as a result.
LoadIcon = define_c_func(user32, "LoadIconA",

{C_POINTER, C_INT}, C_INT)
if LoadIcon = -1 then

puts(1, "LoadIconA could not be found!\n")
end if

See Also: c_func • define_c_proc • c_proc • open_dll • platform.doc

define_c_proc

Platform: Win32, Linux

Syntax: include dll.e
i1 = define_c_proc(a, s1, s2)

Description: Define the characteristics of a C function that you wish to call as a
procedure from your Euphoria program. A small integer, known as a
routine id, will be returned, or -1 if the function can't be found. a is
an address returned by open_dll(). s1 is the name of the function. s2
is a list of the parameter types for the function. A list of C types is
contained in dll.e, and shown above.

The C function that you define could be one created by the Euphoria
To C Translator, in which case you can pass Euphoria data to it, and
receive Euphoria data back. A list of Euphoria types is contained in
dll.e, and shown above.

Comments: The routine id, i1, can be passed to c_proc(), when you want to call
the C function.

You can pass any C integer type or pointer type. You can also pass
a Euphoria atom as a C double or float.

In C (on Win32 and Linux), parameter types which use 4 bytes or
less are all passed the same way, so it is not necessary to be exact.

Currently, there is no way to pass a C structure by value. You can

only pass a pointer to a structure.

The C function can return a value but it will be ignored. If you want
to use the value returned by the C function, you must instead define
it with define_c_func() and call it with c_func().

Example: atom user32
integer ShowWindow

-- open user32.dll - it contains the ShowWindow C function
user32 = open_dll("user32.dll")

-- It has 2 parameters that are both C int.
ShowWindow = define_c_proc(user32, "ShowWindow", {C_INT,
C_INT})
if ShowWindow = -1 then

puts(1, "ShowWindow not found!\n")
end if

See Also: c_proc • define_c_func • c_func • open_dll • platform.doc

define_c_var

Platform: Win32, Linux

Syntax: include dll.e
a1 = define_c_var(a2, s)

Description: a2 is the address of a Linux shared library or Windows .dll, as
returned by open_dll(). s is the name of a global C variable defined
within the library. a1 will be the memory address of variable s.

Comments: Once you have the address of a C variable, and you know its type,
you can use peek() and poke() to read or write the value of the
variable.

Example
Program: euphoria/demo/linux/mylib.exu

See Also: c_proc • define_c_func • c_func • open_dll • platform.doc

dir

Syntax: include file.e
x = dir(st)

Description: Return directory information for the file or directory named by st. If
there is no file or directory with this name then -1 is returned. On
Windows and DOS st can contain * and ? wildcards to select
multiple files.

This information is similar to what you would get from the DOS DIR
command. A sequence is returned where each element is a
sequence that describes one file or subdirectory.

If st names a directory you may have entries for "." and "..", just as
with the DOS DIR command. If st names a file then x will have just
one entry, i.e. length(x) will be 1. If st contains wildcards you may
have multiple entries.

Each entry contains the name, attributes and file size as well as the
year, month, day, hour, minute and second of the last modification.
You can refer to the elements of an entry with the following
constants defined in file.e:

global constant D_NAME = 1,
D_ATTRIBUTES = 2,
D_SIZE = 3,

D_YEAR = 4,
D_MONTH = 5,
D_DAY = 6,

D_HOUR = 7,
D_MINUTE = 8,
D_SECOND = 9

The attributes element is a string sequence containing characters
chosen from:

'd' -- directory
'r' -- read only file
'h' -- hidden file
's' -- system file
'v' -- volume-id entry
'a' -- archive file

A normal file without special attributes would just have an empty

string, "", in this field.

Comments: The top level directory, e.g. c:\ does not have "." or ".." entries.

This function is often used just to test if a file or directory exists.

Under Win32, st can have a long file or directory name anywhere in
the path.

Under Linux, the only attribute currently available is 'd'.

DOS32: The file name returned in D_NAME will be a standard DOS
8.3 name. (See Archive Web page for a better solution).

Win32: The file name returned in D_NAME will be a long file name.

Example: d = dir(current_dir())

-- d might have:

{
{".", "d", 0 1994, 1, 18, 9, 30, 02},
{"..", "d", 0 1994, 1, 18, 9, 20, 14},
{"fred", "ra", 2350, 1994, 1, 22, 17, 22, 40},
{"sub", "d" , 0, 1993, 9, 20, 8, 50, 12}

}

d[3][D_NAME] would be "fred"

Example
Programs: bin\search.ex, bin\install.ex

See Also: wildcard_file • current_dir • open

display_image

Platform: DOS32

Syntax: include image.e
display_image(s1, s2)

Description: Display at point s1 on a pixel-graphics screen the 2-d sequence of
pixels contained in s2. s1 is a two-element sequence {x, y}. s2 is a
sequence of sequences, where each sequence is one horizontal
row of pixel colors to be displayed. The first pixel of the first

sequence is displayed at s1. It is the top-left pixel. All other pixels
appear to the right or below of this point.

Comments: s2 might be the result of a previous call to save_image(), or
read_bitmap(), or it could be something you have created.

The sequences (rows) of the image do not have to all be the same
length.

Example: display_image({20,30}, {{7,5,9,4,8},
{2,4,1,2},
{1,0,1,0,4,6,1},
{5,5,5,5,5,5}})

-- This will display a small image containing 4 rows of
-- pixels. The first pixel (7) of the top row will be at
-- {20,30}. The top row contains 5 pixels. The last row
-- contains 6 pixels ending at {25,33}.

Example
Program: demo\dos32\bitmap.ex

See Also: save_image • read_bitmap • display_text_image

display_text_image

Platform: DOS32, Linux

Syntax: include image.e
display_text_image(s1, s2)

Description: Display the 2-d sequence of characters and attributes contained in
s2 at line s1[1], column s1[2]. s2 is a sequence of sequences, where
each sequence is a string of characters and attributes to be
displayed. The top-left character is displayed at s1. Other characters
appear to the right or below this position. The attributes indicate the
foreground and background color of the preceding character. On
DOS32, the attribute should consist of the foreground color plus 16
times the background color.

Comments: s2 would normally be the result of a previous call to
save_text_image(), although you could construct it yourself.

This routine only works in text modes.

You might use save_text_image()/display_text_image() in a text-

mode graphical user interface, to allow "pop-up" dialog boxes, and
drop-down menus to appear and disappear without losing what was
previously on the screen.

The sequences of the text image do not have to all be the same
length.

Example: clear_screen()
display_text_image({1,1},{{'A', WHITE, 'B', GREEN},

{'C', RED+16*WHITE},
{'D', BLUE}})

-- displays:
AB
C
D

-- at the top left corner of the screen.
-- 'A' will be white with black (0) background color,
-- 'B' will be green on black,
-- 'C' will be red on white, and
-- 'D' will be blue on black.

See Also: save_text_image • display_image • put_screen_char

dos_interrupt

Platform: DOS32

Syntax: include machine.e
s2 = dos_interrupt(i, s1)

Description: Call DOS software interrupt number i. s1 is a 10-element sequence
of 16-bit register values to be used as input to the interrupt routine.
s2 is a similar 10-element sequence containing output register
values after the call returns. machine.e has the following declaration
which shows the order of the register values in the input and output
sequences.

global constant REG_DI = 1,
REG_SI = 2,
REG_BP = 3,
REG_BX = 4,
REG_DX = 5,
REG_CX = 6,
REG_AX = 7,
REG_FLAGS = 8,

REG_ES = 9,
REG_DS = 10

Comments: The register values returned in s2 are always positive values
between 0 and #FFFF (65535).

The flags value in s1[REG_FLAGS] is ignored on input. On output
the least significant bit of s2[REG_FLAGS] has the carry flag, which
usually indicates failure if it is set to 1.

Certain interrupts require that you supply addresses of blocks of
memory. These addresses must be conventional, low-memory
addresses. You can allocate/deallocate low-memory using
allocate_low() and free_low().

With DOS software interrupts you can perform a wide variety of
specialized operations, anything from formatting your floppy drive to
rebooting your computer. For documentation on these interrupts
consult a technical manual such as Peter Norton's "PC
Programmer's Bible", or download Ralf Brown's Interrupt List from
the Web.

Example: sequence registers

registers = repeat(0, 10) -- no registers need to be set

-- call DOS interrupt 5: Print Screen
registers = dos_interrupt(#5, registers)

Example
Program: demo\dos32\dosint.ex

See Also: allocate_low • free_low

draw_line

Platform: DOS32

Syntax: include graphics.e
draw_line(i, s)

Description: Draw a line on a pixel-graphics screen connecting two or more
points in s, using color i.

Example: draw_line(WHITE, {{100, 100}, {200, 200}, {900, 700}})

-- This would connect the three points in the sequence using
-- a white line, i.e. a line would be drawn from {100, 100} to
-- {200, 200} and another line would be drawn from {200, 200} to
-- {900, 700}.

See Also: polygon • ellipse • pixel

ellipse

Platform: DOS32

Syntax: include graphics.e
ellipse(i1, i2, s1, s2)

Description: Draw an ellipse with color i1 on a pixel-graphics screen. The ellipse
will neatly fit inside the rectangle defined by diagonal points s1 {x1,
y1} and s2 {x2, y2}. If the rectangle is a square then the ellipse will
be a circle. Fill the ellipse when i2 is 1. Don't fill when i2 is 0.

Example: ellipse(MAGENTA, 0, {10, 10}, {20, 20})

-- This would make a magenta colored circle just fitting
-- inside the square:
-- {10, 10}, {10, 20}, {20, 20}, {20, 10}.

Example
Program: demo\dos32\sb.ex

See Also: polygon • draw_line

equal

Syntax: i = equal(x1, x2)

Description: Compare two Euphoria objects to see if they are the same. Return 1
(true) if they are the same. Return 0 (false) if they are different.

Comments: This is equivalent to the expression: compare(x1, x2) = 0

Example 1: if equal(PI, 3.14) then
puts(1, "give me a better value for PI!\n")

end if

Example 2: if equal(name, "George") or equal(name, "GEORGE") then
puts(1, "name is George\n")

end if

See Also: compare • equals operator (=)

find

Syntax: i = find(x, s)

Description: Find x as an element of s. If successful, return the index of the first
element of s that matches. If unsuccessful return 0.

Example 1: location = find(11, {5, 8, 11, 2, 3})
-- location is set to 3

Example 2: names = {"fred", "rob", "george", "mary", ""}
location = find("mary", names)
-- location is set to 4

See Also: match • compare

float32_to_atom

Syntax: include machine.e
a1 = float32_to_atom(s)

Description: Convert a sequence of 4 bytes to an atom. These 4 bytes must
contain an IEEE floating-point number in 32-bit format.

Comments: Any 32-bit IEEE floating-point number can be converted to an atom.

Example: f = repeat(0, 4)
fn = open("numbers.dat", "rb") -- read binary
f[1] = getc(fn)
f[2] = getc(fn)
f[3] = getc(fn)
f[4] = getc(fn)
a = float32_to_atom(f)

See Also: float64_to_atom • atom_to_float32

float64_to_atom

Syntax: include machine.e
a1 = float64_to_atom(s)

Description: Convert a sequence of 8 bytes to an atom. These 8 bytes must
contain an IEEE floating-point number in 64-bit format.

Comments: Any 64-bit IEEE floating-point number can be converted to an atom.

Example: f = repeat(0, 8)
fn = open("numbers.dat", "rb") -- read binary
for i = 1 to 8 do

f[i] = getc(fn)
end for
a = float64_to_atom(f)

See Also: float32_to_atom • atom_to_float64

floor

Syntax: x2 = floor(x1)

Description: Return the greatest integer less than or equal to x1. (Round down to
an integer.)

Comments: This function may be applied to an atom or to all elements of a
sequence.

Example: y = floor({0.5, -1.6, 9.99, 100})
-- y is {0, -2, 9, 100}

See Also: remainder

flush

Syntax: include file.e
flush(fn)

Description: When you write data to a file, Euphoria normally stores the data in a

memory buffer until a large enough chunk of data has accumulated.
This large chunk can then be written to disk very efficiently.
Sometimes you may want to force, or flush, all data out immediately,
even if the memory buffer is not full. To do this you must call
flush(fn), where fn is the file number of a file open for writing or
appending.

Comments: When a file is closed, (see close()), all buffered data is flushed out.
When a program terminates, all open files are flushed and closed
automatically.

Use flush() when another process may need to see all of the data
written so far, but you aren't ready to close the file yet.

Example: f = open("logfile", "w")
puts(f, "Record#1\n")
puts(1, "Press Enter when ready\n")

flush(f) -- This forces "Record #1" into "logfile" on disk.
-- Without this, "logfile" will appear to have
-- 0 characters when we stop for keyboard input.

s = gets(0) -- wait for keyboard input

See Also: close • lock_file

free

Syntax: include machine.e
free(a)

Description: Free up a previously allocated block of memory by specifying the
address of the start of the block, i.e. the address that was returned
by allocate().

Comments: Use free() to recycle blocks of memory during execution. This will
reduce the chance of running out of memory or getting into
excessive virtual memory swapping to disk. Do not reference a block
of memory that has been freed. When your program terminates, all
allocated memory will be returned to the system.

Do not use free() to deallocate memory that was allocated using
allocate_low(). Use free_low() for this purpose.

Example

Program: demo\dos32\callmach.ex

See Also: allocate • free_low

free_console

Platform: Win32, Linux

Syntax: include dll.e
free_console()

Description: Free (delete) any console window associated with your program.

Comments: Euphoria will create a console text window for your program the first
time that your program prints something to the screen, reads
something from the keyboard, or in some way needs a console
(similar to a DOS-prompt window). On Win32 this window will
automatically disappear when your program terminates, but you can
call free_console() to make it disappear sooner. On Linux, the text
mode console is always there, but an xterm window will disappear
after Euphoria issues a "Press Enter" prompt at the end of
execution.

On Linux, free_console() will set the terminal parameters back to
normal, undoing the effect that curses has on the screen.

In a Linux xterm window, a call to free_console(), without any further
printing to the screen or reading from the keyboard, will eliminate the
"Press Enter" prompt that Euphoria normally issues at the end of
execution.

After freeing the console window, you can create a new console
window by printing something to the screen, or simply calling
clear_screen(), position() or any other routine that needs a console.

When you use the trace facility, or when your program has an error,
Euphoria will automatically create a console window to display trace
information, error messages etc.

There's a Win32 API routine, FreeConsole() that does something
similar to free_console(). You should use free_console(), because it
lets the interpreter know that there is no longer a console.

See Also: clear_screen • platform.doc

free_low

Platform: DOS32

Syntax: include machine.e
free_low(i)

Description: Free up a previously allocated block of conventional memory by
specifying the address of the start of the block, i.e. the address that
was returned by allocate_low().

Comments: Use free_low() to recycle blocks of conventional memory during
execution. This will reduce the chance of running out of conventional
memory. Do not reference a block of memory that has been freed.
When your program terminates, all allocated memory will be
returned to the system.

Do not use free_low() to deallocate memory that was allocated using
allocate(). Use free() for this purpose.

Example
Program: demo\dos32\dosint.ex

See Also: allocate_low • dos_interrupt • free

get

Syntax: include get.e
s = get(fn)

Description: Input, from file fn, a human-readable string of characters
representing a Euphoria object. Convert the string into the numeric
value of that object. s will be a 2-element sequence: {error status,
value}. Error status codes are:

GET_SUCCESS -- object was read successfully
GET_EOF -- end of file before object was read
GET_FAIL -- object is not syntactically correct

get() can read arbitrarily complicated Euphoria objects. You could
have a long sequence of values in braces and separated by
commas, e.g. {23, {49, 57}, 0.5, -1, 99, 'A', "john"}. A single call to
get() will read in this entire sequence and return it's value as a
result.

Each call to get() picks up where the previous call left off. For
instance, a series of 5 calls to get() would be needed to read in:

99 5.2 {1,2,3} "Hello" -1

On the sixth and any subsequent call to get() you would see a
GET_EOF status. If you had something like:

{1, 2, xxx}

in the input stream you would see a GET_FAIL error status because
xxx is not a Euphoria object.

Multiple "top-level" objects in the input stream must be separated
from each other with one or more "whitespace" characters (blank,
tab, \r or \n). Whitespace is not necessary within a top-level object.
A call to get() will read one entire top-level object, plus one
additional (whitespace) character.

Comments: The combination of print() and get() can be used to save a Euphoria
object to disk and later read it back. This technique could be used to
implement a database as one or more large Euphoria sequences
stored in disk files. The sequences could be read into memory,
updated and then written back to disk after each series of
transactions is complete. Remember to write out a whitespace
character (using puts()) after each call to print().

The value returned is not meaningful unless you have a
GET_SUCCESS status.

Example: Suppose your program asks the user to enter a number from the
keyboard.

-- If he types 77.5, get(0) would return:

{GET_SUCCESS, 77.5}

-- whereas gets(0) would return:

"77.5\n"

Example
Program: demo\mydata.ex

See Also: print • value • gets • getc • prompt_number • prompt_string

get_active_page

Platform: DOS32

Syntax: include image.e
i = get_active_page()

Description: Some graphics modes on most video cards have multiple pages of
memory. This lets you write screen output to one page while
displaying a different page. get_active_page() returns the current
page number that screen output is being sent to.

Comments: The active and display pages are both 0 by default.

video_config() will tell you how many pages are available in the
current graphics mode.

See Also: set_active_page • get_display_page • video_config

get_all_palette

Platform: DOS32

Syntax: include image.e
s = get_all_palette()

Description: Retrieve color intensities for the entire set of colors in the current
graphics mode. s is a sequence of the form:

{r,g,b}, {r,g,b}, ..., {r,g,b}}

Each element specifies a color intensity {red, green, blue} for the
corresponding color number, starting with color number 0. The
values for red, green and blue will be in the range 0 to 63.

Comments: This function might be used to get the palette values needed by
save_bitmap(). Remember to multiply these values by 4 before
calling save_bitmap(), since save_bitmap() expects values in the
range 0 to 255.

See Also: palette • all_palette • read_bitmap • save_bitmap • save_screen

get_bytes

Syntax: include get.e
s = get_bytes(fn, i)

Description: Read the next i bytes from file number fn. Return the bytes as a
sequence. The sequence will be of length i, except when there are
fewer than i bytes remaining to be read in the file.

Comments: When i > 0 and length(s) < i you know you've reached the end of
file. Eventually, an empty sequence will be returned for s.

This function is normally used with files opened in binary mode, "rb".
This avoids the confusing situation in text mode where DOS will
convert CR LF pairs to LF.

Example: include get.e

integer fn
fn = open("temp", "rb") -- an existing file

sequence whole_file
whole_file = {}

sequence chunk

while 1 do
chunk = get_bytes(fn, 100) -- read 100 bytes at a time
whole_file &= chunk -- chunk might be empty, that's ok
if length(chunk) < 100 then

exit
end if

end while
close(fn)
? length(whole_file) -- should match DIR size of "temp"

See Also: getc • gets

get_display_page

Platform: DOS32

Syntax: include image.e
i = get_display_page()

Description: Some graphics modes on most video cards have multiple pages of
memory. This lets you write screen output to one page while
displaying another. get_display_page() returns the current page
number that is being displayed on the monitor.

Comments: The active and display pages are both 0 by default.

video_config() will tell you how many pages are available in the
current graphics mode.

See Also: set_display_page • get_active_page • video_config

get_key

Syntax: i = get_key()

Description: Return the key that was pressed by the user, without waiting. Return
-1 if no key was pressed. Special codes are returned for the function
keys, arrow keys etc.

Comments: The operating system can hold a small number of key-hits in its
keyboard buffer. get_key() will return the next one from the buffer, or
-1 if the buffer is empty.

Run the key.bat program to see what key code is generated for
each key on your keyboard.

See Also: wait_key • getc

get_mouse

Platform: DOS32, Linux

Syntax: include mouse.e
x1 = get_mouse()

Description: Return the last mouse event in the form: {event, x, y} or return -1 if
there has not been a mouse event since the last time get_mouse()
was called.

Constants have been defined in mouse.e for the possible mouse
events:

global constant MOVE = 1,
LEFT_DOWN = 2,
LEFT_UP = 4,
RIGHT_DOWN = 8,
RIGHT_UP = 16,
MIDDLE_DOWN = 32,
MIDDLE_UP = 64

x and y are the coordinates of the mouse pointer at the time that the
event occurred. get_mouse() returns immediately with either a -1 or
a mouse event. It does not wait for an event to occur. You must
check it frequently enough to avoid missing an event. When the next
event occurs, the current event will be lost, if you haven't read it. In
practice it is not hard to catch almost all events. Losing a MOVE
event is generally not too serious, as the next MOVE will tell you
where the mouse pointer is.

Sometimes multiple events will be reported. For example, if the
mouse is moving when the left button is clicked, get_mouse() will
report an event value of LEFT_DOWN+MOVE, i.e. 2+1 or 3. For this
reason you should test for a particular event using and_bits(). See
examples below.

Comments: In pixel-graphics modes that are 320 pixels wide, you need to divide
the x value by 2 to get the correct position on the screen. (A strange
feature of DOS.)

In DOS32 text modes you need to scale the x and y coordinates to
get line and column positions. In Linux, no scaling is required - x and
y correspond to the line and column on the screen, with (1,1) at the
top left.

In DOS32, you need a DOS mouse driver to use this routine. In
Linux, GPM Server must be running.

In Linux, mouse movement events are not reported in an xterm
window, only in the text console.

In Linux, LEFT_UP, RIGHT_UP and MIDDLE_UP are not
distinguishable from one another.

You can use get_mouse() in most text and pixel-graphics modes.

The first call that you make to get_mouse() will turn on a mouse
pointer, or a highlighted character.

DOS generally does not support the use of a mouse in SVGA
graphics modes (beyond 640x480 pixels). This restriction has been
removed in Windows 95 (DOS 7.0). Graeme Burke, Peter Blue and
others have contributed mouse routines that get around the
problems with using a mouse in SVGA. See the Euphoria Archive
Web page.

The x,y coordinate returned could be that of the very tip of the
mouse pointer or might refer to the pixel pointed-to by the mouse
pointer. Test this if you are trying to read the pixel color using
get_pixel(). You may have to read x-1,y-1 instead.

Example 1: a return value of:

{2, 100, 50}

would indicate that the left button was pressed down when the
mouse pointer was at location x=100, y=50 on the screen.

Example 2: To test for LEFT_DOWN, write something like the following:

object event

while 1 do
event = get_mouse()
if sequence(event) then

if and_bits(event[1], LEFT_DOWN) then
-- left button was pressed
exit

end if
end if

end while

See Also: mouse_events • mouse_pointer • and_bits

get_pixel

Platform: DOS32

Syntax: x = get_pixel(s)

Description: When s is a 2-element screen coordinate {x, y}, get_pixel() returns
the color (a small integer) of the pixel on the pixel-graphics screen at
that point.

When s is a 3-element sequence of the form: {x, y, n} get_pixel()
returns a sequence of n colors for the points starting at {x, y} and
moving to the right {x+1, y}, {x+2, y} etc.

Points off the screen have unpredictable color values.

Comments: When n is specified, a very fast algorithm is used to read the pixel
colors on the screen. It is much faster to call get_pixel() once,
specifying a large value of n, than it is to call it many times, reading
one pixel color at a time.

Example: object x

x = get_pixel({30,40})
-- x is set to the color value of point x=30, y=40

x = get_pixel({30,40,100})
-- x is set to a sequence of 100 integer values, representing
-- the colors starting at {30,40} and going to the right

See Also: pixel • graphics_mode • get_position

get_position

Syntax: include graphics.e
s = get_position()

Description: Return the current line and column position of the cursor as a 2-
element sequence {line, column}.

Comments: get_position() works in both text and pixel-graphics modes. In pixel-
graphics modes no cursor will be displayed, but get_position() will
return the line and column where the next character will be
displayed.

The coordinate system for displaying text is different from the one
for displaying pixels. Pixels are displayed such that the top-left is
(x=0,y=0) and the first coordinate controls the horizontal, left-right
location. In pixel-graphics modes you can display both text and
pixels. get_position() returns the current line and column for the text
that you are displaying, not the pixels that you may be plotting.
There is no corresponding routine for getting the current pixel
position.

See Also: position • get_pixel

get_screen_char

Platform: DOS32, Linux

Syntax: include image.e
s = get_screen_char(i1, i2)

Description: Return a 2-element sequence s, of the form {ascii-code, attributes}
for the character on the screen at line i1, column i2. s consists of two
atoms. The first is the ASCII code for the character. The second is
an atom that contains the foreground and background color of the
character, and possibly other information describing the appearance
of the character on the screen.

Comments: With get_screen_char() and put_screen_char() you can save and
restore a character on the screen along with its attributes.

Example: -- read character and attributes at top left corner
s = get_screen_char(1,1)

-- store character and attributes at line 25, column 10
put_screen_char(25, 10, {s})

See Also: put_screen_char • save_text_image

get_vector

Platform: DOS32

Syntax: include machine.e
s = get_vector(i)

Description: Return the current protected mode far address of the handler for
interrupt number i. s will be a 2-element sequence: {16-bit
segment, 32-bit offset}.

Example: s = get_vector(#1C)
-- s will be set to the far address of the clock tick
-- interrupt handler, for example: {59, 808}

Example
Program: demo\dos32\hardint.ex

See Also: set_vector • lock_memory

getc

Syntax: i = getc(fn)

Description: Get the next character (byte) from file or device fn. The character
will have a value from 0 to 255. -1 is returned at end of file.

Comments: File input using getc() is buffered, i.e. getc() does not actually go out
to the disk for each character. Instead, a large block of characters
will be read in at one time and returned to you one by one from a
memory buffer.

When getc() reads from the keyboard, it will not see any characters
until the user presses Enter. Note that the user can type control-Z,
which the operating system treats as "end of file". -1 will be returned.

See Also: gets • get_key • wait_key • open

getenv

Syntax: x = getenv(s)

Description: Return the value of a DOS environment variable. If the variable is
undefined return -1.

Comments: Because either a sequence or an atom (-1) might be returned, you
should probably assign the result to a variable declared as object.

Example: e = getenv("EUDIR") -- e will be "C:\EUPHORIA"
-- or perhaps D:, E: etc.

See Also: command_line

gets

Syntax: x = gets(fn)

Description: Get the next sequence (one line, including '\n') of characters from
file or device fn. The characters will have values from 0 to 255. The
atom -1 is returned on end of file.

Comments: Because either a sequence or an atom (-1) might be returned, you
should probably assign the result to a variable declared as object.

After reading a line of text from the keyboard, you should normally
output a \n character, e.g. puts(1, '\n'), before printing something.
Only on the last line of the screen does the operating system
automatically scroll the screen and advance to the next line.

The last line in a file might not end with a new-line '\n' character.

When your program reads from the keyboard, the user can type
control-Z, which the operating system treats as "end of file". -1 will
be returned.

In SVGA modes, DOS might set the wrong cursor position, after a
call to gets(0) to read the keyboard. You should set it yourself using
position().

Example 1: sequence buffer
object line
integer fn

-- read a text file into a sequence
fn = open("myfile.txt", "r")
if fn = -1 then

puts(1, "Couldn't open myfile.txt\n")
abort(1)

end if

buffer = {}
while 1 do

line = gets(fn)
if atom(line) then

exit -- -1 is returned at end of file
end if
buffer = append(buffer, line)

end while

Example 2: object line

puts(1, "What is your name?\n")
line = gets(0) -- read standard input (keyboard)
line = line[1..length(line)-1] -- get rid of \n character at end
puts(1, '\n') -- necessary
puts(1, line & " is a nice name.\n")

See Also: getc • puts • open

graphics_mode

Platform: DOS32

Syntax: include graphics.e
i1 = graphics_mode(i2)

Description: Select graphics mode i2. See graphics.e for a list of valid graphics
modes. If successful, i1 is set to 0, otherwise i1 is set to 1.

Comments: Some modes are referred to as text modes because they only let
you display text. Other modes are referred to as pixel-graphics
modes because you can display pixels, lines, ellipses etc., as well
as text.

As a convenience to your users, it is usually a good idea to switch
back from a pixel-graphics mode to the standard text mode before
your program terminates. You can do this with graphics_mode(-1). If
a pixel-graphics program leaves your screen in a mess, you can
clear it up with the DOS CLS command, or by running ex or ed.

Some graphics cards will be unable to enter some SVGA modes,
under some conditions. You can't always tell from the i1 value,
whether the graphics mode was set up successfully.

On the Win32 and Linux platforms, graphics_mode() will allocate a
plain, text mode console if one does not exist yet. It will then return
0, no matter what value is passed as i2.

Example: if graphics_mode(18) then
puts(SCREEN, "need VGA graphics!\n")
abort(1)

end if
draw_line(BLUE, {{0,0}, {50,50}})

See Also: text_rows • video_config

instance

Platform: Win32

Syntax: include misc.e
i = instance()

Description: Return a handle to the current program.

Comments: This handle value can be passed to various Windows routines to get
information about the current program that is running, i.e. your
program. Each time a user starts up your program, a different
instance will be created.

In C, this is the first parameter to WinMain().

On DOS32 and Linux, instance() always returns 0.

See Also: platform.doc

int_to_bits

Syntax: include machine.e
s = int_to_bits(a, i)

Description: Return the low-order i bits of a, as a sequence of 1's and 0's. The
least significant bits come first. For negative numbers the two's
complement bit pattern is returned.

Comments: You can use subscripting, slicing, and/or/xor/not of entire sequences
etc. to manipulate sequences of bits. Shifting of bits and rotating of
bits are easy to perform.

Example: s = int_to_bits(177, 8)
-- s is {1,0,0,0,1,1,0,1}
-- "reverse" order

See Also: bits_to_int • and_bits • or_bits • xor_bits • not_bits • operations on
sequences

int_to_bytes

Syntax: include machine.e
s = int_to_bytes(a)

Description: Convert an integer into a sequence of 4 bytes. These bytes are in
the order expected on the 386+, i.e. least-significant byte first.

Comments: You might use this routine prior to poking the 4 bytes into memory
for use by a machine language program.

The integer can be negative. Negative byte-values will be returned,
but after poking them into memory you will have the correct (two's
complement) representation for the 386+.

This function will correctly convert integer values up to 32-bits. For
larger values, only the low-order 32-bits are converted. Euphoria's
integer type only allows values up to 31-bits, so declare your
variables as atom if you need a larger range.

Example 1: s = int_to_bytes(999)
-- s is {231, 3, 0, 0}

Example 2: s = int_to_bytes(-999)
-- s is {-231, -4, -1, -1}

See Also: bytes_to_int • int_to_bits • bits_to_int • peek • poke • poke4

integer

Syntax: i = integer(x)

Description: Return 1 if x is an integer in the range -1073741824 to
+1073741823. Otherwise return 0.

Comments: This serves to define the integer type. You can also call it like an
ordinary function to determine if an object is an integer.

Example 1: integer z z = -1

Example 2: if integer(y/x) then
puts(SCREEN, "y is an exact multiple of x")

end if

See Also: atom, sequence, floor

length

Syntax: i = length(s)

Description: Return the length of s. s must be a sequence. An error will occur if s
is an atom.

Comments: The length of each sequence is stored internally by the interpreter
for quick access. (In other languages this operation requires a
search through memory for an end marker.)

Example 1: length({{1,2}, {3,4}, {5,6}}) -- 3

Example 2: length("") -- 0

Example 3: length({}) -- 0

See Also: sequence

lock_file

Syntax: include file.e
i1 = lock_file(fn, i2, s)

Description: When multiple processes can simultaneously access a file, some
kind of locking mechanism may be needed to avoid mangling the
contents of the file, or causing erroneous data to be read from the
file.

lock_file() attempts to place a lock on an open file, fn, to stop other
processes from using the file while your program is reading it or
writing it. Under Linux, there are two types of locks that you can
request using the i2 parameter. (Under DOS32 and Win32 the i2
parameter is ignored, but should be an integer.) Ask for a shared
lock when you intend to read a file, and you want to temporarily
block other processes from writing it. Ask for an exclusive lock
when you intend to write to a file and you want to temporarily block
other processes from reading or writing it. It's ok for many processes
to simultaneously have shared locks on the same file, but only one

process can have an exclusive lock, and that can happen only when
no other process has any kind of lock on the file. file.e contains the
following declaration:

global constant LOCK_SHARED = 1,
LOCK_EXCLUSIVE = 2

On DOS32 and Win32 you can lock a specified portion of a file
using the s parameter. s is a sequence of the form: {first_byte,
last_byte}. It indicates the first byte and last byte in the file, that the
lock applies to. Specify the empty sequence {}, if you want to lock
the whole file. In the current release for Linux, locks always apply to
the whole file, and you should specify {} for this parameter.

If it is successful in obtaining the desired lock, lock_file() will return
1. If unsuccessful, it will return 0. lock_file() does not wait for other
processes to relinquish their locks. You may have to call it
repeatedly, before the lock request is granted.

Comments: On Linux, these locks are called advisory locks, which means they
aren't enforced by the operating system. It is up to the processes
that use a particular file to cooperate with each other. A process can
access a file without first obtaining a lock on it. On Win32 and
DOS32, locks are enforced by the operating system.

On DOS32, lock_file() is more useful when file sharing is enabled. It
will typically return 0 (unsuccessful) under plain MS-DOS, outside of
Windows.

Example: include misc.e
include file.e

integer v
atom t
v = open("visitor_log", "a") -- open for append
t = time()
while not lock_file(v, LOCK_EXCLUSIVE, {}) do

if time() > t + 60 then
puts(1, "One minute already ... I can't wait forever!\n")
abort(1)

end if
sleep(5) -- let other processes run

end while
puts(v, "Yet another visitor\n")
unlock_file(v, {})
close(v)

See Also: unlock_file • flush • sleep

lock_memory

Platform: DOS32

Syntax: include machine.e
lock_memory(a, i)

Description: Prevent the block of virtual memory starting at address a, of length i,
from ever being swapped out to disk.

Comments: Use this to ensure that all code and data required for handling
interrupts is kept in memory at all times while your program is
running.

Example
Program: demo\dos32\hardint.ex

See Also: get_vector • set_vector

log

Syntax: x2 = log(x1)

Description: Return the natural logarithm of x1.

Comments: This function may be applied to an atom or to all elements of a
sequence. Note that log is only defined for positive numbers. Your
program will abort with a message if you try to take the log of a
negative number or zero.

Example: a = log(100)
-- a is 4.60517

See Also: sin • cos • tan • sqrt

lower

Syntax: include wildcard.e
x2 = lower(x1)

Description: Convert an atom or sequence to lower case.

Example: s = lower("Euphoria") -- s is "euphoria"
a = lower('B') -- a is 'b'
s = lower({"Euphoria", "Programming"}) -- s is {"euphoria",
"programming"}

See Also: upper

machine_func

Syntax: x1 = machine_func(a, x)

Description: see machine_proc() below.

machine_proc

Syntax: machine_proc(a, x)

Description: Perform a machine-specific operation such as graphics and sound
effects. This routine should normally be called indirectly via one of
the library routines in a Euphoria include file. A direct call might
cause a machine exception if done incorrectly.

See Also: machine_func

match

Syntax: i = match(s1, s2)

Description: Try to match s1 against some slice of s2. If successful, return the
element number of s2 where the (first) matching slice begins, else
return 0.

Example: location = match("pho", "Euphoria")
-- location is set to 3

See Also: find • compare • wildcard_match

mem_copy

Syntax: mem_copy(a1, a2, i)

Description: Copy a block of i bytes of memory from address a2 to address a1.

Comments: The bytes of memory will be copied correctly even if the block of
memory at a2 overlaps with the block of memory at a1.

mem_copy(a1, a2, i) is equivalent to: poke(a1, peek({a2, i})) but is
much faster.

Example: dest = allocate(50)
src = allocate(100)
poke(src, {1,2,3,4,5,6,7,8,9})
mem_copy(dest, src, 9)

See Also: mem_set • peek • poke • allocate • allocate_low

mem_set

Syntax: mem_set(a1, i1, i2)

Description: Set i2 bytes of memory, starting at address a1, to the value of i1.

Comments: The low order 8 bits of i1 are actually stored in each byte.

mem_set(a1, i1, i2) is equivalent to: poke(a1, repeat(i1, i2)) but is
much faster.

Example: destination = allocate(1000)
mem_set(destination, ' ', 1000)
-- 1000 consecutive bytes in memory will be set to 32
-- (the ASCII code for ' ')

See Also: mem_copy • peek • poke • allocate • allocate_low

message_box

Platform: Win32

Syntax: include msgbox.e

i = message_box(s1, s2, x)

Description: Display a window with title s2, containing the message string s1. x
determines the combination of buttons that will be available for the
user to press, plus some other characteristics. x can be an atom or a
sequence. A return value of 0 indicates a failure to set up the
window.

Comments: See msgbox.e for a complete list of possible values for x and i.

Example: response = message_box("Do you wish to proceed?",
"My Application",
MB_YESNOCANCEL)

if response = IDCANCEL or response = IDNO then
abort(1)

end if

Example
Program: demo\win32\email.exw

mouse_events

Platform: DOS32, Linux

Syntax: include mouse.e
mouse_events(i)

Description: Use this procedure to select the mouse events that you want
get_mouse() to report. By default, get_mouse() will report all events.
mouse_events() can be called at various stages of the execution of
your program, as the need to detect events changes. Under Linux,
mouse_events() currently has no effect.

Comments: It is good practice to ignore events that you are not interested in,
particularly the very frequent MOVE event, in order to reduce the
chance that you will miss a significant event.

The first call that you make to mouse_events() will turn on a mouse
pointer, or a highlighted character.

Example: mouse_events(LEFT_DOWN + LEFT_UP + RIGHT_DOWN)
-- will restrict get_mouse() to reporting the left button
-- being pressed down or released, and the right button
-- being pressed down. All other events will be ignored.

See Also: get_mouse • mouse_pointer

mouse_pointer

Platform: DOS32, Linux

Syntax: include mouse.e
mouse_pointer(i)

Description: If i is 0 hide the mouse pointer, otherwise turn on the mouse pointer.
Multiple calls to hide the pointer will require multiple calls to turn it
back on. The first call to either get_mouse() or mouse_events(), will
also turn the pointer on (once). Under Linux, mouse_pointer()
currently has no effect.

Comments: It may be necessary to hide the mouse pointer temporarily when you
update the screen.

After a call to text_rows() you may have to call mouse_pointer(1) to
see the mouse pointer again.

See Also: get_mouse • mouse_events

not_bits

Syntax: x2 = not_bits(x1)

Description: Perform the logical NOT operation on each bit in x1. A bit in x2 will
be 1 when the corresponding bit in x1 is 0, and will be 0 when the
corresponding bit in x1 is 1.

Comments: The argument to this function may be an atom or a sequence. The
rules for operations on sequences apply.

The argument must be representable as a 32-bit number, either
signed or unsigned. If you intend to manipulate full 32-bit values,
you should declare your variables as atom, rather than integer.
Euphoria's integer type is limited to 31-bits.

Results are treated as signed numbers. They will be negative when
the highest-order bit is 1.

Example: a = not_bits(#000000F7)

-- a is -248 (i.e. FFFFFF08 interpreted as a negative number)

See Also: and_bits • or_bits • xor_bits • int_to_bits

object

Syntax: i = object(x)

Description: Test if x is of type object. This will always be true, so object() will
always return 1.

Comments: All predefined and user-defined types can also be used as functions
to test if a value belongs to the type. object() is included just for
completeness. It always returns 1.

Example: ? object({1,2,3}) -- always prints 1

See Also: integer • atom • sequence

open

Syntax: fn = open(st1, st2)

Description: Open a file or device, to get the file number. -1 is returned if the
open fails. st1 is the path name of the file or device. st2 is the mode
in which the file is to be opened. Possible modes are:

"r" - open text file for reading
"rb" - open binary file for reading
"w" - create text file for writing
"wb"- create binary file for writing
"u" - open text file for update (reading and writing)
"ub" - open binary file for update
"a" - open text file for appending
"ab" - open binary file for appending

Files opened for read or update must already exist. Files opened for
write or append will be created if necessary. A file opened for write
will be set to 0 bytes. Output to a file opened for append will start at
the end of file.

Output to text files will have carriage-return characters
automatically added before linefeed characters. On input, these

carriage-return characters are removed. A control-Z character
(ASCII 26) will signal an immediate end of file.

I/O to binary files is not modified in any way. Any byte values from
0 to 255 can be read or written.

Some typical devices that you can open are:

"CON" - the console (screen)
"AUX" - the serial auxiliary port
"COM1"- serial port 1
"COM2"- serial port 2
"PRN" - the printer on the parallel port
"NUL" - a non-existent device that accepts and discards

output.

Comments: DOS32: When running under Windows 95 or later, you can open
any existing file that has a long file or directory name in its path (i.e.
greater than the standard DOS 8.3 format) using any open mode -
read, write etc. However, if you try to create a new file (open with
"w" or "a" and the file does not already exist) then the name will be
truncated if necessary to an 8.3 style name. We hope to support
creation of new long-filename files in a future release.

Win32, Linux: Long filenames are fully supported for reading and
writing and creating.

Example: integer file_num, file_num95
sequence first_line
constant ERROR = 2

file_num = open("myfile", "r")
if file_num = -1 then

puts(ERROR, "couldn't open myfile\n")
else

first_line = gets(file_num)
end if

file_num = open("PRN", "w") -- open printer for output

-- on Windows 95:
file_num95 = open("bigdirectoryname\\verylongfilename.abcdefg",

"r")
 if file_num95 != -1 then

puts(1, "it worked!\n")
end if

See Also: close

open_dll

Platform: Win32, Linux

Syntax: include dll.e
a = open_dll(st)

Description: Open a Windows dynamic link library (.dll) file, or a Linux shared
library (.so) file. A 32-bit address will be returned, or 0 if the .dll can't
be found. st can be a relative or an absolute file name. Windows will
use the normal search path for locating .dll files.

Comments: The value returned by open_dll() can be passed to define_c_proc(),
define_c_func(), or define_c_var().

You can open the same .dll or .so file multiple times. No extra
memory is used and you'll get the same number returned each time.

Euphoria will close the .dll for you automatically at the end of
execution.

Example: atom user32
user32 = open_dll("user32.dll")
if user32 = 0 then

puts(1, "Couldn't open user32.dll!\n")
end if

See Also: define_c_func • define_c_proc • define_c_var • c_func • c_proc •
platform.doc

or_bits

Syntax: x3 = or_bits(x1, x2)

Description: Perform the logical OR operation on corresponding bits in x1 and
x2. A bit in x3 will be 1 when a corresponding bit in either x1 or x2 is
1.

Comments: The arguments to this function may be atoms or sequences. The
rules for operations on sequences apply.

The arguments must be representable as 32-bit numbers, either
signed or unsigned.

If you intend to manipulate full 32-bit values, you should declare
your variables as atom, rather than integer. Euphoria's integer type
is limited to 31-bits.

Results are treated as signed numbers. They will be negative when
the highest-order bit is 1.

Example 1: a = or_bits(#0F0F0000, #12345678)
-- a is #1F3F5678

Example 2: a = or_bits(#FF, {#123456, #876543, #2211})
-- a is {#1234FF, #8765FF, #22FF}

See Also: and_bits • xor_bits • not_bits • int_to_bits

palette

Platform: DOS32

Syntax: include graphics.e
x = palette(i, s)

Description: Change the color for color number i to s, where s is a sequence of
color intensities: {red, green, blue}. Each value in s can be from 0 to
63. If successful, a 3-element sequence containing the previous
color for i will be returned, and all pixels on the screen with value i
will be set to the new color. If unsuccessful, the atom -1 will be
returned.

Example: x = palette(0, {15, 40, 10})
-- color number 0 (normally black) is changed to a shade
-- of mainly green.

See Also: all_palette

peek

Syntax: i = peek(a)
or ...

s = peek({a, i})

Description: Return a single byte value in the range 0 to 255 from machine
address a, or return a sequence containing i consecutive byte
values starting at address a in memory.

Comments: Since addresses are 32-bit numbers, they can be larger than the
largest value of type integer (31-bits). Variables that hold an address
should therefore be declared as atoms.

It is faster to read several bytes at once using the second form of
peek() than it is to read one byte at a time in a loop.

Remember that peek takes just one argument, which in the second
form is actually a 2-element sequence.

Example: The following are equivalent:

 -- method 1
s = {peek(100), peek(101), peek(102), peek(103)}

-- method 2
s = peek({100, 4})

See Also: poke • peek4s • peek4u • allocate • free • allocate_low • free_low •
call

peek4s

Syntax: a2 = peek4s(a1)
or ...

s = peek4s({a1, i})

Description: Return a 4-byte (32-bit) signed value in the range -2147483648 to
+2147483647 from machine address a1, or return a sequence
containing i consecutive 4-byte signed values starting at address a1
in memory.

Comments: The 32-bit values returned by peek4s() may be too large for the
Euphoria integer type (31-bits), so you should use atom variables.

Since machine addresses are 32-bit numbers, they can also be too
large for Euphoria's integer type. Variables that hold an address
should therefore be declared as atoms.

It is faster to read several 4-byte values at once using the second

form of peek4s() than it is to read one 4-byte value at a time in a
loop.

Remember that peek4s() takes just one argument, which in the
second form is actually a 2-element sequence.

Example: The following are equivalent:

 -- method 1
s = {peek4s(100), peek4s(104), peek4s(108), peek4s(112)}

-- method 2
s = peek4s({100, 4})

See Also: peek4u • peek • poke4 • allocate • free • allocate_low • free_low •
call

peek4u

Syntax: a2 = peek4u(a1)
or ...

s = peek4u({a1, i})

Description: Return a 4-byte (32-bit) unsigned value in the range 0 to
4294967295 from machine address a1, or return a sequence
containing i consecutive 4-byte unsigned values starting at address
a1 in memory.

Comments: The 32-bit values returned by peek4u() may be too large for the
Euphoria integer type (31-bits), so you should use atom variables.

Since machine addresses are 32-bit numbers, they can also be too
large for Euphoria's integer type. Variables that hold an address
should therefore be declared as atoms.

It is faster to read several 4-byte values at once using the second
form of peek4u() than it is to read one 4-byte value at a time in a
loop.

Remember that peek4u() takes just one argument, which in the
second form is actually a 2-element sequence.

Example: The following are equivalent:

 -- method 1

s = {peek4u(100), peek4u(104), peek4u(108), peek4u(112)}

-- method 2
s = peek4u({100, 4})

See Also: peek4s • peek • poke4 • allocate • free • allocate_low • free_low •
call

PI

Syntax: include misc.e
PI

Description: PI (3.14159...) has been defined as a global constant.

Comments: Enough digits have been used to attain the maximum accuracy
possible for a Euphoria atom.

Example: x = PI -- x is 3.14159...

See Also: sin • cos • tan

pixel

Platform: DOS32

Syntax: pixel(x1, s)

Description: Set one or more pixels on a pixel-graphics screen starting at point s,
where s is a 2-element screen coordinate {x, y}. If x1 is an atom, one
pixel will be set to the color indicated by x1. If x1 is a sequence then
a number of pixels will be set, starting at s and moving to the right
(increasing x value, same y value).

Comments: When x1 is a sequence, a very fast algorithm is used to put the
pixels on the screen. It is much faster to call pixel() once, with a
sequence of pixel colors, than it is to call it many times, plotting one
pixel color at a time. In graphics mode 19, pixel() is highly
optimized.

Example 1: pixel(BLUE, {50, 60})
-- the point {50,60} is set to the color BLUE

Example 2: pixel({BLUE, GREEN, WHITE, RED}, {50,60})
-- {50,60} set to BLUE
-- {51,60} set to GREEN
-- {52,60} set to WHITE
-- {53,60} set to RED

See Also: get_pixel • graphics_mode

platform

Syntax: i = platform()

Description: platform() is a function built-in to the interpreter. It indicates the
platform that the program is being executed on: DOS32, Win32 or
Linux.

Comments: When ex.exe is running, the platform is DOS32. When exw.exe is
running the platform is Win32. When exu is running the platform is
Linux.

The include file misc.e contains the following constants:

global constant DOS32 = 1,
WIN32 = 2,
LINUX = 3

Use platform() when you want to execute different code depending
on which platform the program is running on.

Additional platforms will be added as Euphoria is ported to new
machines and operating environments.

The call to platform() costs nothing. It is optimized at compile-time
into the appropriate integer value: 1, 2 or 3.

Example 1: if platform() = WIN32 then
-- call system Beep routine
err = c_func(Beep, {0,0})

elsif platform() = DOS32 then
-- make beep
sound(500)
t = time()
while time() < t + 0.5 do
end while
sound(0)

else
-- do nothing (Linux)

end if

See Also: platform.doc

poke

Syntax: poke(a, x)

Description: If x is an atom, write a single byte value to memory address a.

If x is a sequence, write a sequence of byte values to consecutive
memory locations starting at location a.

Comments: The lower 8-bits of each byte value, i.e. remainder(x, 256), is
actually stored in memory.

It is faster to write several bytes at once by poking a sequence of
values, than it is to write one byte at a time in a loop.

Writing to the screen memory with poke() can be much faster than
using puts() or printf(), but the programming is more difficult. In most
cases the speed is not needed. For example, the Euphoria editor,
ed, never uses poke().

Example: a = allocate(100) -- allocate 100 bytes in memory

-- poke one byte at a time:
poke(a, 97)
poke(a+1, 98)
poke(a+2, 99)

-- poke 3 bytes at once:
poke(a, {97, 98, 99})

Example
Program: demo\dos32\callmach.ex

See Also: peek • poke4 • allocate • free • allocate_low • free_low • call • safe.e

poke4

Syntax: poke4(a, x)

Description: If x is an atom, write a 4-byte (32-bit) value to memory address a.

If x is a sequence, write a sequence of 4-byte values to consecutive
memory locations starting at location a.

Comments: The value or values to be stored must not exceed 32-bits in size.

It is faster to write several 4-byte values at once by poking a
sequence of values, than it is to write one 4-byte value at a time in a
loop.

The 4-byte values to be stored can be negative or positive. You can
read them back with either peek4s() or peek4u().

Example: a = allocate(100) -- allocate 100 bytes in memory

-- poke one 4-byte value at a time:
poke4(a, 9712345)
poke4(a+4, #FF00FF00)
poke4(a+8, -12345)

-- poke 3 4-byte values at once:
poke4(a, {9712345, #FF00FF00, -12345})

See Also: peek4u • peek4s • poke • allocate • allocate_low • call

polygon

Platform: DOS32

Syntax: include graphics.e
polygon(i1, i2, s)

Description: Draw a polygon with 3 or more vertices given in s, on a pixel-
graphics screen using a certain color i1. Fill the area if i2 is 1. Don't
fill if i2 is 0.

Example: polygon(GREEN, 1, {{100, 100}, {200, 200}, {900, 700}})
-- makes a solid green triangle.

See Also: draw_line • ellipse

position

Syntax: position(i1, i2)

Description: Set the cursor to line i1, column i2, where the top left corner of the
screen is line 1, column 1. The next character displayed on the
screen will be printed at this location. position() will report an error if
the location is off the screen.

Comments: position() works in both text and pixel-graphics modes.

The coordinate system for displaying text is different from the one
for displaying pixels. Pixels are displayed such that the top-left is
(x=0,y=0) and the first coordinate controls the horizontal, left-right
location. In pixel-graphics modes you can display both text and
pixels. position() only sets the line and column for the text that you
display, not the pixels that you plot. There is no corresponding
routine for setting the next pixel position.

Example: position(2,1)
-- the cursor moves to the beginning of the second line from
-- the top

See Also: get_position • puts • print • printf

power

Syntax: x3 = power(x1, x2)

Description: Raise x1 to the power x2

Comments: The arguments to this function may be atoms or sequences. The
rules for operations on sequences apply.

Powers of 2 are calculated very efficiently.

Example 1: ? power(5, 2)
-- 25 is printed

Example 2: ? power({5, 4, 3.5}, {2, 1, -0.5})

-- {25, 4, 0.534522} is printed

Example 3: ? power(2, {1, 2, 3, 4})
-- {2, 4, 8, 16}

Example 4: ? power({1, 2, 3, 4}, 2)
-- {1, 4, 9, 16}

See Also: log • sqrt

prepend

Syntax: s2 = prepend(s1, x)

Description: Prepend x to the start of sequence s1. The length of s2 will be
length(s1) + 1.

Comments: If x is an atom this is the same as s2 = x & s1. If x is a sequence it
is definitely not the same.

The case where s1 and s2 are the same variable is handled very
efficiently.

Example 1: prepend({1,2,3}, {0,0}) -- {0,0}, 1, 2, 3}

-- Compare with concatenation:

{0,0} & {1,2,3} -- {0, 0, 1, 2, 3}

Example 2: s = {}
for i = 1 to 10 do

s = prepend(s, i)
end for
-- s is {10,9,8,7,6,5,4,3,2,1}

See Also: append • concatenation operator & • sequence-formation operator

print

Syntax: print(fn, x)

Description: Print, to file or device fn, an object x with braces { , , , } to show the
structure.

Example 1: print(1, "ABC") -- output is: {65, 66, 67}
puts(1, "ABC") -- output is: ABC

Example 2: print(1, repeat({10,20}, 3)) -- output is:
{10,20},{10,20},{10,20}}

See Also: ? • puts • printf • get

printf

Syntax: printf(fn, st, x)

Description: Print x, to file or device fn, using format string st. If x is an atom then
a single value will be printed. If x is a sequence, then formats from st
are applied to successive elements of x. Thus printf() always takes
exactly 3 arguments. Only the length of the last argument,
containing the values to be printed, will vary. The basic formats are:

%d - print an atom as a decimal integer
%x - print an atom as a hexadecimal integer
%o - print an atom as an octal integer
%s - print a sequence as a string of characters, or print an

atom as a single character
%e - print an atom as a floating point number with exponential

notation
%f - print an atom as a floating-point number with a decimal

point but no exponent
%g - print an atom as a floating point number using either the

%f or %e format, whichever seems more appropriate
%% - print the '%' character itself

Field widths can be added to the basic formats, e.g. %5d, %8.2f,
%10.4s. The number before the decimal point is the minimum field
width to be used. The number after the decimal point is the precision
to be used.

If the field width is negative, e.g. %-5d then the value will be left-
justified within the field. Normally it will be right-justified. If the field
width starts with a leading 0, e.g. %08d then leading zeros will be
supplied to fill up the field. If the field width starts with a '+' e.g.
%+7d then a plus sign will be printed for positive values.

Comments: Watch out for the following common mistake:

name="John Smith"
printf(1, "%s", name) -- error!

This will print only the first character, J, of name, as each element of
name is taken to be a separate value to be formatted. You must say
this instead:

name="John Smith"
printf(1, "%s", {name}) -- correct!

Now, the third argument of printf() is a one-element sequence
containing the item to be formatted.

Example 1: rate = 7.875
printf(myfile, "The interest rate is: %8.2f\n", rate)

The interest rate is: 7.88

Example 2: name="John Smith"
score=97
printf(1, "%15s, %5d\n", {name, score})

John Smith, 97

Example 3: printf(1, "%-10.4s $ %s", {"ABCDEFGHIJKLMNOP", "XXX"})

ABCD $ XXX

See Also: sprintf • puts • open

profile

Syntax: profile(i)

Description: Enable or disable profiling at run-time. This works for both
execution-count and time-profiling. If i is 1 then profiling will be
enabled, and samples/counts will be recorded. If i is 0 then profiling
will be disabled and samples/counts will not be recorded.

Comments: After a "with profile" or "with profile_time" statement, profiling is
turned on automatically. Use profile(0) to turn it off. Use profile(1) to
turn it back on when execution reaches the code that you wish to
focus the profile on.

Example 1: with profile_time

profile(0)
...
procedure slow_routine()

profile(1)
...
profile(0)

end procedure

See Also: trace • profiling • special top-level statements

prompt_number

Syntax: include get.e
a = prompt_number(st, s)

Description: Prompt the user to enter a number. st is a string of text that will be
displayed on the screen. s is a sequence of two values {lower,
upper} which determine the range of values that the user may enter.
If the user enters a number that is less than lower or greater than
upper, he will be prompted again. s can be empty, {}, if there are no
restrictions.

Comments: If this routine is too simple for your needs, feel free to copy it and
make your own more specialized version.

Example 1: age = prompt_number("What is your age? ", {0, 150})

Example 2: t = prompt_number("Enter a temperature in Celcius:\n", {})

See Also: get • prompt_string

prompt_string

Syntax: include get.e
s = prompt_string(st)

Description: Prompt the user to enter a string of text. st is a string that will be
displayed on the screen. The string that the user types will be
returned as a sequence, minus any new-line character.

Comments: If the user happens to type control-Z (indicates end-of-file), "" will be
returned.

Example: name = prompt_string("What is your name? ")

See Also: gets • prompt_number

put_screen_char

Platform: DOS32, Linux

Syntax: include image.e
put_screen_char(i1, i2, s)

Description: Write zero or more characters onto the screen along with their
attributes. i1 specifies the line, and i2 specifies the column where
the first character should be written. The sequence s looks like:
{ascii-code1, attribute1, ascii-code2, attribute2, ...}. Each pair of
elements in s describes one character. The ascii-code atom
contains the ASCII code of the character. The attributes atom
contains the foreground color, background color, and possibly other
platform-dependent information controlling how the character is
displayed on the screen.

Comments: The length of s must be a multiple of 2. If s has 0 length, nothing will
be written to the screen.

It's faster to write several characters to the screen with a single call
to put_screen_char() than it is to write one character at a time.

Example: -- write AZ to the top left of the screen
-- (attributes are platform-dependent)
put_screen_char(1, 1, {'A', 152, 'Z', 131})

See Also: get_screen_char • display_text_image

puts

Syntax: puts(fn, x)

Description: Output, to file or device fn, a single byte (atom) or sequence of
bytes. The low order 8-bits of each value is actually sent out. If fn is
the screen you will see text characters displayed.

Comments: When you output a sequence of bytes it must not have any
(sub)sequences within it. It must be a sequence of atoms only.

(Typically a string of ASCII codes).

Avoid outputting 0's to the screen or to standard output. Your output
may get truncated.

Example 1: puts(SCREEN, "Enter your first name: ")

Example 2: puts(output, 'A') -- the single byte 65 will be sent to output

See Also: printf • gets • open

rand

Syntax: x2 = rand(x1)

Description: Return a random integer from 1 to x1, where x1 may be from 1 to
the largest positive value of type integer (1073741823).

Comments: This function may be applied to an atom or to all elements of a
sequence.

Example: s = rand({10, 20, 30})
-- s might be: {5, 17, 23} or {9, 3, 12} etc.

See Also: set_rand

read_bitmap

Syntax: include image.e
x = read_bitmap(st)

Description: st is the name of a .bmp "bitmap" file. The file should be in the
bitmap format. The most common variations of the format are
supported. If the file is read successfully the result will be a 2-
element sequence. The first element is the palette, containing
intensity values in the range 0 to 255. The second element is a 2-d
sequence of sequences containing a pixel-graphics image. You can
pass the palette to all_palette() (after dividing it by 4 to scale it). The
image can be passed to display_image().

Bitmaps of 2, 4, 16 or 256 colors are supported. If the file is not in a
good format, an error code (atom) is returned instead:

global constant BMP_OPEN_FAILED = 1,
BMP_UNEXPECTED_EOF = 2,
BMP_UNSUPPORTED_FORMAT = 3

Comments: You can create your own bitmap picture files using Windows
Paintbrush and many other graphics programs. You can then
incorporate these pictures into your Euphoria programs.

Example: x = read_bitmap("c:\\windows\\arcade.bmp")
-- note: double backslash needed to get single backslash in
-- a string

Example
Program: demo\dos32\bitmap.ex

See Also: palette • all_palette • display_image • save_bitmap

register_block

Syntax: include machine.e (or safe.e)
register_block(a, i)

Description: Add a block of memory to the list of safe blocks maintained by
safe.e (the debug version of machine.e). The block starts at
address a. The length of the block is i bytes.

Comments: This routine is only meant to be used for debugging purposes.
safe.e tracks the blocks of memory that your program is allowed to
peek(), poke(), mem_copy(), etc. These are normally just the blocks
that you have allocated using Euphoria's allocate() or allocate_low()
routines, and which you have not yet freed using Euphoria's free() or
free_low(). In some cases, you may acquire additional, external,
blocks of memory, perhaps as a result of calling a C routine. If you
are debugging your program using safe.e, you must register these
external blocks of memory or safe.e will prevent you from accessing
them. When you are finished using an external block you can
unregister it using unregister_block().

When you include machine.e, you'll get different versions of
register_block() and unregister_block() that do nothing. This makes
it easy to switch back and forth between debug and non-debug runs
of your program.

Example 1: atom addr
addr = c_func(x, {})

register_block(addr, 5)
poke(addr, "ABCDE")
unregister_block(addr)

See Also: unregister_block • safe.e

remainder

Syntax: x3 = remainder(x1, x2)

Description: Compute the remainder after dividing x1 by x2. The result will have
the same sign as x1, and the magnitude of the result will be less
than the magnitude of x2.

Comments: The arguments to this function may be atoms or sequences. The
rules for operations on sequences apply.

Example 1: a = remainder(9, 4)
-- a is 1

Example 2: s = remainder({81, -3.5, -9, 5.5}, {8, -1.7, 2, -4})
-- s is {1, -0.1, -1, 1.5}

Example 3: s = remainder({17, 12, 34}, 16)
-- s is {1, 12, 2}

Example 4: s = remainder(16, {2, 3, 5})
-- s is {0, 1, 1}

See Also: floor

repeat

Syntax: s = repeat(x, a)

Description: Create a sequence of length a where each element is x.

Comments: When you repeat a sequence or a floating-point number the
interpreter does not actually make multiple copies in memory.
Rather, a single copy is "pointed to" a number of times.

Example 1: repeat(0, 10) -- {0,0,0,0,0,0,0,0,0,0}
Example 2: repeat("JOHN", 4) -- {"JOHN", "JOHN", "JOHN", "JOHN"}

-- The interpreter will create only one copy of "JOHN"
-- in memory

See Also: append • prepend • sequence-formation operator

reverse

Syntax: include misc.e
s2 = reverse(s1)

Description: Reverse the order of elements in a sequence.

Comments: A new sequence is created where the top-level elements appear in
reverse order compared to the original sequence.

Example 1: reverse({1,3,5,7}) -- {7,5,3,1}

Example 2: reverse({{1,2,3}, {4,5,6}}) -- {4,5,6}, {1,2,3}}

Example 3: reverse({99}) -- {99}

Example 4: reverse({}) -- {}

See Also: append • prepend • repeat

routine_id

Syntax: i = routine_id(st)

Description: Return an integer id number, known as a routine id, for a user-
defined Euphoria procedure or function. The name of the procedure
or function is given by the string sequence st. -1 is returned if the
named routine can't be found.

Comments: The id number can be passed to call_proc() or call_func(), to
indirectly call the routine named by st.

The routine named by st must be visible, i.e. callable, at the place
where routine_id() is used to get the id number. Indirect calls to the
routine can appear earlier in the program than the definition of the
routine, but the id number can only be obtained in code that comes
after the definition of the routine - see example 2 below.

Once obtained, a valid routine id can be used at any place in the
program to call a routine indirectly via call_proc()/call_func().

Some typical uses of routine_id() are:

1 - Calling a routine that is defined later in a program.
2 - Creating a subroutine that takes another routine as a

parameter. (See Example 2 below)
3 - Using a sequence of routine id's to make a case (switch)

statement.
4 - Setting up an Object-Oriented system.
5 - Getting a routine id so you can pass it to call_back(). (See

platform.doc)

Note that C routines, callable by Euphoria, also have routine id's.
See define_c_proc() and define_c_func().

Example 1: procedure foo()
puts(1, "Hello World\n")

end procedure

integer foo_num
foo_num = routine_id("foo")

call_proc(foo_num, {}) -- same as calling foo()

Example 2: function apply_to_all(sequence s, integer f)
-- apply a function to all elements of a sequence
sequence result
result = {}
for i = 1 to length(s) do

-- we can call add1() here although it comes later in the
program

result = append(result, call_func(f, {s[i]}))
end for
return result

end function

function add1(atom x)
return x + 1

end function

-- add1() is visible here, so we can ask for its routine id
? apply_to_all({1, 2, 3}, routine_id("add1"))
-- displays {2,3,4}

See Also: call_proc • call_func • call_back • define_c_func • define_c_proc •

platform.doc

save_bitmap

Syntax: include image.e
i = save_bitmap(s, st)

Description: Create a bitmap (.bmp) file from a 2-element sequence s. st is the
name of a .bmp "bitmap" file. s[1] is the palette:

{r,g,b}, {r,g,b}, ..., {r,g,b}}

Each red, green, or blue value is in the range 0 to 255. s[2] is a 2-d
sequence of sequences containing a pixel-graphics image. The
sequences contained in s[2] must all have the same length. s is in
the same format as the value returned by read_bitmap().

The result will be one of the following codes:

global constant BMP_SUCCESS = 0,
BMP_OPEN_FAILED = 1,
BMP_INVALID_MODE = 4-- invalid graphics

mode
-- or invalid argument

Comments: If you use get_all_palette() to get the palette before calling this
function, you must multiply the returned intensity values by 4 before
calling save_bitmap().

You might use save_image() to get the 2-d image for s[2].

save_bitmap() produces bitmaps of 2, 4, 16, or 256 colors and these
can all be read with read_bitmap(). Windows Paintbrush and some
other tools do not support 4-color bitmaps.

Example: paletteData = get_all_palette() * 4
code = save_bitmap({paletteData, imageData},

"c:\\example\\a1.bmp")

See Also: save_image • read_bitmap • save_screen • get_all_palette

save_image

Platform: DOS32

Syntax: include image.e
s3 = save_image(s1, s2)

Description: Save a rectangular image from a pixel-graphics screen. The result is
a 2-d sequence of sequences containing all the pixels in the image.
You can redisplay the image using display_image(). s1 is a 2-
element sequence {x1,y1} specifying the top-left pixel in the image.
s2 is a sequence {x2,y2} specifying the bottom-right pixel.

Example: s = save_image({0,0}, {50,50})
display_image({100,200}, s)
display_image({300,400}, s)
-- saves a 51x51 square image, then redisplays it at {100,200}
-- and at {300,400}

See Also: display_image • save_text_image

save_screen

Platform: DOS32

Syntax: include image.e
i = save_screen(x1, st)

Description: Save the whole screen or a rectangular region of the screen as a
Windows bitmap (.bmp) file. To save the whole screen, pass the
integer 0 for x1. To save a rectangular region of the screen, x1
should be a sequence of 2 sequences: {topLeftXPixel,
topLeftYPixel}, {bottomRightXPixel, bottomRightYPixel}}

st is the name of a .bmp "bitmap" file.

The result will be one of the following codes:

global constant BMP_SUCCESS = 0,
BMP_OPEN_FAILED = 1,
BMP_INVALID_MODE = 4-- invalid graphics

mode
-- or invalid argument

Comments: save_screen() produces bitmaps of 2, 4, 16, or 256 colors and these
can all be read with read_bitmap(). Windows Paintbrush and some
other tools do not support 4-color bitmaps.

save_screen() only works in pixel-graphics modes, not text modes.

Example 1: -- save whole screen:
code = save_screen(0, "c:\\example\\a1.bmp")

Example 2: -- save part of screen:
err = save_screen({{0,0},{200, 15}}, "b1.bmp")

See Also: save_image • read_bitmap • save_bitmap

save_text_image

Platform: DOS32, Linux

Syntax: include image.e
s3 = save_text_image(s1, s2)

Description: Save a rectangular region of text from a text-mode screen. The
result is a sequence of sequences containing ASCII characters and
attributes from the screen. You can redisplay this text using
display_text_image(). s1 is a 2-element sequence {line1, column1}
specifying the top-left character. s2 is a sequence {line2, column2}
specifying the bottom right character.

Comments: Because the character attributes are also saved, you will get the
correct foreground color, background color and other properties for
each character when you redisplay the text.

On DOS32, an attribute byte is made up of two 4-bit fields that
encode the foreground and background color of a character. The
high-order 4 bits determine the background color, while the low-
order 4 bits determine the foreground color.

This routine only works in text modes.

You might use this function in a text-mode graphical user interface
to save a portion of the screen before displaying a drop-down menu,
dialog box, alert box etc. On DOS32, if you are flipping video
pages, note that this function reads from the current active page.

Example: If the top 2 lines of the screen have:

Hello
World

And you execute:

s = save_text_image({1,1}, {2,5})

Then s is something like:

{"H-e-l-l-o-", "W-o-r-l-d-"}

 where '-' indicates the attribute bytes.

See Also: display_text_image • save_image • set_active_page •
get_screen_char

scroll

Syntax: include graphics.e
scroll(i1, i2, i3)

Description: Scroll a region of text on the screen either up (i1 positive) or down
(i1 negative) by i1 lines. The region is the series of lines on the
screen from i2 (top line) to i3 (bottom line), inclusive. New blank
lines will appear at the top or bottom.

Comments: You could perform the scrolling operation using a series of calls to
puts(), but scroll() is much faster.

The position of the cursor after scrolling is not defined.

Example Program: bin\ed.ex

See Also: clear_screen • text_rows

seek

Syntax: include file.e
i1 = seek(fn, i2)

Description: Seek (move) to any byte position in the file fn or to the end of file if

i2 is -1. For each open file there is a current byte position that is
updated as a result of I/O operations on the file. The initial file
position is 0 for files opened for read, write or update. The initial
position is the end of file for files opened for append. The value
returned by seek() is 0 if the seek was successful, and non-zero if it
was unsuccessful. It is possible to seek past the end of a file. If you
seek past the end of the file, and write some data, undefined bytes
will be inserted into the gap between the original end of file and your
new data.

Comments: After seeking and reading (writing) a series of bytes, you may need
to call seek() explicitly before you switch to writing (reading) bytes,
even though the file position should already be what you want.

This function is normally used with files opened in binary mode. In
text mode, DOS converts CR LF to LF on input, and LF to CR LF on
output, which can cause great confusion when you are trying to
count bytes.

Example: include file.e

integer fn
fn = open("mydata", "rb")
-- read and display first line of file 3 times:
for i = 1 to 3 do

puts(1, gets(fn))
if seek(fn, 0) then

puts(1, "rewind failed!\n")
end if

end for

See Also: where • open

sequence

Syntax: i = sequence(x)

Description: Return 1 if x is a sequence else return 0.

Comments: This serves to define the sequence type. You can also call it like an
ordinary function to determine if an object is a sequence.

Example 1: sequence s
s = {1,2,3}

Example 2: if sequence(x) then
sum = 0
for i = 1 to length(x) do

sum = sum + x[i]
end for

else
-- x must be an atom
sum = x

end if

See Also: atom, object, integer, atoms and sequences

set_active_page

Platform: DOS32

Syntax: include image.e
set_active_page(i)

Description: Select video page i to send all screen output to.

Comments: With multiple pages you can instantaneously change the entire
screen without causing any visible "flicker". You can also save the
screen and bring it back quickly.

video_config() will tell you how many pages are available in the
current graphics mode.

By default, the active page and the display page are both 0.

This works under DOS, or in a full-screen DOS window. In a partial-
screen window you cannot change the active page.

Example: include image.e

-- active & display pages are initially both 0
puts(1, "\nThis is page 0\n")
set_active_page(1) -- screen output will now go to page 1
clear_screen()
puts(1, "\nNow we've flipped to page 1\n")
if getc(0) then -- wait for key-press
end if
set_display_page(1) -- "Now we've ..." becomes visible
if getc(0) then -- wait for key-press
end if

set_display_page(0) -- "This is ..." becomes visible again
set_active_page(0)

See Also: get_active_page • set_display_page • video_config

set_display_page

Platform: DOS32

Syntax: include image.e
set_display_page(i)

Description: Set video page i to be mapped to the visible screen.

Comments: With multiple pages you can instantaneously change the entire
screen without causing any visible "flicker". You can also save the
screen and bring it back quickly.

video_config() will tell you how many pages are available in the
current graphics mode.

By default, the active page and the display page are both 0.

This works under DOS, or in a full-screen DOS window. In a partial-
screen window you cannot change the active page.

Example: See set_active_page() example.

See Also: get_display_page • set_active_page • video_config

set_rand

Syntax: include machine.e
set_rand(i1)

Description: Set the random number generator to a certain state, i1, so that you
will get a known series of random numbers on subsequent calls to
rand().

Comments: Normally the numbers returned by the rand() function are totally
unpredictable, and will be different each time you run your program.
Sometimes however you may wish to repeat the same series of
numbers, perhaps because you are trying to debug your program, or

maybe you want the ability to generate the same output (e.g. a
random picture) for your user upon request.

Example: sequence s, t
s = repeat(0, 3)
t = s

set_rand(12345)
s[1] = rand(10)
s[2] = rand(100)
s[3] = rand(1000)

set_rand(12345) -- same value for set_rand()
t[1] = rand(10) -- same arguments to rand() as before
t[2] = rand(100)
t[3] = rand(1000) -- at this point s and t will be identical

See Also: rand

set_vector

Platform: DOS32

Syntax: include machine.e
set_vector(i, s)

Description: Set s as the new address for handling interrupt number i. s must be
a protected mode far address in the form: {16-bit segment, 32-bit
offset}.

Comments: Before calling set_vector() you must store a machine-code interrupt
handling routine at location s in memory.

The 16-bit segment can be the code segment used by Euphoria. To
get the value of this segment see demo\dos32\hardint.ex. The
offset can be the 32-bit value returned by allocate(). Euphoria runs
in protected mode with the code segment and data segment
pointing to the same physical memory, but with different access
modes.

Interrupts occurring in either real mode or protected mode will be
passed to your handler. Your interrupt handler should immediately
load the correct data segment before it tries to reference memory.

Your handler might return from the interrupt using the iretd
instruction, or jump to the original interrupt handler. It should save

and restore any registers that it modifies.

You should lock the memory used by your handler to ensure that it
will never be swapped out. See lock_memory().

It is highly recommended that you study demo\dos32\hardint.ex
before trying to set up your own interrupt handler.

You should have a good knowledge of machine-level programming
before attempting to write your own handler.

You can call set_vector() with the far address returned by
get_vector(), when you want to restore the original handler.

Example: set_vector(#1C, {code_segment, my_handler_address})

Example
Program: demo\dos32\hardint.ex

See Also: get_vector • lock_memory • allocate

sin

Syntax: x2 = sin(x1)

Description: Return the sine of x1, where x1 is in radians.

Comments: This function may be applied to an atom or to all elements of a
sequence.

Example: sin_x = sin({.5, .9, .11})
-- sin_x is {.479, .783, .110}

See Also: cos • tan

sleep

Syntax: include misc.e
sleep(i)

Description: Suspend execution for i seconds.

Comments: On Win32 and Linux, the operating system will suspend your

process and schedule other processes. On DOS32, your program
will go into a busy loop for i seconds, during which time other
processes may run, but they will compete with your process for the
CPU.

Example: puts(1, "Waiting 15 seconds...\n")
sleep(15)
puts(1, "Done.\n")

See Also: lock_file • abort • time

sort

Syntax: include sort.e
s2 = sort(s1)

Description: Sort s1 into ascending order using a fast sorting algorithm. The
elements of s1 can be any mix of atoms or sequences. Atoms come
before sequences, and sequences are sorted "alphabetically" where
the first elements are more significant than the later elements.

Example 1: x = 0 & sort({7,5,3,8}) & 0
-- x is set to {0, 3, 5, 7, 8, 0}

Example 2: y = sort({"Smith", "Jones", "Doe", 5.5, 4, 6})
-- y is {4, 5.5, 6, "Doe", "Jones", "Smith"}

Example 3: database = sort({ {"Smith", 95.0, 29},
{"Jones", 77.2, 31},
{"Clinton", 88.7, 44} })

-- The 3 database "records" will be sorted by the first "field"
-- i.e. by name. Where the first field (element) is equal it
-- will be sorted by the second field etc.

-- after sorting, database is:

{ {"Clinton", 88.7, 44},
{"Jones", 77.2, 31},
{"Smith", 95.0, 29} }

See Also: custom_sort • compare • match • find

sound

Platform: DOS32

Syntax: include graphics.e
sound(i)

Description: Turn on the PC speaker at frequency i. If i is 0 the speaker will be
turned off.

Comments: On Win32 and Linux no sound will be made.

Example: sound(1000) -- starts a fairly high pitched sound

sprint

Syntax: include misc.e
s = sprint(x)

Description: The representation of x as a string of characters is returned. This is
exactly the same as print(fn, x), except that the output is returned
as a sequence of characters, rather than being sent to a file or
device. x can be any Euphoria object.

Comments: The atoms contained within x will be displayed to a maximum of 10
significant digits, just as with print().

Example 1: s = sprint(12345)
-- s is "12345"

Example 2: s = sprint({10,20,30}+5)
-- s is "{15,25,35}"

See Also: print • sprintf • value • get

sprintf

Syntax: s = sprintf(st, x)

Description: This is exactly the same as printf(), except that the output is
returned as a sequence of characters, rather than being sent to a
file or device. st is a format string, x is the value or sequence of

values to be formatted. printf(fn, st, x) is equivalent to puts(fn,
sprintf(st, x)).

Comments: Some typical uses of sprintf() are:

1 - Converting numbers to strings.
2 - Creating strings to pass to system().
3 - Creating formatted error messages that can be passed to a

common error message handler.

Example: s = sprintf("%08d", 12345)
-- s is "00012345"

See Also: printf • value • sprint • get • system

sqrt

Syntax: x2 = sqrt(x1)

Description: Calculate the square root of x1.

Comments: This function may be applied to an atom or to all elements of a
sequence.

Taking the square root of a negative number will abort your program
with a run-time error message.

Example: r = sqrt(16)
-- r is 4

See Also: log • power

system

Syntax: system(st, i)

Description: Pass a command string st to the operating system command
interpreter. The argument i indicates the manner in which to return
from the call to system():

When i is 0, the previous graphics mode is restored and the screen
is cleared.

When i is 1, a beep sound will be made and the program will wait for
the user to press a key before the previous graphics mode is
restored.

When i is 2, the graphics mode is not restored and the screen is not
cleared.

Comments: i = 2 should only be used when it is known that the command
executed by system() will not change the graphics mode.

You can use Euphoria as a sophisticated "batch" (.bat) language by
making calls to system() and system_exec().

system() will start a new DOS or Linux shell.

system() allows you to use command-line redirection of standard
input and output in the command string st.

Under DOS32, a Euphoria program will start off using extended
memory. If extended memory runs out the program will consume
conventional memory. If conventional memory runs out it will use
virtual memory, i.e. swap space on disk. The DOS command run by
system() will fail if there is not enough conventional memory
available. To avoid this situation you can reserve some conventional
(low) memory by typing:

SET CAUSEWAY=LOWMEM:xxx

where xxx is the number of K of conventional memory to reserve.
Type this before running your program. You can also put this in
autoexec.bat, or in a .bat file that runs your program. For example:

SET CAUSEWAY=LOWMEM:80
ex myprog.ex

This will reserve 80K of conventional memory, which should be
enough to run simple DOS commands like COPY, MOVE, MKDIR
etc.

Example 1: system("copy temp.txt a:\\temp.bak", 2)
-- note use of double backslash in literal string to get
-- single backslash

Example 2: system("ex \\test\\myprog.ex < indata > outdata", 2)
-- executes myprog by redirecting standard input and
-- standard output

Example
Program: bin\install.ex

See Also: system_exec • dir • current_dir • getenv • command_line

system_exec

Syntax: i1 = system_exec(st, i2)

Description: Try to run the command given by st. st must be a command to run
an executable program, possibly with some command-line
arguments. If the program can be run, i1 will be the exit code from
the program. If it is not possible to run the program, system_exec()
will return -1. i2 is a code that indicates what to do about the
graphics mode when system_exec() is finished. These codes are
the same as for system():

When i2 is 0, the previous graphics mode is restored and the screen
is cleared.

When i2 is 1, a beep sound will be made and the program will wait
for the user to press a key before the previous graphics mode is
restored.

When i2 is 2, the graphics mode is not restored and the screen is
not cleared.

Comments: On DOS32 or Win32, system_exec() will only run .exe and .com
programs. To run .bat files, or built-in DOS commands, you need
system(). Some commands, such as DEL, are not programs, they
are actually built-in to the command interpreter.

system_exec() does not allow the use of command-line redirection
in the command string st.

exit codes from DOS or Windows programs are normally in the
range 0 to 255, with 0 indicating "success".

You can run a Euphoria program using system_exec(). A Euphoria
program can return an exit code using abort().

system_exec() does not start a new DOS shell.

Example 1: integer exit_code
exit_code = system_exec("xcopy temp1.dat temp2.dat", 2)

if exit_code = -1 then
puts(2, "\n couldn't run xcopy.exe\n")

elsif exit_code = 0 then
puts(2, "\n xcopy succeeded\n")

else
printf(2, "\n xcopy failed with code %d\n", exit_code)

end if

Example 2: -- executes myprog with two file names as arguments
if system_exec("ex \\test\\myprog.ex indata outdata", 2) then

puts(2, "failure!\n")
end if

See Also: system • abort

tan

Syntax: x2 = tan(x1)

Description: Return the tangent of x1, where x1 is in radians.

Comments: This function may be applied to an atom or to all elements of a
sequence.

Example: t = tan(1.0)
-- t is 1.55741

See Also: sin • cos • arctan

text_color

Syntax: include graphics.e
text_color(i)

Description: Set the foreground text color. Add 16 to get blinking text in some
modes.

See graphics.e for a list of possible colors.

Comments: Text that you print after calling text_color() will have the desired
color.

When your program terminates, the last color that you selected and
actually printed on the screen will remain in effect. Thus you may
have to print something, maybe just '\n', in WHITE to restore white
text, especially if you are at the bottom line of the screen, ready to
scroll up.

Example: text_color(BRIGHT_BLUE)

See Also: bk_color

text_rows

Platform: DOS32, Win32

Syntax: include graphics.e
i2 = text_rows(i1)

Description: Set the number of lines on a text-mode screen to i1 if possible. i2
will be set to the actual new number of lines.

Comments: Values of 25, 28, 43 and 50 lines are supported by most video
cards.

See Also: graphics_mode

tick_rate

Platform: DOS32

Syntax: include machine.e
tick_rate(a)

Description: Specify the number of clock-tick interrupts per second. This
determines the precision of the time() library routine. It also affects
the sampling rate for time profiling.

Comments: tick_rate() is ignored on Win32 and Linux. The time resolution on
Win32 is always 100 ticks/second.

On a PC the clock-tick interrupt normally occurs at 18.2 interrupts
per second. tick_rate() lets you increase that rate, but not decrease
it.

tick_rate(0) will restore the rate to the normal 18.2 rate. Euphoria will
also restore the rate automatically when it exits, even when it finds
an error in your program.

If a program runs in a DOS window with a tick rate other than 18.2,
the time() function will not advance unless the window is the active
window.

While ex.exe is running, the system will maintain the correct time of
day. However if ex.exe should crash (e.g. you see a "CauseWay..."
error) while the tick rate is high, you (or your user) may need to
reboot the machine to restore the proper rate. If you don't, the
system time may advance too quickly. This problem does not occur
on Windows 95/98/NT, only on DOS or Windows 3.1. You will
always get back the correct time of day from the battery-operated
clock in your system when you boot up again.

Example: tick_rate(100)
-- time() will now advance in steps of .01 seconds
-- instead of the usual .055 seconds

See Also: time • time profiling

time

Syntax: a = time()

Description: Return the number of seconds since some fixed point in the past.

Comments: Take the difference between two readings of time(), to measure, for
example, how long a section of code takes to execute.

The resolution with DOS32 is normally about 0.05 seconds. On
Win32 and Linux it's about 0.01 seconds.

Under DOS32 you can improve the resolution by calling tick_rate().

Under DOS32 the period of time that you can measure is limited to
24 hours. After that, the value returned by time() will reset and start
over.

Example: constant ITERATIONS = 1000000
integer p
atom t0, loop_overhead

t0 = time()
for i = 1 to ITERATIONS do

-- time an empty loop
end for
loop_overhead = time() - t0

t0 = time()
for i = 1 to ITERATIONS do

p = power(2, 20)
end for
? (time() - t0 - loop_overhead)/ITERATIONS
-- calculates time (in seconds) for one call to power

See Also: date • tick_rate

trace

Syntax: with trace
trace(i)

Description: If i is 1 or 2, turn on full-screen interactive statement
tracing/debugging. If i is 3, turn on tracing of statements to a file
called ctrace.out. If i is 0, turn off tracing. When i is 1 a color display
appears. When i is 2 a monochrome trace display appears. Tracing
can only occur in routines that were compiled "with trace", and
trace() has no effect unless it is executed in a "with trace" section
of your program.

See Part I - 3.1 Debugging for a full discussion of tracing /
debugging.

Comments: Use trace(2) if the color display is hard to view on your system.

trace(3) is supported by the Complete Edition (only) of the Euphoria
To C Translator. Interactive tracing is not supported with the
Translator.

All forms of trace() are supported in the Public Domain interpreter,
but only for programs up to 300 statements in size. For larger
programs you'll need the Complete Edition interpreter. Note that
stamped include files such as Win32Lib.ew and the files in
euphoria\include do not add anything to your statement count, but
you need to place your trace() statement after include win32lib.ew
(or other large include file) to benefit from the stamp.

Example: if x < 0 then
-- ok, here's the case I want to debug...
trace(1)
-- etc.
...

end if

See Also: profile • debugging and profiling

unlock_file

Syntax: include file.e
unlock_file(fn, s)

Description: Unlock an open file fn, or a portion of file fn. You must have
previously locked the file using lock_file(). On DOS32 and Win32
you can unlock a range of bytes within a file by specifying the s
parameter as {first_byte, last_byte}. The same range of bytes must
have been locked by a previous call to lock_file(). On Linux you can
currently only lock or unlock an entire file. The s parameter should
be {} when you want to unlock an entire file. On Linux, s must
always be {}.

Comments: You should unlock a file as soon as possible so other processes can
use it.

Any files that you have locked, will automatically be unlocked when
your program terminates.

See lock_file() for further comments and an example.

See Also: lock_file

unregister_block

Syntax: include machine.e (or safe.e)
unregister_block(a)

Description: Remove a block of memory from the list of safe blocks maintained
by safe.e (the debug version of machine.e). The block starts at
address a.

Comments: This routine is only meant to be used for debugging purposes. Use
it to unregister blocks of memory that you have previously registered

using register_block(). By unregistering a block, you remove it from
the list of safe blocks maintained by safe.e. This prevents your
program from performing any further reads or writes of memory
within the block.

See register_block() for further comments and an example.

See Also: register_block • safe.e

upper

Syntax: include wildcard.e
x2 = upper(x1)

Description: Convert an atom or sequence to upper case.

Example: s = upper("Euphoria")
-- s is "EUPHORIA"

a = upper('g')
-- a is 'G'

s = upper({"Euphoria", "Programming"})
-- s is {"EUPHORIA", "PROGRAMMING"}

See Also: lower

use_vesa

Platform: DOS32

Syntax: include machine.e
use_vesa(i)

Description: use_vesa(1) will force Euphoria to use the VESA graphics standard.
This may cause Euphoria programs to work better in SVGA graphics
modes with certain video cards. use_vesa(0) will restore Euphoria's
original method of using the video card.

Comments: Most people can ignore this. However if you experience difficulty in
SVGA graphics modes you should try calling use_vesa(1) at the
start of your program before any calls to graphics_mode().

Arguments to use_vesa() other than 0 or 1 should not be used.

Example: use_vesa(1)
fail = graphics_mode(261)

See Also: graphics_mode

value

Syntax: include get.e
s = value(st)

Description: Read the string representation of a Euphoria object, and compute
the value of that object. A 2-element sequence, {error_status,
value} is actually returned, where error_status can be one of:

GET_SUCCESS -- a valid object representation was found
GET_EOF -- end of string reached too soon
GET_FAIL -- syntax is wrong

Comments: This works the same as get(), but it reads from a string that you
supply, rather than from a file or device.

After reading one valid representation of a Euphoria object, value()
will stop reading and ignore any additional characters in the string.
For example, "36" and "36P" will both give you {GET_SUCCESS,
36}.

Example 1: s = value("12345"}
-- s is {GET_SUCCESS, 12345}

Example 2: s = value("{0, 1, -99.9}")
-- s is {GET_SUCCESS, {0, 1, -99.9}}

Example 3: s = value("+++")
-- s is {GET_FAIL, 0}

See Also: get • sprintf • print

video_config

Platform: DOS32, Linux

Syntax: include graphics.e
s = video_config()

Description: Return a sequence of values describing the current video
configuration:

{color monitor?, graphics mode, text rows, text columns, xpixels,
ypixels, number of colors, number of pages}

The following constants are defined in graphics.e:

global constant VC_COLOR = 1,
VC_MODE = 2,
VC_LINES = 3,
VC_COLUMNS = 4,
VC_XPIXELS = 5,
VC_YPIXELS = 6,
VC_NCOLORS = 7,
VC_PAGES = 8

Comments: This routine makes it easy for you to parameterize a program so it
will work in many different graphics modes.

On the PC there are two types of graphics mode. The first type, text
mode, lets you print text only. The second type, pixel-graphics
mode, lets you plot pixels, or points, in various colors, as well as
text. You can tell that you are in a text mode, because the
VC_XPIXELS and VC_YPIXELS fields will be 0. Library routines
such as polygon(), draw_line(), and ellipse() only work in a pixel-
graphics mode.

Example: vc = video_config() -- in mode 3 with 25-lines of text:
-- vc is {1, 3, 25, 80, 0, 0, 32, 8}

See Also: graphics_mode

wait_key

Syntax: include get.e
i = wait_key()

Description: Return the next key pressed by the user. Don't return until a key is
pressed.

Comments: You could achieve the same result using get_key() as follows:

while 1 do
k = get_key()
if k != -1 then

exit
end if

end while

However, on multi-tasking systems like Windows or Linux, this
"busy waiting" would tend to slow the system down. wait_key() lets
the operating system do other useful work while your program is
waiting for the user to press a key.

You could also use getc(0), assuming file number 0 was input from
the keyboard, except that you wouldn't pick up the special codes for
function keys, arrow keys etc.

See Also: get_key • getc

walk_dir

Syntax: include file.e
i1 = walk_dir(st, i2, i3)

Description: This routine will "walk" through a directory with path name given by
st. i2 is the routine id of a routine that you supply. walk_dir() will call
your routine once for each file and subdirectory in st. If i3 is non-zero
(TRUE), then the subdirectories in st will be walked through
recursively.

The routine that you supply should accept the path name and dir()
entry for each file and subdirectory. It should return 0 to keep going,
or non-zero to stop walk_dir().

Comments: This mechanism allows you to write a simple function that handles
one file at a time, while walk_dir() handles the process of walking
through all the files and subdirectories.

By default, the files and subdirectories will be visited in alphabetical
order. To use a different order, set the global integer my_dir to the
routine id of your own modified dir() function that sorts the directory
entries differently. See the default dir() function in file.e.

Example: function look_at(sequence path_name, sequence entry)
-- this function accepts two sequences as arguments
printf(1, "%s\\%s: %d\n",

{path_name, entry[D_NAME], entry[D_SIZE]})
return 0 -- keep going

end function

exit_code = walk_dir("C:\\MYFILES", routine_id("look_at"), TRUE)

Example
Program: euphoria\bin\search.ex

See Also: dir • current_dir

where

Syntax: include file.e
i = where(fn)

Description: This function returns the current byte position in the file fn. This
position is updated by reads, writes and seeks on the file. It is the
place in the file where the next byte will be read from, or written to.

See Also: seek • open

wildcard_file

Syntax: include wildcard.e
i = wildcard_file(st1, st2)

Description: Return 1 (true) if the filename st2 matches the wild card pattern st1.
Return 0 (false) otherwise. This is similar to DOS wildcard matching,
but better in some cases. * matches any 0 or more characters, ?
matches any single character. Character comparisons are not case

sensitive.

Comments: You might use this function to check the output of the dir() routine
for file names that match a pattern supplied by the user of your
program.

In DOS "*ABC.*" will match all files. wildcard_file("*ABC.*", s) will
only match when the file name part has "ABC" at the end (as you
would expect).

Example 1: i = wildcard_file("AB*CD.?", "aB123cD.e")
-- i is set to 1

Example 2: i = wildcard_file("AB*CD.?", "abcd.ex")
-- i is set to 0, because the file type has 2 letters not 1

Example
Program: bin\search.ex

See Also: wildcard_match • dir

wildcard_match

Syntax: include wildcard.e
i = wildcard_match(st1, st2)

Description: This function performs a general matching of a string against a
pattern containing * and ? wildcards. It returns 1 (true) if string st2
matches pattern st1. It returns 0 (false) otherwise. * matches any 0
or more characters. ? matches any single character. Character
comparisons are case sensitive.

Comments: If you want case insensitive comparisons, pass both st1 and st2
through upper(), or both through lower() before calling
wildcard_match().

If you want to detect a pattern anywhere within a string, add * to
each end of the pattern:

i = wildcard_match('*' & pattern & '*', string)

There is currently no way to treat * or ? literally in a pattern.

Example 1: i = wildcard_match("A?B*", "AQBXXYY")
-- i is 1 (TRUE)

Example 2: i = wildcard_match("*xyz*", "AAAbbbxyz")
-- i is 1 (TRUE)

Example 3: i = wildcard_match("A*B*C", "a111b222c")
-- i is 0 (FALSE) because upper/lower case doesn't match

Example
Program: bin\search.ex

See Also: wildcard_file • match • upper • lower • compare

wrap

Syntax: include graphics.e
wrap(i)

Description: Allow text to wrap at the right margin (i = 1) or get truncated (i = 0).

Comments: By default text will wrap.

Use wrap() in text modes or pixel-graphics modes when you are
displaying long lines of text.

Example: puts(1, repeat('x', 100) & "\n\n")
-- now have a line of 80 'x' followed a line of 20 more 'x'
wrap(0)
puts(1, repeat('x', 100) & "\n\n")
-- creates just one line of 80 'x'

See Also: puts • position

xor_bits

Syntax: x3 = xor_bits(x1, x2)

Description: Perform the logical XOR (exclusive OR) operation on corresponding
bits in x1 and x2. A bit in x3 will be 1 when one of the two
corresponding bits in x1 or x2 is 1, and the other is 0.

Comments: The arguments to this function may be atoms or sequences. The
rules for operations on sequences apply.

The arguments must be representable as 32-bit numbers, either
signed or unsigned.

If you intend to manipulate full 32-bit values, you should declare
your variables as atom, rather than integer. Euphoria's integer type
is limited to 31-bits. Results are treated as signed numbers. They
will be negative when the highest-order bit is 1.

Example 1: a = xor_bits(#0110, #1010)
-- a is #1100

See Also: and_bits • or_bits • not_bits • int_to_bits • int_to_bytes

db_create

Syntax: include database.e
i1 = db_create(s, i2)

Description: Create a new database. A new database will be created in the file
with path given by s. i2 indicates the type of lock that will be applied
to the file as it is created. i1 is an error code that indicates success
or failure. The values for i2 can be either DB_LOCK_NO (no lock) or
DB_LOCK_EXCLUSIVE (exclusive lock). i1 is DB_OK if the new
database is successfully created. This database becomes the
current database to which all other database operations will apply.

Comments: If the path, s, does not end in .edb, it will be added automatically.

If the database already exists, it will not be overwritten. db_create()
will return DB_EXISTS_ALREADY.

A version number is stored in the database file so future versions of
the database software can recognize the format, and possibly read it
and deal with it in some way.

Example: if db_create("mydata", DB_LOCK_NO) != DB_OK then
puts(2, "Couldn't create the database!\n")
abort(1)

end if

See Also: db_open • db_close

db_open

Syntax: include database.e
i1 = db_open(s, i2)

Description: Open an existing Euphoria database. The file containing the
database is given by s. i1 is a return code indicating success or
failure. i2 indicates the type of lock that you want to place on the
database file while you have it open. This database becomes the
current database to which all other database operations will apply.

Comments: The types of lock that you can use are: DB_LOCK_NO (no lock),
DB_LOCK_SHARED (shared lock for read-only access) and
DB_LOCK_EXCLUSIVE (for read/write access).
DB_LOCK_SHARED is only supported on Linux. It allows you to
read the database, but not write anything to it. If you request
DB_LOCK_SHARED on Win32 or DOS32 it will be treated as if you
had asked for DB_LOCK_EXCLUSIVE.

The return codes are: DB_OK - success, DB_OPEN_FAIL - couldn't
open the file, and DB_LOCK_FAIL - couldn't lock the file in the
manner requested. If the lock fails, your program should wait a few
seconds and try again. Another process might be currently
accessing the database.

DOS programs will typically get a "critical error" message if they try
to access a database that is currently locked.

Example: tries = 0
while 1 do

err = db_open("mydata", DB_LOCK_SHARED)
if err = DB_OK then

exit
elsif err = DB_LOCK_FAIL then

tries += 1
if tries > 10 then

puts(2, "too many tries, giving up\n")
abort(1)

else
sleep(5)

end if
else

puts(2, "Couldn't open the database!\n")
abort(1)

end if
end while

See Also: db_create • db_close

db_select

Syntax: include database.e
i = db_select(s)

Description: Choose a new, already open, database to be the current database.
Subsequent database operations will apply to this database. s is the
path of the database file as it was originally opened with db_open()
or db_create(). i is a return code indicating success (DB_OK) or
failure.

Comments: When you create (db_create) or open (db_open) a database, it
automatically becomes the current database. Use db_select() when
you want to switch back and forth between open databases,
perhaps to copy records from one to the other.

After selecting a new database, you should select a table within that
database using db_select_table().

Example: if db_select("employees") != DB_OK then
puts(2, "Couldn't select employees database\n")

end if

See Also: db_open

db_close

Syntax: include database.e
db_close()

Description: Unlock and close the current database.

Comments: Call this procedure when you are finished with the current database.
Any lock will be removed, allowing other processes to access the
database file.

See Also: db_open

db_create_table

Syntax: include database.e
i = db_create_table(s)

Description: Create a new table within the current database. The name of the
table is given by the sequence of characters, s, and may not be the
same as any existing table in the current database.

Comments: The table that you create will initially have 0 records. It becomes the
current table.

Example: if db_create_table("my_new_table") != DB_OK then
puts(2, "Couldn't create my_new_table!\n")

end if

See Also: db_delete_table

db_select_table

Syntax: include database.e
i = db_select_table(s)

Description: The table with name given by s, becomes the current table. The
return code, i, will be DB_OK if the table exists in the current
database, otherwise you'll get DB_OPEN_FAIL.

Comments: All record-level database operations apply automatically to the
current table.

Example: if db_select_table("salary") != DB_OK then
puts(2, "Couldn't find salary table!\n")
abort(1)

end if

See Also: db_create_table • db_delete_table

db_delete_table

Syntax: include database.e
delete_table(s)

Description: Delete a table in the current database. The name of the table is
given by s.

Comments: All records are deleted and all space used by the table is freed up. If
the table is the current table, the current table becomes
undefined.

If there is no table with the name given by s, then nothing happens.

See Also: db_create_table • db_select_table

db_table_list

Syntax: s = db_table_list()

Description: Return a sequence of all the table names in the current database.
Each element of s is a sequence of characters containing the name
of a table.

Example: sequence names
names = db_table_list()
for i = 1 to length(names) do

puts(1, names[i] & '\n')
end for

See Also: db_create_table

db_table_size

Syntax: include database.e
i = db_table_size()

Description: Return the current number of records in the current table.

Example: -- look at all records in the current table
for i = 1 to db_table_size() do

if db_record_key(i) = 0 then
puts(1, "0 key found\n")
exit

end if
end for

See Also: db_select_table

db_find_key

Syntax: include database.e
i = db_find_key(x)

Description: Find the record in the current table with key value x. If found, the
record number will be returned. If not found, the record number that
key would occupy, if inserted, is returned as a negative number.

Comments: A fast binary search is used to find the key in the current table. The
number of comparisons is proportional to the log of the number of
records in the table.

You can select a range of records by searching for the first and last
key values in the range. If those key values don't exist you'll get a
negative value showing where they would be if they existed.

Example: rec_num = db_find_key("Millennium")
if rec_num > 0 then

? db_record_key(rec_num)
? db_record_data(rec_num)

else
puts(2, "Not found, but if you insert it,\n")
puts(2, "it will be #%d\n", -rec_num)

end if

See Also: db_record_key • db_record_data • db_insert

db_record_key

Syntax: include database.e
x = db_record_key(i)

Description: Return the key portion of record number i in the current table.

Comments: Each record in a Euphoria database consists of a key portion and a
data
portion. Each of these can be any Euphoria atom or sequence.

Example: puts(1, "The 6th record has key value: ")
? db_record_key(6)

See Also: db_record_data

db_record_data

Syntax: include database.e
x = db_record_data(i)

Description: Return the data portion of record number i in the current table.

Comments: Each record in a Euphoria database consists of a key portion and a
data portion. Each of these can be any Euphoria atom or sequence.

Example: puts(1, "The 6th record has data value: ")
? db_record_data(6)

See Also: db_record_key

db_insert

Syntax: include database.e
i = db_insert(x1, x2)

Description: Insert a new record into the current table. The record key is x1 and
the record data is x2. Both x1 and x2 can be any Euphoria data
objects, atoms or sequences. The return code is given by i.

Comments: Within a table, all keys must be unique. db_insert() will fail with
DB_EXISTS_ALREADY if a record already exists with the same key
value.

Example: if db_insert("Smith", {"Peter", 100, 34.5}) != DB_OK then
puts(2, "insert failed!\n")

end if

See Also: db_find_key • db_record_key • db_record_data

db_delete_record

Syntax: include database.e
db_delete_record(i)

Description: Delete record number i from the current table.

Comments: The record number, i, must be an integer from 1 to the number of

records in the current table.

Example: db_delete_record(55)

See Also: db_insert • db_table_size

db_replace_data

Syntax: include database.e
db_replace_data(i, x)

Description: Replace the data portion of record number i, with x. x can be any
Euphoria atom or sequence.

Comments: The record number, i, must be from 1 to the number of records in
the current table.

Example: db_replace(67, {"Peter", 150, 34.5})

See Also: db_delete_record

db_compress

Syntax: include database.e
i = db_compress()

Description: Compress the current database. The current database is copied
to a new file such that any blocks of unused space are eliminated. If
successful, i will be set to DB_OK, and the new compressed
database file will retain the same name. As a backup, the original,
uncompressed file will be renamed with an extension of .t0 (or .t1,
.t2 ,..., .t99). If the compression is unsuccessful, the database will be
left unchanged and no backup will be made.

Comments: When you delete items from a database, you create blocks of free
space within the database file. The system keeps track of these
blocks and tries to use them for storing new data that you insert.
db_compress() will copy the current database without copying
these free areas. The size of the database file may therefore be
reduced.

If the backup filenames reach .t99 you will have to delete some of
them.

Example: if db_compress() != DB_OK then
puts(2, "compress failed!\n")

end if

See Also: db_create

db_dump

Syntax: include database.e
db_dump(fn, i)

Description: Print the contents of an already-open Euphoria database. The
contents are printed to file or device fn. All records in all tables are
shown. If i is non-zero, then a low-level byte-by-byte dump is also
shown. The low-level dump will only be meaningful to someone who
is familiar with the internal format of a Euphoria database.

Example: if db_open("mydata", DB_LOCK_SHARED) != DB_OK then
puts(2, "Couldn't open the database!\n")
abort(1)

end if
fn = open("db.txt", "w")
db_dump(fn, 0)

See Also: db_open

db_fatal_id

Syntax: include database.e
db_fatal_id = i

Description: You can catch certain fatal database errors by installing your own
fatal error handler. Simply overwrite the global variable db_fatal_id
with the routine id of one of your own procedures. The procedure
must take a single argument which is a sequence. When certain
errors occur your procedure will be called with an error message
string as the argument. Your procedure should end by calling
abort().

Example: procedure my_fatal(sequence msg)
puts(2, "A fatal error occurred - " & msg & '\n')
abort(1)

end procedure

db_fatal_id = routine_id("my_fatal")

See Also: db_close

How To Install Euphoria on DOS/Windows

To install Euphoria you need:
• a 386 or higher PC
• at least 640K of memory
• 5 Mb of free hard disk space

The Install Procedure

You can install under Windows by double-clicking on install.bat
Alternatively, in a DOS window you can:

 1. cd into the directory containing the Euphoria files

 2. type:
 install

If you have downloaded Euphoria and pkunzip'd in (say) c:\tmp you would type:

 cd c:\tmp
 install

You will be asked which drive to put the EUPHORIA directory on. Later you will be
asked to approve any changes to your autoexec.bat file. Finally, you need to
shut down and restart (soft-reboot) your computer so the new autoexec.bat
will take effect.

After installing, see doc\what2do.doc (or html\what2do.htm) for ideas on how to
use this package. You should also read readme.doc (or readme.htm) if you
haven't done so already.

 Enjoy!

How to Uninstall Euphoria

1. delete the EUPHORIA directory

2. remove the 2 references to "EUPHORIA" from your autoexec.bat file

If you have problems installing ...

• If the install appeared to run ok, did you remember to shut down and restart
your computer?

• If a failure happens during the install, shut down any large applications that you
have running, and try it again.

• If your system does not use an autoexec.bat file (e.g. Windows NT, 2000 etc.)
then set the EUDIR and PATH variables in whatever way your system allows.
For example on Windows 2000, select Start Menu - Settings - Control Panel -
System - Advanced then click the "Environment Variables" button. Click the top
"New..." button then enter EUDIR as the Variable Name and c:\euphoria (or
whatever is correct) for the value, then click OK. Find PATH in the list, select it,
then click "Edit...". Add ;c:\euphoria\bin at the end and click ok.

• Some systems, such as Windows ME, have an autoexec.bat file, but it's a
hidden file that might not show up in a directory listing. Nevertheless it's there,
and you can view it and edit it if necessary by typing, for example: notepad
c:\autoexec.bat in a DOS window.

• If you have an autoexec.bat file, but it doesn't contain a PATH command, you
will have to create one that includes C:\EUPHORIA\BIN.

• Disable or cut back programs such as SMARTDRV that may be consuming
large amounts of extended memory.
Try typing:

SET CAUSEWAY=LOWMEM:80

before you run install.bat
• If you have less than 20 megabytes of free disk space, free up a few

megabytes, and run install.bat again.
• There are several possible reasons why the install program will decide not to

edit your autoexec.bat file. If this happens you should follow the manual
procedure described below.

• If you need help installing Euphoria, send e-mail to: rds@RapidEuphoria.com.

How to manually edit autoexec.bat

• In some cases the install program will not be able to modify your autoexec.bat
file for you automatically, and you will have to do the job yourself using a text
editor.

• In the file c:\autoexec.bat add C:\EUPHORIA\BIN to the list of directories in
your PATH command. You might use the MS-DOS Edit command, Windows
Notepad or any other text editor to do this. You can also go to the Start Menu,
select Run, type in sysedit and press Enter. autoexec.bat should appear as

one of the system files that you can edit and save.

• In the same autoexec.bat file add a new line:

SET EUDIR=C:\EUPHORIA

• The EUDIR environment variable indicates the full path to the main Euphoria
directory.

• Reboot (restart) your machine. This will define your new PATH and EUDIR
environment variables.

What To Do?

Now that you have installed Euphoria, here are some things you can try:

• Run each of the demo programs in the demo directory. You just type ex or exw
or exu followed by the name of the .ex or .exw or .exu file, e.g.

ex buzz

will run the file buzz.ex. (Depending on your graphics card you may have to
edit a line in some of the .ex files to select a different graphics mode. Most
demos will try to use SVGA modes. You need DOS mouse support to run
mouse.ex and ttt.ex).

You can also double-click on a .ex (.exw) file from Windows, but you will have
to "associate" .ex files with ex.exe and .exw files with exw.exe. A few of the
demos are meant to be run from the command line, but most will look ok from
Windows.

• Use the Euphoria editor, ed, to edit a Euphoria file. Notice the use of colors.
You can adjust these colors along with the cursor size and many other
"user-modifiable" parameters by editing constant declarations in ed.ex.
Use Esc q to quit the editor or Esc h for help.

• Try the benchmarks in demo\bench. Do you get the same ratios as we did in
comparison with QBasic (or Perl or Python)? If you have a C/C++ compiler,
how much faster can you get these benchmarks to run? We bet you'll be
surprised, especially when you consider that Euphoria runs the benchmarks
with subscript checking and a host of other run-time checks.

• Read the manual in doc\refman.doc or view the HTML version of the
manual by double-clicking it and starting your Web browser. The simple
expressive power of Euphoria makes this manual much shorter than manuals
for other languages. If you have a specific question, type guru followed by a list
of words. The guru program will search all the .doc files as well as all the
example programs and other files, and will present you with a sorted list of the
most relevant chunks of text that might answer your enquiry.

• Try running a Euphoria program with tracing turned on. Add:

with trace
trace(1)

at the beginning of any .ex or .exw file.

• Run some of the tutorial programs in euphoria\tutorial.

• Try modifying some of the demo programs.

First some simple modifications (takes less than a minute):

What if there were 100 C++ ships in Language Wars? What if sb.ex had to
move 1000 balls instead of 125? Change some parameters in polygon.ex. Can
you get prettier pictures to appear? Add some funny phrases to buzz.ex.

Then, some slightly harder ones (takes a few minutes):

Define a new function of x and y in plot3d.ex.

Then a challenging one (takes an hour or more):

Set up your own customized database by defining the fields in mydata.ex.

Then a major project (several days or weeks):

Write a smarter 3D TicTacToe algorithm.

• Try writing your own program in Euphoria. A program can be as simple as:

? 2 + 2

Remember that after any error you can simply type ed to jump into the
editor at the offending file and line.

Once you get used to it, you'll be developing programs much faster in Euphoria
than you could in BASIC, Fortran, Pascal, C/C++ or any other language that we
are aware of.

Platform-Specific Issues for Euphoria

1. Introduction

Euphoria programs can currently run on three different platforms. More platforms
will be added in the future. The first platform is called DOS32, since it depends on
the DOS operating system, but with the CPU operating in 32-bit (protected) mode.

The second platform is called Win32, since the underlying operating system is
Microsoft Windows, in particular, the 32-bit version of Windows that is used on
Windows 95, NT and later systems.

The third platform is Linux. Linux is based on the UNIX operating system. It has
recently become very popular on PCs. Linux on the PC is also a 32-bit system.

The Euphoria for DOS32+Win32 .zip file contains two .exe files. The first is called
ex.exe. It runs Euphoria programs on the DOS32 platform. The second is
exw.exe. It runs Euphoria programs on the Win32 platform. Euphoria programs
that are meant to be run on the Win32 platform have a .exw file type, while
programs that are meant to be run on the DOS32 platform have a .ex file type.

The Euphoria for Linux .tar file contains only exu. It runs Euphoria programs on the
Linux platform. Euphoria programs intended for Linux have a .exu file type.

Many Euphoria programs can be run on two, or all three platforms without change.
The file type should indicate the preferred platform for the program. Any Euphoria
interpreter will try to run any Euphoria file. You just have to specify the full name of
the file, including the type.

Sometimes you'll find that the majority of your code will be the same on all
platforms, but some small parts will have to be written differently for each platform.
Use the platform() built-in function to tell you which platform you are currently
running on.

2. The DOS32 Platform

If you are new to programming, you should start off with ex.exe on the DOS32
platform, or perhaps exu on the Linux platform. Windows programming is
somewhat more complicated, no matter which language you use.

Programs run in 32-bit (protected) mode and have access to all of the
megabytes of memory on the machine. Most programming languages for DOS

limit you to 16-bit real mode. This makes it impossible to access more than 640K
of memory at one time. Your machine might have 32Mb of memory, but your
program will run out of memory after using 640K. QBasic is even worse. It limits
you to just 160K.

DOS32 programs are typically run with the screen in either text mode or pixel
graphics mode, and there is a large library of Euphoria routines that you can call.
There is rarely any need to call DOS directly, but you can do this using the
dos_interrupt() routine. You can also peek and poke into special memory locations
to achieve high-speed graphics and get access to low-level details of the system.

Under DOS32 for Windows 95 and later systems, Euphoria files can have long
filenames, and programs can open long filename files for reading and writing, but
not for creating a new file.

Under pure DOS, outside of Windows, there is no system swap file so the DOS-
extender built in to ex.exe will create one for possible use by your program. This
file is created when your Euphoria program starts up under DOS, and is deleted
when your program terminates. It starts as a 0-byte file and grows only if actual
swapping is needed. It is created in the directory on your hard disk pointed to by
the TEMP or TMP environment variable. If neither of these variables have been
set, it is created in the directory containing either ex.exe or your bound Euphoria
.exe file. You can force it to be created in a particular directory by setting the
CAUSEWAY environment variable as follows:

SET CAUSEWAY=SWAP:path

where path is the full path to the directory. You can prevent the creation of a DOS
swap file with:

SET CAUSEWAY=NOVM

When disk swapping activity occurs, your program will run correctly but will slow
down. A better approach might be to free up more extended memory by cutting
back on SMARTDRV and other programs that reserve large amounts of extended
memory for themselves.

When your free disk space is less than the amount of RAM in your machine, no
swap file will be created.

3. The Win32 Platform

Euphoria for Win32 (exw.exe) has a lot in common with Euphoria for DOS32. With
Win32 you also have access to all of the memory on your machine. Most library
routines work the same way on each platform. Many existing DOS32 text mode

programs can be run using exw without any change. With exw you can run
programs from the command line, and display text on a standard (typically 25 line x
80 column) DOS window. The DOS window is known as the console in Windows
terminology. Euphoria makes the transition from DOS32 text mode programming,
to simple Win32 console programming, trivial. You can add calls to Win32 C
functions and later, if desired, you can create real Windows GUI windows.

A console window will be created automatically when a Win32 Euphoria program
first outputs something to the screen or reads from the keyboard. Currently, you
will also see a console window when you read standard input or write to standard
output, even when these have been redirected to files. The console will disappear
when your program finishes execution, or via a call to free_console(). If there is
something on the console that you want your user to read, you should prompt him
and wait for his input before terminating. To prevent the console from quickly
disappearing you might include a statement such as:

if getc(0) then
end if

which will wait for the user enter something.

Under Win32, long filenames are fully supported for reading and writing and
creating.

3.1 High-Level Win32 Programming

Thanks to David Cuny, Derek Parnell, Judith Evans and many others, there's a
package called Win32Lib that you can use to develop Windows GUI applications
in Euphoria. It's remarkably easy to learn and use, and comes with good
documentation and many small example programs. You can download the
package from the Euphoria Web site. Also download Judith's Enhanced IDE for
Win32Lib.

3.2 Low-Level Win32 Programming

To allow access to Win32 at a lower level, Euphoria provides a mechanism
for calling any C function in any Win32 API .dll file, or indeed in any 32-bit
Windows .dll file that you create or someone else creates. There is also a
call-back mechanism that lets Windows call your Euphoria routines. Call-
backs are necessary when you create a graphical user interface.

To make full use of the Win32 platform, you need documentation on 32-bit
Windows programming, in particular the Win32 Application Program Interface
(API), including the C structures defined by the API. There is a large Win32.HLP

file (c) Microsoft that is available with many programming tools for Windows. There
are numerous books available on the subject of Win32 programming for C/C++.
You can adapt most of what you find in those books to the world of Euphoria
programming for Win32. A good book is:

Programming Windows
by Charles Petzold

Microsoft Press

A Win32 API Windows help file (8 Mb) can be downloaded from Borland's Web
site:

ftp://ftp.inprise.com/pub/delphi/techpubs/delphi2/win32.zip

See also the Euphoria Archive Web page - "documentation".

4. The Linux Platform

Euphoria for Linux shares certain features with Euphoria for DOS32, and shares
other features with Euphoria for Win32.

As with Win32 and DOS32, you can write text on a console, or xterm window, in
multiple colors and at any line or column position.

Just as in Win32, you can call C routines in shared libraries and C code can call
back to your Euphoria routines.

Euphoria for Linux does not have integrated support for pixel graphics like DOS32,
but Pete Eberlein has created a Euphoria interface to svgalib.

X windows GUI programming is currently possible using Irv Mullin's interface to the
graphapp package.

When porting code from DOS or Windows to Linux, you'll notice the following
differences:

• Some of the numbers assigned to the 16 main colors in graphics.e are different.
If you use the constants defined in graphics.e you won't have a problem. If you
hard-code your color numbers you will see that blue and red have been
switched etc.

• The key codes for special keys such as Home, End, arrow keys are different,
and there are some additional differences when you run under XTERM.

• The Enter key is code 10 (line-feed) on Linux, where on DOS/Windows it was

13 (carriage-return).

• Linux uses '/' (slash) on file paths. DOS/Windows uses '\\' (backslash).

• Highly specialized things such as dos_interrupt() obviously won't work on Linux.

• Calls to system() and system_exec() that contain DOS commands will
obviously have to be changed to the corresponding Linux command. e.g. "DEL"
becomes "rm", and "MOVE" becomes "mv".

5. Interfacing with C Code (Win32 and Linux)

On Win32 and Linux it's possible to interface Euphoria code and C code. Your
Euphoria program can call C routines and read and write C variables. C routines
can even call your Euphoria routines. The C code must reside in a Win32 dynamic
link library (.dll file), or a Linux shared library (.so file). By interfacing with .dll's and
shared libraries, you can access the full programming interface on both of these
systems.

5.1 Calling C Functions

To call a C function in a .dll or .so file you must perform the following steps:

1. Open the .dll or .so file that contains the C function by calling open_dll()
contained in euphoria\include\dll.e.

2. Define the C function, by calling define_c_func() or define_c_proc() in dll.e.
This tells Euphoria the number and type of the arguments as well as the type of
value returned. Euphoria currently supports all C integer and pointer types as
arguments and return values. It also supports floating-point arguments and
return values (C double type). It is currently not possible to pass C structures by
value or receive a structure as a function result, although you can certainly pass
a pointer to a structure and get a pointer to a structure as a return value.
Passing C structures by value is hardly ever required in Linux or the Win32 API.

3. Call the C function by calling c_func() or c_proc().

Example: (see next page)

include dll.e

atom user32
integer LoadIcon, icon

user32 = open_dll("user32.dll")

-- The name of the routine in user32.dll is "LoadIconA".
-- It takes a pointer and an int as arguments,
-- and it returns an int.

LoadIcon = define_c_func(user32, "LoadIconA",
{C_POINTER, C_INT}, C_INT)

icon = c_func(LoadIcon, {NULL, IDI_APPLICATION})

See library.doc for descriptions of c_func(), c_proc(), define_c_func(),
define_c_proc(), open_dll() etc. See demo\win32 or demo\linux for example
programs.

You can examine a .dll file by right-clicking on it, and choosing "QuickView" (if it's
on your system). You will see a list of all the C routines that the .dll exports.

To find out which .dll file contains a particular Win32 C function, run
euphoria\demo\win32\dsearch.exw.

5.2 Accessing C Variables

On Windows and Linux, you can get the address of a C variable using
define_c_var(). You can then use poke() and peek() to access the value of the
variable.

5.3 Accessing C Structures

Many C routines require that you pass pointers to structures. You can simulate C
structures using allocated blocks of memory. The address returned by allocate()
can be passed as if it were a C pointer.

You can read and write members of C structures using peek() and poke(), or
peek4u(), peek4s(), and poke4(). You can allocate space for structures using
allocate(). You must calculate the offset of a member of a C structure. This is
usually easy, because anything in C that needs 4 bytes will be assigned 4 bytes in
the structure. Thus C int's, char's, unsigned int's, pointers to anything, etc. will all
take 4 bytes. If the C declaration looks like:

// Warning C code ahead!

struct example {
int a; // offset 0
char *b; // offset 4
char c; // offset 8
long d; // offset 12

};

To allocate space for "struct example" you would need:

atom p

p = allocate(16) -- size of "struct example"

The address that you get from allocate() is always at least 4-byte aligned. This is
useful, since Win32 structures are supposed to start on a 4-byte boundary. Fields
within a C structure that are 4-bytes or more in size must start on a 4-byte
boundary in memory. 2-byte fields must start on a 2-byte boundary. To achieve this
you may have to leave small gaps within the structure. In practice it is not hard to
align most structures since 90% of the fields are 4-byte pointers or 4-byte integers.

You can set the fields using something like:

poke4(p + 0, a)
poke4(p + 4, b)
poke4(p + 8, c)
poke4(p +12, d)

You can read a field with something like:

d = peek4(p+12)

Tip:

For readability, make up Euphoria constants for the field offsets. See Example
below:

Example:

constant RECT_LEFT = 0,
RECT_TOP = 4,
RECT_RIGHT = 8,
RECT_BOTTOM = 12

atom rect
rect = allocate(16)

poke4(rect + RECT_LEFT, 10)
poke4(rect + RECT_TOP, 20)
poke4(rect + RECT_RIGHT, 90)
poke4(rect + RECT_BOTTOM, 100)

-- pass rect as a pointer to a C structure
-- hWnd is a "handle" to the window

if not c_func(InvalidateRect, {hWnd, rect, 1}) then
puts(2, "InvalidateRect failed\n")

end if

The Euphoria code that accesses C routines and data structures may look a bit
ugly, but it will typically form just a small part of your program, especially if you use
Win32Lib, VEL, or Irv Mullin's X Windows library. Most of your program will be
written in pure Euphoria, which will give you a big advantage over C.

5.4 Call-backs to your Euphoria routines

When you create a window, the Windows operating system will need to call your
Euphoria routine. This is a strange concept for DOS programmers who are used to
calling operating system routines, but are not used to having the operating system
call their routine. To set this up, you must get a 32-bit "call-back" address for your
routine and give it to Windows.

For example (taken from demo\win32\window.exw):

integer id
atom WndProcAddress

id = routine_id("WndProc")

WndProcAddress = call_back(id)

routine_id() uniquely identifies a Euphoria procedure or function by returning a

small integer value. This value can be used later to call the routine. You can also
use it as an argument to the call_back() function.

In the example above, The 32-bit call-back address, WndProcAddress, can be
stored in a C structure and passed to Windows via the RegisterClass() C API
function. This gives Windows the ability to call the Euphoria routine,
WndProc(), whenever the user performs an action on a certain class of
window. Actions include clicking the mouse, typing a key, resizing the window etc.
See the window.exw demo program for the whole story.

Note:

It is possible to get a call-back address for any Euphoria routine that meets the
following conditions:

• the routine must be a function, not a procedure
• it must have from 0 to 9 parameters
• the parameters should all be of type atom (or integer etc.), not sequence
• the return value should be an integer value up to 32-bits in size

You can create as many call-back addresses as you like, but you should not call
call_back() for the same Euphoria routine multiple times - each call-back address
that you create requires a small block of memory.

The values that are passed to your Euphoria routine can be any 32-bit unsigned
atoms, i.e. non-negative. Your routine could choose to interpret large positive
numbers as negative if that is desirable. For instance, if a C routine tried to pass
you -1, it would appear as hex FFFFFFFF. If a value is passed that does not fit the
type you have chosen for a given parameter, a Euphoria type-check error may
occur (depending on with/without type_check etc.) No error will occur if you
declare all parameters as atom.

Normally, as in the case of WndProc() above, Windows initiates these call-backs to
your routines. It is also possible for a C routine in any .dll to call one of your
Euphoria routines. You just have to declare the C routine properly, and pass it the
call-back address.

Here's an example of a WATCOM C routine that takes your call-back address as
its only parameter, and then calls your 3-parameter Euphoria routine:

(see on next page)

/* 1-parameter C routine that you call from Euphoria */

unsigned EXPORT APIENTRY test1(
LRESULT CALLBACK (*eu_callback)(unsigned a,

unsigned b,
unsigned c))

{
/* Your 3-parameter Euphoria routine is called here

via eu_callback pointer */
return (*eu_callback)(111, 222, 333);

}

The C declaration above declares test1 as an externally-callable C routine that
takes a single parameter. The single parameter is a pointer to a routine that takes
3 unsigned parameters - i.e. your Euphoria routine.

In WATCOM C, "CALLBACK" is the same as "__stdcall", i.e "standard call". This is
the calling convention that's used to call Win32 API routines, and the C pointer to
your Euphoria routine must be declared this way too, or you'll get an error when
your Euphoria routine tries to return to your .DLL. Note that the default calling
convention for Windows C compilers is something different, called "__cdecl".

In the example above, your Euphoria routine will be passed the three values 111,
222 and 333 as arguments. Your routine will return a value to test1. That value will
then be immediately returned to the caller of test1 (which could be at some other
place in your Euphoria program).

The Euphoria Editor

usage 1: ed filename
usage 2: ed

Summary

After any error, just type ed, and you'll be placed in the editor, at the line and
column where the error was detected. The error message will be at the top of your
screen.

Euphoria-related files are displayed in color. Other text files are in mono. You'll
know that you have misspelled something when the color does not change as you
expect. Keywords are blue. Names of routines that are built in to the interpreter
appear in magenta. Strings are green, comments are red, most other text is black.
Balanced brackets (on the same line) have the same color. You can change
these colors as well as several other parameters of ed. See "user-modifiable
parameters" near the top of ed.ex.

The arrow keys move the cursor left, right, up or down. Most other characters are
immediately inserted into the file.

In Windows, you can "associate" various types of files with ed.bat. You will then be
put into ed when you double-click on these types of files - e.g. .e, .pro, .doc etc.
Main Euphoria files ending in .ex (.exw) might better be associated with ex.exe
(exw.exe).

ed is a multi-file/multi-window DOS editor. Esc c will split your screen so you
can view and edit up to 10 files simultaneously, with cutting and pasting between
them. You can also use multiple edit windows to view and edit different parts of a
single file.

If you don't like ed, you have many alternatives. David Cuny's EE editor is a DOS
editor for Euphoria that's written in Euphoria. It has a friendly mouse-based user
interface with drop down menus etc. It's available from the RDS Web site. There
are several other Euphoria-oriented editors that run on DOS, Windows and Linux.
Search for editor in our Archive. In fact, any text editor can be used, including
DOS Edit or Windows NotePad.

Special Keys

Some keys do not work in a Linux text console, and some keys do not work in an
xterm under X windows. Alternate keys have been provided.

Del Delete the current character above the cursor.
Backspace Move the cursor to the left and delete a character.
Ctrl-Del Delete the current line. (Ctrl-Del is not available on all systems.)
Ctrl-d Delete the current line. (same as Ctrl-Del)
Insert Re-insert the preceding series of Deletes or Ctrl-Dels before

the current character or current line.
Ctrl-arrow-left Move to the start of the previous word. On Linux use Ctrl-L
Ctrl-arrow-right Move to the start of the next word. On Linux use Ctrl-R.
Home Move to the beginning of the current line.
End Move to the end of the current line.
Ctrl-Home Move to the beginning of the file. On Linux use Ctrl-T (i.e. Top)
Ctrl-End Move to the end of the file. On Linux use Ctrl-B, (i.e. Bottom)
Page Up Move up one screen. In a Linux xterm use Ctrl-U
Page Down Move down one screen. In a Linux xterm use Ctrl-P
F1 ... F10 Select a new current window. The windows are numbered from

top to bottom, with the top window on the screen being F1.
F12 This is a special customizable command. It is set up to insert a

Euphoria comment mark "--" at the start of the current line. You
can easily change it to perform any series of key strokes
that you like, simply by redefining constant
CUSTOM_KEYSTROKES near the top of ed.ex.

Escape Commands

Press and release the Esc key, then press one of the following keys:

h Get help text for the editor, or Euphoria. The screen is split so you can view
your program and the help text at the same time.

c "Clone" the current window, i.e. make a new edit window that is initially
viewing the same file at the same position as the current window. The sizes
of all windows are adjusted to make room for the new window. You might
want to use Esc l to get more lines on the screen. Each window that you
create can be scrolled independently and each has its own menu bar. The
changes that you make to a file will initially appear only in the current
window. When you press an F-key to select a new window, any changes will
appear there as well. You can use Esc n to read a new file into any window.

q Quit (delete) the current window and leave the editor if there are no more
windows. You'll be warned if this is the last window used for editing a
modified file. Any remaining windows are given more space.

s Save the file being edited in the current window, then quit the current

window as Esc q above.
w Save the file but do not quit the window.
e Save the file, and then execute it with ex, exw or exu. When the program

finishes execution you'll hear a beep. Hit Enter to return to the editor. This
operation may not work if you are very low on extended memory. You can't
supply any command-line arguments to the program.

d Run an operating system command. After the beep, hit Enter to return to the
editor. You could also use this command to edit another file and then return,
but Esc c is probably more convenient.

n Start editing a new file in the current window. Deleted lines/chars and search
strings are available for use in the new file. You must type in the path to the
new file. Alternatively, you can drag a file name from a Windows file
manager window into the MS-DOS window for ed. This will type the full path
for you.

f Find the next occurrence of a string in the current window. When you type in
a new string there is an option to "match case" or not. Press y if you require
upper/lower case to match. Keep hitting Enter to find subsequent
occurrences. Any other key stops the search. To search from the beginning,
press Ctrl-Home before Esc f. The default string to search for, if you don't
type anything, is shown in double quotes.

r Globally replace one string by another. Operates like Esc f command. Keep
hitting Enter to continue replacing. Be careful -- there is no way to skip over
a possible replacement.

l Change the number of lines displayed on the screen. Only certain values
are allowed, depending on your video card. Many cards will allow 25, 28, 43
and 50 lines. In a Linux text console you're stuck with the number of lines
available (usually 25). In a Linux xterm window, ed will use the number of
lines initially available when ed is started up. Changing the size of the
window will have no effect after ed is started.

m Show the modifications that you've made so far. The current edit buffer is
saved as editbuff.tmp, and is compared with the file on disk using the DOS
fc command, or the Linux diff command. Esc m is very useful when you
want to quit the editor, but you can't remember what changes you made, or
whether it's ok to save them. It's also useful when you make an editing
mistake and you want to see what the original text looked like. When you
quit the editor, you will be given a chance to delete editbuff.tmp.

ddd Move to line number ddd. e.g. Esc 1023 Enter would move to line 1023 in
the file.

CR Esc Carriage-Return, i.e. Esc Enter, will tell you the name of the current
file, as well as the line and character position you are on, and whether the
file has been modified since the last save. If you press Esc and then change
your mind, it is harmless to just hit Enter so you can go back to editing.

Recalling Previous Strings

The Esc n, Esc d, Esc r and Esc f commands prompt you to enter a string. You
can recall and edit these strings just as you would at the DOS or Linux command
line. Type up-arrow or down-arrow to cycle through strings that you previously
entered for a given command, then use left-arrow, right-arrow and the delete key to
edit the strings. Press Enter to submit the string.

Cutting and Pasting

When you Ctrl-Del (or Ctrl-D) a series of consecutive lines, or Delete a series of
consecutive characters, you create a "kill-buffer" containing what you just deleted.
This kill-buffer can be re-inserted by moving the cursor and then pressing Insert.

A new kill-buffer is started, and the old buffer is lost, each time you move away and
start deleting somewhere else. For example, cut a series of lines with Ctrl-Del.
Then move the cursor to where you want to paste the lines and press Insert. If you
want to copy the lines, without destroying the original text, first Ctrl-Del them, then
immediately press Insert to re-insert them. Then move somewhere else and press
Insert to insert them again, as many times as you like. You can also Delete a
series of individual characters, move the cursor, and then paste the deleted
characters somewhere else. Immediately press Insert after deleting if you want to
copy without removing the original characters.

Once you have a kill-buffer, you can type Esc n to read in a new file, or you can
press an F-key to select a new edit window. You can then insert your kill-buffer.

Use of Tabs

The standard tab width is 8 spaces. The editor assumes tab=8 for most files.
However, it is more convenient when editing a program for a tab to equal the
amount of space that you like to indent. Therefore you will find that tabs are set to
4 when you edit Euphoria files (or .c, or .h or .bas files). The editor converts from
tab=8 to tab=4 when reading your program file, and converts back to tab=8 when
you save the file. Thus your file remains compatible with the tab=8 world, e.g. MS-
DOS PRINT, EDIT, etc. If you would like to choose a different number of
spaces to indent, change the line at the top of ed.ex that says "constant
PROG_INDENT = 4".

Long Lines

Lines that extend beyond the right edge of the screen are marked with an inverse

video character in the 80th column. This warns you that there is more text "out
there" that you can't see. You can move the cursor beyond the 80th column. The
screen will scroll left or right so the cursor position is always visible.

Maximum File Size

Like any Euphoria program, ed can use extended memory. It will edit files that are
much larger than what MS-DOS EDIT or Windows Notepad can handle. With a
huge file, inserting or deleting a line near the beginning of the file might take
several seconds, due to intense swapping activity. Other operations should be
reasonably quick.

Non-text Files

ed is designed for editing pure text files, although you can use it to view other files.
As ed reads in a file, it replaces certain non-printable characters (less than ASCII
14) with ASCII 254 - small square. If you try to save a non-text file you will be
warned about this. (MS-DOS Edit will quietly corrupt a non-text file - do not save!).
Since ed opens all files as "text" files, the Ctrl-z character (26) will appear to be the
end of the file.

Windows Long Filenames

Although ed is a DOS editor, you can edit existing files that have pathnames with
long names in them, and the full file name will be preserved. However in this
release ed will not create new files with long names. The name will be truncated to
the standard DOS 8.3 length.

Line Terminator

The end-of-line terminator on Linux is simply \n. On DOS and Windows, text files
have lines ending with \r\n. If you copy a DOS or Windows file to Linux and try to
modify it, ed will give you a choice of either keeping the \r\n terminators, or saving
the file with \n terminators.

Source Code

The complete source code to this editor is in bin\ed.ex and bin\syncolor.e. You
are welcome to make improvements. There is a section at the top of ed.ex

containing "user-modifiable" configuration parameters that you can adjust. The
colors and the cursor size may need adjusting for some operating environments.

Platform

ed runs best with ex.exe or exu, but will also run with exw.exe.

Shrouding and Binding - (Complete Edition only)

The Shroud Command

Synopsis: shroud [-clear] [-list] [filename]

The shroud command converts a Euphoria program, typically consisting of a main
file plus many include files, into a single, shrouded (i.e. encrypted) file, that's easy
to distribute to others. By default, the shroud command will perform the following
steps:

1. Your main .ex, .exw or .exu file is combined with all of the .e files that it directly
or indirectly includes. This results in a single Euphoria file with no include
statements.

2. After making one pass through your entire program, any unused constants and
routines are marked for deletion. This may expose additional constants and
routines as being unused. This marking process is repeated until no more
constants or routines can be deleted. A second pass is then made, where
marked routines and constants are skipped, i.e. not copied to the shrouded file.
It's quite common for a program to include many files, but only use a subset of
the routines or constants defined in those files.

3. All comments, blank lines, and superfluous blanks and tabs (whitespace) are
removed.

4. All keywords and standard built-in routine names are replaced by single-byte
codes to save space.

5. All user-defined names are converted to short (typically one or two letter)
meaningless names chosen by the shroud program.

6. The very compact file resulting from steps 1 to 5 is further encrypted so it
becomes completely unreadable and highly tamper-resistant.

options can be:

clear Keep the source code in human-readable form. Unused routines and
constants will be deleted, and comments and some whitespace will be
removed, but the code will be otherwise unchanged. The original variable
and routine names will be preserved, except where a naming conflict
arises between merged files. Use this option when you want to ship a
single source file, and you don't mind if people can see your code. If an
error occurs while a user is running your program, the ex.err file will be
readable. If you shroud your program, the ex.err file will contain short,
meaningless names, and will be very difficult to understand.

list Produce a listing in deleted.txt of the routines and constants that were
deleted, as well as any symbols that had to be renamed.

If you simply type:

shroud

without any options or filename, you'll be prompted for all the information.

shroud only performs very superficial checks on the syntax of your program. You
should test your program thoroughly before shrouding or binding it.

You can distribute a shrouded .e include file that people can include in their
programs without seeing your source code. Symbols declared as global in your
main .e file will not be renamed or deleted, so your users can access routines and
variables using meaningful long names.

You can shroud or bind a program that includes a shrouded file (presumably
from someone else), however you won't be allowed to use the -CLEAR option,
since this would reduce the security of the included shrouded file.

Only RDS has the knowledge required to undo the encryption on a program and
we have no tool to do it. Even if someone managed to undo the encryption, they
would only recover the version of the source after steps 1 to 5 were applied. The
comments, and the meaningful variable and routine names can never be
recovered.

Always keep a copy of your original source files!

The Bind Command

Synopsis: bind [-clear] [-list] [filename.ex]
bindu [-clear] [-list] [filename.exu]
bindw [-clear] [-list] [-icon filename.ico] [filename.exw]

bind (bindw or bindu) does the same thing as shroud, and has the same options.
It then combines your shrouded (or clear text) file with the Public Domain Edition
ex.exe, exw.exe or exu to make a single, stand-alone executable file that you
can conveniently use and distribute. Your users need not have Euphoria installed.
Each time your executable file is run, a quick integrity check is performed to detect
any tampering or corruption.

options can be:

-clear Same as shroud above. The .exe will contain readable
code. If an error occurs, the ex.err file will be readable.

-list Same as shroud above.
-icon filename[.ico] (bindw only) When you bind a program, you can patch in

your own customized icon, overwriting the one in exw.exe.
exw.exe contains a 32x32 icon using 256 colors. It
resembles an E) shape. Windows will display this shape
beside exw.exe, and beside your bound program, in file
listings. You can also load this icon as a resource, using
the name "exw" (see euphoria\demo\win32\window.exw for
an example). When you bind your program, you can
substitute your own 32x32 256-color icon file of size 2238
bytes or less. Other dimensions may also work as long as
the file is 2238 bytes or less. The file must contain a single
icon image (Windows will create a smaller or larger image
as necessary). The default E) icon file, euphoria.ico, is
included in the Complete Edition. You can bind it, or
distribute it separately, with or without your changes.

If you simply type:

bind (or bindw or bindu)

without any options or filename, you'll be prompted for all the information.

Only the Public Domain Edition interpreters can be bound. Users of the Euphoria
Complete Edition for DOS32 + Win32 will have ex.exe (Complete) and pdex.exe
(Public Domain), as well as exw.exe (Complete) and pdexw.exe (Public Domain)
in euphoria\bin. The bind (bindw) program will use the pdex.exe (pdexw.exe)
files for binding. On Linux, you'll have exu (Complete) and pdexu (Public Domain),
with pdexu used for binding.

A one-line Euphoria program will result in an executable file as large as the
interpreter you are binding with, but the size increases very slowly as you add to
your program. When bound, the entire Euphoria editor, ed.ex, adds only 18K
to the size of the interpreter. All three interpreters are compressed to reduce
their size. exw.exe and exu are compressed using UPX (see http://upx.tsx.org).
ex.exe is compressed using a tool that comes with the CauseWay DOS extender.
ex.exe is the largest of the three since it includes a lot of pixel graphics routines,
not part of exw.exe or exu. Note: In some rare cases, a compressed executable
may trigger a warning message from a virus scanner. This is simply because the
executable file looks abnormal to the virus scanner. If demo\sanity.ex runs
correctly, you can safely ignore these warnings. Otherwise contact RDS.

The first two arguments returned by the command_line() library routine will be

slightly different when your program is bound. See library.doc for the details.

A bound executable file can handle standard input and output redirection. e.g.

myprog.exe < file.in > file.out

If you were to write a small DOS .bat file myprog.bat that contained the line "ex
myprog.ex" you would not be able to redirect input and output in the following
manner:

myprog.bat < file.in > file.out (doesn't work in DOS!)

You could however use redirection on individual lines within the .bat file.

Interpreter Source License

Rapid Deployment Software (RDS)
Euphoria Interpreter Source Code License

for version 2.3
In exchange for payment, RDS will provide you with C source code that can be
used to build a version of the RDS Euphoria interpreter, using any of 6 supported C
compilers on 3 platforms. The source code for certain registered features has been
removed by RDS. The features removed are: the trace facility, profiling, and code
related to binding.

We have tested the source with 6 different C compilers, and we are satisfied that it
can be compiled and linked correctly with all 6. However, we can't guarantee that
you will be able to compile or link the source, or achieve the same level of speed
and reliability. If you have trouble, we will provide you with some assistance during
a 3 month technical support period.

The following restrictions will apply.

1. Copying

You are permitted to make backup copies for your own use. You may not distribute
copies of this source code, with or without your changes, to anyone other than
RDS or other people who you are certain are entitled to this version of our source.
If you are in doubt, you must contact RDS to find out if the person is entitled to the
source or not. If multiple programmers, either as individuals or in a company, wish
to study or work together on the source, they must each pay RDS for a copy.

2. Acceptable Changes to the Source

RDS gives away certain Euphoria features for free, while charging for other
(registered) features. You are permitted, and encouraged, to add new features to
this source code. However, without written permission from RDS, you are not
permitted to distribute any features that are similar enough to a registered feature,
so as to significantly reduce peoples' incentive to pay RDS for that feature. The
registered features currently include:

• binding: You must not provide a way to attach files to a Euphoria interpreter,
thus converting a Euphoria program into a single executable file. (Shrouding is

not restricted, since it can be performed without this source code, and without
any knowledge contained in this source code.)

• trace facility: You must not provide a source debugging capability, or a log file
mechanism for tracing execution of statements.

• profiling: You must not provide statement-count or time profiling in any form.

• Translator to C: You may not use this source to create and distribute a
program that translates Euphoria programs into C/C++ programs.

• Translator library: You may not use this source to create and distribute a
library for use with the Euphoria To C Translator.

In the future, other features may be added to this list, and some features may be
deleted. You are bound by whatever features are listed in the License Agreement
at the time you purchase the source.

Note that we are limiting what you are allowed to distribute to others, not what you
are allowed to construct in the privacy of your own machine.

3. Porting

We encourage you to port this software to new machines and operating systems.

4. Distribution of Executables

Provided your changes are acceptable, you can compile the source, using any
compiler, and distribute copies of the resulting executable file (but not the source or
the intermediate object files). You can give your executables away for free, or
charge any fee you like.

5. Ownership of New Features

You own the source code for any features or changes that you make, and you are
not required to make public any source code that you develop. If you do make your
source code public, other than to RDS, or those you are certain are entitled to our
source code, you must not expose more than a few lines of RDS source code
along with it. The fact that you implemented a feature does not preclude RDS or
anyone else from implementing the same or similar features.

6. Public Discussion

You can publicly discuss the algorithms used by our source code in open forums,
and you can mention the names of C routines, variables and other identifiers in the
code, but you must not reveal actual lines of source code.

7. Acknowledgement

You are required to acknowledge the use of our source code, list our Web site,
http://www.RapidEuphoria.com, and indicate the general nature of any changes
you made to our source code, in any programs that you distribute. The
acknowledgement could be displayed by the program, or be in the accompanying
documentation, but it must be plainly visible to most users.

8. Damages

RDS is not responsible to you for any damages that arise from your use of this
source code, and you must inform your users, in your documentation or in your
derived programs, that RDS is not responsible to them for any damages.

9. Evil Intent

You may not use the source to create any viruses, worms, trojans or other software
that is intended to cause damage to any computer systems or networks, or that
would intentionally harm the reputation of Euphoria or RDS.

Euphoria Performance Tips

General Tips

• If your program is fast enough, forget about speeding it up. Just make it simple
and readable.

• If your program is way too slow, the tips below will probably not solve your
problem. You should find a better overall algorithm.

• The easiest way to gain a bit of speed is to turn off run-time type-checking.
Insert the line:

without type_check

at the top of your main .ex file, ahead of any include statements. You'll typically
gain between 0 and 20 percent depending on the types you have defined, and
the files that you are including. Most of the standard include files do some user-
defined type-checking. A program that is completely without user-defined type-
checking might still be speeded up slightly.

Also, be sure to remove, or comment-out, any

with trace
with profile
with profile_time

statements. with trace (even without any calls to trace()), and with profile can
easily slow you down by 10% or more. with profile_time might slow you down
by 1%. Each of these options will consume extra memory as well.

• Calculations using integer values are faster than calculations using floating-
point numbers

• Declare variables as integer rather than atom where possible, and as sequence
rather than object where possible. This usually gains you a few percent in
speed.

• In an expression involving floating-point calculations it's usually faster to write
constant numbers in floating point form, e.g. when x has a floating-point value,
say, x = 9.9

change:

x = x * 5

to:

x = x * 5.0

This saves the interpreter from having to convert integer 5 to floating-point 5.0
each time.

• Euphoria does short-circuit evaluation of if, elsif, and while conditions
involving and and or. Euphoria will stop evaluating any condition once it
determines if the condition is true or not. For instance in the if-statement:

if x > 20 and y = 0 then
...

end if

The "y = 0" test will only be made when "x > 20" is true.

For maximum speed, you can order your tests. Do "x > 20" first if it is more
likely to be false than "y = 0".

In general, with a condition "A and B", Euphoria will not evaluate the expression
B, when A is false (zero). Similarly, with a condition like "A or B", B will not be
evaluated when A is true (non-zero).

Simple if-statements are highly optimized. With the current version of the
interpreter, nested simple if's that compare integers are usually a bit faster than
a single short-circuit if-statement e.g.:

if x > 20 then
if y = 0 then

...
end if

end if

• The speed of access to private variables, local variables and global variables is
the same.

• There is no performance penalty for defining constants versus plugging in hard-
coded literal numbers. The speed of:

y = x * MAX

 is exactly the same as:

y = x * 1000

where you've previously defined:

constant MAX = 1000

• There is no performance penalty for having lots of comments in your program.
Comments are completely ignored. They are not executed in any way. It might
take a few milliseconds longer for the initial load of your program, but that's a
very small price to pay for future maintainability, and when you bind your
program, all comments are stripped out, so the cost becomes absolute zero.

Measuring Performance

In any programming language, and especially in Euphoria, you really have to
make measurements before drawing conclusions about performance.

Euphoria provides both execution-count profiling, as well as time profiling
(DOS32 only). See refman.doc. You will often be surprised by the results of these
profiles. Concentrate your efforts on the places in your program that are using a
high percentage of the total time (or at least are executed a large number of times.)
There's no point to rewriting a section of code that uses 0.01% of the total time.
Usually there will be one place, or just a few places where code tweaking will make
a significant difference.

You can also measure the speed of code by using the time() function. e.g.:

atom t
t = time()
for i = 1 to 10000 do

-- small chunk of code here
end for
? time() - t

You might rewrite the small chunk of code in different ways to see which way is
faster.

How to Speed-Up Loops

Profiling will show you the hot spots in your program. These are usually inside

loops. Look at each calculation inside the loop and ask yourself if it really needs to
happen every time through the loop, or could it be done just once, prior to the loop.

Converting Multiplies to Adds in a Loop

Addition is faster than multiplication. Sometimes you can replace a multiplication by
the loop variable, with an addition.

Something like:

for i = 0 to 199 do
poke(screen_memory+i*320, 0)

end for

becomes:

x = screen_memory
for i = 0 to 199 do

poke(x, 0)
x = x + 320

end for

Saving Results in Variables

• It's faster to save the result of a calculation in a variable, than it is to recalculate
it later. Even something as simple as a subscript operation, or adding 1 to a
variable is worth saving.

• When you have a sequence with multiple levels of subscripting, it is faster to
change code like:

for i = 1 to 1000 do
y[a][i] = y[a][i]+1

end for

to:

ya = y[a]
for i = 1 to 1000 do

ya[i] = ya[i] + 1
end for
y[a] = ya

So you are doing 2 subscript operations per iteration of the loop, rather than 4.

The operations, ya = y[a] and y[a] = ya are very cheap. They just copy a
pointer. They don't copy a whole sequence.

• There is a slight cost when you create a new sequence using {a,b,c}. If
possible, move this operation out of a critical loop by storing it in a variable
before the loop, and referencing the variable inside the loop.

In-lining of Routine Calls

If you have a routine that is rather small and fast, but is called a huge number of
times, you will save time by doing the operation in-line, rather than calling the
routine. Your code may become less readable, so it might be better to in-line only
at places that generate a lot of calls to the routine.

Operations on Sequences

Euphoria lets you operate on a large sequence of data using a single statement.
This saves you from writing a loop where you process one element at-a-time. e.g.:

x = {1,3,5,7,9}
y = {2,4,6,8,10}
z = x + y

versus:

z = repeat(0, 5) -- if necessary
for i = 1 to 5 do

z[i] = x[i] + y[i]
end for

In most interpreted languages, it is much faster to process a whole sequence
(array) in one statement, than it is to perform scalar operations in a loop. This is
because the interpreter has a large amount of overhead for each statement it
executes. Euphoria is different. Euphoria is very lean, with little interpretive
overhead, so operations on sequences don't always win. The only solution is to
time it both ways. The per-element cost is usually lower when you process a
sequence in one statement, but there are overheads associated with allocation and
deallocation of sequences that may tip the scale the other way.

Some Special Case Optimizations

Euphoria automatically optimizes certain special cases. x and y below could be
variables or arbitrary expressions.

x + 1 -- faster than general x + y
1 + x -- faster than general y + x
x * 2 -- faster than general x * y
2 * x -- faster than general y * x
x / 2 -- faster than general x / y
floor(x/y) -- where x and y are integers, is faster than x/y
floor(x/2) -- faster than floor(x/y)

x below is a simple variable, y is any variable or expression:

x = append(x, y) -- faster than general z = append(x, y)
x = prepend(x, y) -- faster than general z = prepend(x, y)
x = x & y -- where x is much larger than y,

-- is faster than general z = x & y

When you write a loop that "grows" a sequence, by appending or concatenating
data onto it, the time will, in general, grow in proportion to the square of the
number (N) of elements you are adding. However, if you can use one of the special
optimized forms of append(), prepend() or concatenation listed above, the time will
grow in proportion to just N (roughly). This could save you a huge amount of time
when creating an extremely long sequence. (You could also use repeat() to
establish the maximum size of the sequence, and then fill in the elements in a loop,
as discussed below.)

Assignment with Operators

For greater speed, convert:

left-hand-side = left-hand-side op expression

to:

left-hand-side op= expression

whenever left-hand-side contains at least 2 subscripts, or at least one subscript
and a slice. In all simpler cases the two forms run at the same speed (or very close
to the same).

Pixel-Graphics Tips

• Mode 19 is the fastest mode for animated graphics and games.

The video memory (in mode 19) is not cached by the CPU. It usually takes
longer to read or write data to the screen than to a general area of memory that
you allocate. This adds to the efficiency of virtual screens, where you do all of
your image updating in a block of memory that you get from allocate(), and
then you periodically mem_copy() the resulting image to the real screen
memory. In this way you never have to read the (slow) screen memory.

• When plotting pixels, you may find that modes 257 and higher are fast near the
top of the screen, but slow near the bottom.

Text-Mode Tips

Writing text to the screen using puts() or printf() is rather slow. If necessary, in
DOS32, you can do it much faster by poking into the video memory, or by using
display_text_image(). There is a very large overhead on each puts() to the
screen, and a relatively small incremental cost per character. The overhead with
exw is especially high (on Windows 95/98 at least). Linux is somewhere between
DOS32 and Win32 in text output speed. It therefore makes sense to build up a long
string before calling puts(), rather than calling it for each character. There is no
advantage to building up a string longer than one line however.

The slowness of text output is mainly due to operating system overhead.

Library Routines

Some common routines are extremely fast. You probably couldn't do the job faster
any other way, even if you used C or assembly language. Some of these are:

• mem_copy()
• mem_set()
• repeat()

Other routines are reasonably fast, but you might be able to do the job faster in
some cases if speed was crucial.

x = repeat(0,100)
for i = 1 to 100 do

x[i] = i
end for

is somewhat faster than:

x = {}
for i = 1 to 100 do

x = append(x, i)
end for

because append() has to allocate and reallocate space as x grows in size. With
repeat(), the space for x is allocated once at the beginning. (append() is smart
enough not to allocate space with every append to x. It will allocate somewhat
more than it needs, to reduce the number of reallocations.)

You can replace:

remainder(x, p)

with:

and_bits(x, p-1)

for greater speed when p is a positive power of 2. x must be a non-negative
integer that fits in 32-bits.

arctan() is faster than arccos() or arcsin().

Searching

Euphoria's find() is the fastest way to search for a value in a sequence up to about
50 elements. Beyond that, you might consider a hash table (demo\hash.ex) or a
binary tree (demo\tree.ex).

Sorting

In most cases you can just use the shell sort routine in include\sort.e.

If you have a huge amount of data to sort, you might try one of the sorts in
demo\allsorts.e (e.g. great sort). If your data is too big to fit in memory, don't rely
on Euphoria's automatic memory swapping capability. Instead, sort a few thousand
records at a time, and write them out to a series of temporary files. Then merge all

the sorted temporary files into one big sorted file.

If your data consists of integers only, and they are all in a fairly narrow range, try
the bucket sort in demo\allsorts.e.

Taking Advantage of Cache Memory

As CPU speeds increase, the gap between the speed of the on-chip cache
memory and the speed of the main memory or DRAM (dynamic random access
memory) becomes ever greater. You might have 32 Mb of DRAM on your
computer, but the on-chip cache is likely to be only 8K (data) plus 8K (instructions)
on a Pentium, or 16K (data) plus 16K (instructions) on a Pentium with MMX or a
Pentium II/III. Most machines will also have a "level-2" cache of 256K or 512K.

An algorithm that steps through a long sequence of a couple of thousand (4-byte)
elements or more, many times, from beginning to end, performing one small
operation on each element, will not make good use of the on-chip data cache. It
might be better to go through once, applying several operations to each element,
before moving on to the next element. The same argument holds when your
program starts swapping, and the least-recently-used data is moved out to disk.

These cache effects aren't as noticeable in Euphoria as they are in lower-level
compiled languages, but they are measurable.

Using Machine Code and C

Euphoria lets you call routines written in 32-bit Intel machine code. On Win32 and
Linux you can call C routines in .dll or .so files, and these C routines can call your
Euphoria routines. You might need to call C or machine code because of
something that can't be done directly in Euphoria, or you might do it for improved
speed.

To boost speed, the machine code or C routine needs to do a significant amount of
work on each call, otherwise the overhead of setting up the arguments and making
the call will dominate the time, and it might not gain you much.

Many programs have some inner core operation that consumes most of the CPU
time. If you can code this in C or machine code, while leaving the bulk of the
program in Euphoria, you might achieve a speed comparable to C, without
sacrificing Euphoria's safety and flexibility.

Using The Euphoria To C Translator

You can download the Euphoria To C Translator from the RDS Web site. It will
translate any Euphoria program into a set of C source files that you can compile
using a C compiler.

The executable file that you get using the Translator should run the same, but
faster than when you use the interpreter. The speed-up can be anywhere from a
few percent to a factor of 5 or more.

Euphoria Resources Available on the Internet

Euphoria Web Page

Check out the Official Euphoria Programming Page on the World Wide Web:

http://www.RapidEuphoria.com

The latest version of Euphoria is always downloadable from this page. You will also
find news about Euphoria, a large archive of free downloadable software, and links
to Euphoria pages set up by enthusiastic users. You can also view and subscribe
to the mailing list from this Web site.

Euphoria Mailing List

Anyone who is interested in discussions about Euphoria can add their e-mail
address to the Euphoria mailing list. Euphoria enthusiasts are using the mailing list
to exchange ideas and solve problems. All you have to do is send a blank e-mail
to:

EUforum-subscribe@topica.com

After subscribing, you can e-mail a message to EUforum@topica.com and your
message will automatically be forwarded to everyone on the list.

Everyone benefits from exchanges of ideas and useful Euphoria code. These
discussions and code samples are archived so you can retrieve them at any time.
To leave the list, send an e-mail message to:

EUforum-unsubscribe@topica.com

Feel free to subscribe again at another time. You can also interact with the
mailing list through the Web interface. The Euphoria Mailing List page has all
the details.

You can search a huge archive of messages dating all the way back to June 1996.
Chances are good that your question has already been answered.

Third Party Add-On Libraries and Programs

Enthusiastic users of Euphoria have contributed hundreds of excellent programs
and library routines that you can download. This software is available on the Web,

either at the Official Euphoria Programming Page, or on a user's own Web page.
Most of it is Public Domain and includes full source code, however please check
the code or README file for any restrictions. At the RDS site you should check the
Archive page and the Recent User Contributions page.

The Euphoria Micro-Economy

GET RICH QUICK working in your spare time at home!

Anyone with an e-mail address has heard that one before, but with the system we
call the Euphoria Micro-Economy you can potentially make a few bucks (very
few) working very long hours at home in your spare time. Briefly, the way it works
is that each month, registered users of Euphoria are encouraged to send e-mail to
RDS donating $3.00 U.S. of RDS's money to any file on the RDS Archive or
Recent User Contributions pages. You can split your 3 dollars across multiple files
as you see fit. Gradually, those who have contributed useful programs,
documentation, or whatever to the Euphoria community will build up dollars that
they can use to reduce or even eliminate the cost of registering or upgrading.
There's no limit to what you can make (but don't expect to get rich quick!).

For full details, please go to the Euphoria Web site.

Euphoria Newsgroup

There's an Internet newsgroup, alt.lang.euphoria, that is lightly used. Most users
prefer the SPAM-free environment of the mailing list. The mailing list operates just
like a newsgroup. Feel free to post to the newsgroup or the mailing list, but you will
probably get better feedback from the mailing list.

Euphoria Trouble-Shooting Guide

If you get stuck, here are some things you can do:

1. Type: guru
followed by some keywords associated with your problem.

For example,
guru declare global include

2. Check the list of common problems (below).

3. Read the relevant parts of the documentation, i.e. refman.doc or library.doc.

4. Try running your program with the statements:

with trace
trace(1)

at the top of your main .ex file so you can see what's going on.

5. The Web interface to the Euphoria mailing list has a search facility. You can
search the archive of all previous messages. There's a good chance that your
question has already been discussed. The mailing list is discussed in web.doc.

6. Post a message on the mailing list.

Here are some commonly reported problems (P:) and their solutions (S:).

P: I ran my program with exw and the console window disappeared before I could
read the output.

S: The console window will only appear if required, and will disappear immediately
when your program finishes execution. Perhaps you should code something
like:

puts(1, "\nPress Enter\n")
if getc(0) then
end if

at the end of your program.

P: I would like to change the properties of the console window.

S: Right click on c:\windows\system\conagent.exe and select "properties". You
can change the font and several other items.

P: When I run ex.exe in a DOS Window, it makes my small DOS window go to full
screen.

S: This will only happen the first time you run ex.exe after creating a new small
DOS window. You can make the window small again by pressing Alt-Enter. It
will stay small after that. Your Euphoria program can keep the window small by
executing:

if graphics_mode(-1) then
end if

at the start of execution. This may cause some brief screen flicker. Your
program can force a text window to be full-screen by executing:

if graphics_mode(3) then
end if

P: How do I read/write ports?

S: Get Jacques Deschenes' collection of machine-level and DOS system routines
from the Euphoria Web page. See his file ports.e.

P: I'm having trouble running a DOS32 graphics program. I hit control-Break and
now my system seems to be dead.

S: Some graphics programs will not run unless you start them from DOS or from a
full-screen DOS window under Windows. Sometimes you have to edit the
program source to use a lower resolution graphics mode, such as mode 18.
Some SVGA graphics modes might not work for you under a DOS window, but
will work when you restart your machine in MS-DOS mode. A better driver for
your video card might fix this.

You should stop a program using the method that the program documentation
recommends. If you abort a program with control-c or control-Break you may
find that your screen is left in a funny graphics mode using funny colors. When
you type something, it may be difficult or even impossible to read what you are
typing. The system may even appear dead, when in fact it is not.

Try the following DOS commands, in the following order, until you clear things

up:

1. type: cls
Even when you can't see any keystrokes echoed on the screen this may
clear the screen for you.

2. type: ex
The Euphoria interpreter will try to restore a normal text mode screen for
you.

3. type: exit
If you are running under Windows, this will terminate the DOS session for
you.

4. type: Ctrl-Alt-Del
This will let you kill the current DOS session under Windows, or will soft-
reboot your computer if you are running under DOS.

5. If all else fails, reset or power your computer off and back on. You should
immediately run scandisk when the system comes back up.

P: When I run Euphoria programs in SVGA, the output on the screen is crammed
into the top part of the screen.

S: Try: use_vesa(1) in machine.e. Try downloading the latest driver for your
video card from the Internet. ATI's site is:

http://www.atitech.com

Others have had their video problems clear up after installing the latest version
of DirectX.

P: My program leaves the DOS window in a messy state. I want it to leave me with
a normal text window.

S: When your program is finished, it should call the function graphics_mode(-1) to
set the DOS window back to normal. e.g.:

if graphics_mode(-1) then
end if

P: When I run my program from the editor and I hit control-c, the program dies with
an operating system error.

S: This is a known problem. Run your program from the command-line, outside
the editor, if you might have to hit control-c or control-Break.

P: When I run my program there are no errors but nothing happens.

S: You probably forgot to call your main procedure. You need a top-level
statement that comes after your main procedure to call the main procedure and
start execution.

P: I'm trying to call a routine documented in library.doc, but it keeps saying the
routine has not been declared.

S: Did you remember to include the necessary .e file from the euphoria\include
directory? If the syntax of the routine says for example, "include graphics.e",
then your program must have "include graphics.e" (without the quotes) before
the place where you first call the routine.

P: I have an include file with a routine in it that I want to call, but when I try to call
the routine it says the routine has not been declared. But it has been declared.

S: Did you remember to define the routine with "global" in front of it in the include
file? Without "global" the routine is not visible outside of its own file.

P: How do I input a line of text from the user?

S: See gets() in library.doc. gets() will read a line from standard input, which is
normally the keyboard. The line will always have \n on the end. To remove the
trailing \n character do:

line = line[1..length(line)-1]

Also see prompt_string() in get.e.

P: After inputting a string from the user with gets(), the next line that comes out on
the screen does not start at the left margin.

S: Your program should output a new-line character e.g. puts(SCREEN, '\n') after
you do a gets(). It does not happen automatically.

P: How do I convert a number to a string?

S: Use sprintf() in library.doc. e.g.:

string = sprintf("%d", number)

Besides %d, you can also try other formats, such as %x (Hex) or %f (floating-
point).

P: How do I convert a string to a number?

S: Use value() in library.doc, or, if you are reading from a file or the keyboard,
use get().

P: It says I'm attempting to redefine my for-loop variable.

S: For-loop variables are declared automatically. Apparently you already have a
declaration with the same name earlier in your routine or your program.
Remove that earlier declaration or change the name of your loop variable.

P: I get the message "unknown escape character" on a line where I am trying to
specify a file name.

S: Do not say "C:\TMP\MYFILE". You need to say "C:\\TMP\\MYFILE". Backslash
is used for escape characters such as \n or \t. To specify a single backslash in
a string you need to type \\.

P: I'm trying to use mouse input in a SVGA graphics mode but it just doesn't work.

S: DOS does not support mouse input in modes beyond graphics mode 18
(640x480 16 color). DOS 7.0 (part of Windows 95/98) does seem to let you at
least read the x-y coordinate and the buttons in high resolution modes, but you
may have to draw your own mouse pointer in the high-res modes. Graeme
Burke, Peter Blue and others have good solutions to this problem. See their
files on the Euphoria Archive Web page.

P: I'm trying to print a string using printf() but only the first character comes out.

S: See the printf() description in library.doc. You may need to put braces around
your string so it is seen as a single value to be printed, e.g. you wrote:

printf(1, "Hello %s", mystring)

where you should have said:

printf(1, "Hello %s", {mystring})

P: When I print numbers using print() or ?, only 10 significant digits are displayed.

S: Euphoria normally only shows about 10 digits. Internally, all calculations are
performed using at least 15 significant digits. To see more digits you have to
use printf(). For example:

printf(1, "%.15f", 1/3)

This will display 15 digits.

P: It complains about my routine declaration, saying "a type is expected here".

S: When declaring subroutine parameters, Euphoria requires you to provide an
explicit type for each individual parameter. e.g.:

procedure foo(integer x, y) -- WRONG
procedure foo(integer x, integer y) -- RIGHT

In all other contexts it is ok to make a list:

atom a, b, c, d, e

P: I'm declaring some variables in the middle of a routine and it gives me a syntax
error.

S: All of your private variable declarations must come at the beginning of your
subroutine, before any executable statements. (At the top-level of a program,
outside of any routine, it is ok to declare variables anywhere.)

P: It says:
Syntax Error - expected to see possibly 'xxx', not 'yyy'

S: At this point in your program you have typed a variable, keyword, number or
punctuation symbol, yyy, that does not fit syntactically with what has come
before it. The compiler is offering you one example, xxx, of something that
would be accepted at this point in place of yyy. Note that there may be many
other legal (and much better) possibilities at this point than xxx, but xxx might at

least give you a clue as to what the compiler is "thinking".

P: I'm having problems running Euphoria with DR-DOS.

S: Your config.sys should have just HIMEM.SYS but not EMM386.EXE in it.

P: I try to run a program with exw and it says "this is a Windows NT character-
mode executable".

S: exw.exe is a 32-bit Windows program. It must be run under Windows or in a
DOS Window. It will not work under plain DOS in an old system. ex.exe will
work under plain DOS.

About Brainstorm Solutions

This compilation of RDS Euphoria documentation is proudly presented by
Brainstorm Solutions — completely free — as most good things built to/by
Euphoria! Nevertheless, if you find this compilation useful, please consider
spending some of your micro-economy money on us. Your acknowledge, of any
kind, will be very welcome.

Brainstorm Solutions is Euler German's brand name for his computer related
products and services. Despite the fact that Brainstorm Solutions is quite new to
the market, the same doesn't apply to it's experience: we have been in the
computer business since 1973 — a lot of history — and we have most of our
original personnel and the founder himself!

Our original goal — business software development — isn't on top anymore.
Consulting, Security, Internet, Software Translation, Sales and Marketing, are our
major activities today.

If you think we can be helpful to you or to your business, please, contact us at:

Brainstorm Solutions
Caixa Postal 232
35701-970 Sete Lagoas, MG
Brazil

eMail: efgerman.bs@mailnull.com

You will be most welcome!

Kind regards,

-- Euler F. German
founder of Brainstorm Solutions

	A Preface
	An important message for all BASIC programmers
	An important message for all C/C++ programmers
	Core Language�Introduction
	Example Program
	Installation
	Running a Program
	Running under Windows
	Use of a Swap File

	Editing a Program
	Distributing a Program
	Licensing

	Language Definition
	Objects
	Atoms and Sequences
	Characters Strings and Individual Characters
	Comments

	Expressions
	Relational Operators
	Logical Operators
	Arithmetic Operators
	Operations on Sequences
	Subscripting of Sequences
	Slicing of Sequences
	Concatenation of Sequences and Atoms - The & Operator
	Sequence-Formation
	Other Operations on Sequences
	length(s)
	repeat(item, count)
	append(s, item) / prepend(s, item)

	Precedence Chart

	Euphoria versus Conventional Languages
	Declarations
	Identifiers
	procedures
	functions
	types
	variables
	constants

	Scope
	Specifying the Type of a Variable

	Statements
	Assignment statement
	Assignment with Operator

	Procedure call
	If statement
	While statement
	Short-Circuit Evaluation

	For statement
	Return statement
	Exit statement

	Special Top-Level Statements
	Include
	With / Without

	Debugging and Profiling
	Debugging
	The Trace Screen
	The Trace File

	Profiling (complete edition only)
	Some Further Notes on Time Profiling

	Library Routines�Introduction
	Predefined Types
	Sequence Manipulation
	Searching and Sorting
	Pattern Matching
	Math
	Bitwise Logical Operations
	File and Device I/O
	Mouse Support (DOS32)
	Operating System
	Special Machine-Dependent Routines
	Debugging Routines
	Graphics & Sound
	Machine Level Interface
	Dynamic Calls
	Calling C Functions

	Euphoria Database System - Introduction
	Structure of an EDS database
	How to use these routines
	How does storage get recycled?
	Security / Multi-user Access
	Scalability
	Disclaimer
	Database Routines

	Listing of Routines
	?
	abort
	all_palette
	allocate
	allocate_low
	allocate_string
	allow_break
	and_bits
	append
	arccos
	arcsin
	arctan
	atom
	atom_to_float32
	atom_to_float64
	bits_to_int
	bk_color
	bytes_to_int
	call
	call_back
	c_func
	c_proc
	call_func
	call_proc
	chdir
	check_break
	clear_screen
	close
	command_line
	compare
	cos
	crash_file
	crash_message
	current_dir
	cursor
	custom_sort
	date
	define_c_func
	define_c_proc
	define_c_var
	dir
	display_image
	display_text_image
	dos_interrupt
	draw_line
	ellipse
	equal
	find
	float32_to_atom
	float64_to_atom
	floor
	flush
	free
	free_console
	free_low
	get
	get_active_page
	get_all_palette
	get_bytes
	get_display_page
	get_key
	get_mouse
	get_pixel
	get_position
	get_screen_char
	get_vector
	getc
	getenv
	gets
	graphics_mode
	instance
	int_to_bits
	int_to_bytes
	integer
	length
	lock_file
	lock_memory
	log
	lower
	machine_func
	machine_proc
	match
	mem_copy
	mem_set
	message_box
	mouse_events
	mouse_pointer
	not_bits
	object
	open
	open_dll
	or_bits
	palette
	peek
	peek4s
	peek4u
	PI
	pixel
	platform
	poke
	poke4
	polygon
	position
	power
	prepend
	print
	printf
	profile
	prompt_number
	prompt_string
	put_screen_char
	puts
	rand
	read_bitmap
	register_block
	remainder
	repeat
	reverse
	routine_id
	save_bitmap
	save_image
	save_screen
	save_text_image
	scroll
	seek
	sequence
	set_active_page
	set_display_page
	set_rand
	set_vector
	sin
	sleep
	sort
	sound
	sprint
	sprintf
	sqrt
	system
	system_exec
	tan
	text_color
	text_rows
	tick_rate
	time
	trace
	unlock_file
	unregister_block
	upper
	use_vesa
	value
	video_config
	wait_key
	walk_dir
	where
	wildcard_file
	wildcard_match
	wrap
	xor_bits
	db_create
	db_open
	db_select
	db_close
	db_create_table
	db_select_table
	db_delete_table
	db_table_list
	db_table_size
	db_find_key
	db_record_key
	db_record_data
	db_insert
	db_delete_record
	db_replace_data
	db_compress
	db_dump
	db_fatal_id
	How To Install Euphoria on DOS/Windows
	The Install Procedure
	How to Uninstall Euphoria
	If you have problems installing ...
	How to manually edit autoexec.bat

	What To Do?
	Platform-Specific Issues for Euphoria
	1. Introduction
	2. The DOS32 Platform
	3. The Win32 Platform
	3.1 High-Level Win32 Programming
	3.2 Low-Level Win32 Programming

	4. The Linux Platform
	5. Interfacing with C Code (Win32 and Linux)
	5.1 Calling C Functions
	5.2 Accessing C Variables
	5.3 Accessing C Structures
	5.4 Call-backs to your Euphoria routines

	The Euphoria Editor
	Shrouding and Binding - (Complete Edition only)
	Interpreter Source License
	Euphoria Performance Tips
	Euphoria Resources Available on the Internet
	Euphoria Trouble-Shooting Guide
	About Brainstorm Solutions

