
Alexander Caracatsanis 1

A BEGINNER’S GUIDE TO
OBJECT ORIENTED PROGRAMMING

IN EUPHORIA
USING DIAMOND LITE

Alexander CARACATSANIS

sunpsych@ncable.com.au

September 2003

CONTENTS

HEADING PAGE
PREFACE AND ACKNOWLEDGEMENTS 3
AN ORIENTATION TO OOP 3
AN ORIENTATION TO DIAMOND LITE 4
FORMATTING AND CONVENTIONS USED HERE 5
INTRODUCTORY CONCEPTS – THE VERY BEGINNING 5
 STEP 1: NO CLASS AT ALL – JUST AN INCLUDE FILE! 5
 STEP 2: PREDEFINED CLASSES AND AN INSTANCE 6
 STEP 3: WE CREATE OUR FIRST INSTANCE 7
 STEP 4: A FIRST LOOK INSIDE AN INSTANCE – THE METHOD new() 9
 STEP 5: A SECOND LOOK INSIDE AN INSTANCE – THE METHOD clone() 10
 PAUSE: PROGRAM CONTEXT 11
 STEP 6: A THIRD LOOK INSIDE AN INSTANCE – THE METHOD delete() 12

A RECAP… 15
CREATING OUR FIRST CLASS
 STEP 7: AN INERT CLASS 15
 STEP 8: AN INERT CLASS WITH A DEFAULT CONSTRUCTOR 18
PAUSE: OVERRIDING METHODS 18

BACK TO THE CONSTRUCTOR... 19
 STEP 9: AN INERT CLASS WITH A DEFAULT DESTRUCTOR 21
INTRODUCING PROPERTIES
 STEP 10: A SIMPLE CLASS WITH A PROPERTY – AND HOW TO GET IT 24
 STEP 11: A SIMPLE CLASS WITH A PROPERTY – AND HOW TO SET IT 27
THE INEVITABLE "HELLO WORLD" PROGRAM!
 STEP 12: A GREETING CLASS WITH PARAMETERISED CONSTRUCTOR 31
 STEP 13: A GREETING CLASS WITH PARAMETERISED DESTRUCTOR 36
 STEP 14: A GREETING CLASS WITH A SETTER METHOD 38
 STEP 15: THE GREETING CLASS STRIPPED DOWN 40
INTERACTING WITH THE USER
 STEP 16: A PRODUCT CLASS WITH USER INPUT 43
MAKING COPIES OF OBJECTS
 STEP 17: COPYING OBJECTS BY ASSIGNING A REFERENCE 46
A DETOUR: DL's HANDLES 51

BACK TO MAKING COPIES OF OBJECTS…
 STEP 17a: COPYING OBJECTS BY DECLARING NEW CLASS ENTITIES 53
 STEP 17b: COPYING OBJECTS USING THE METHOD clone() 55

A RECAP AND A LOOK AHEAD... 58
A QUICK LOOK AT COMPOSITION 60
DEEP AND SHALLOW CLONING 62
 STEP 18: CLONING A WINDOW 62
 STEP 19: A WINDOW WITH A BUTTON 65
 STEP 20: TWO WINDOWS, EACH WITH AN IDENTICAL NEW BUTTON 68

Alexander Caracatsanis 2

 STEP 20a: TWO WINDOWS, EACH WITH A SHALLOW CLONED BUTTON 69
 STEP 20b: TWO WINDOWS, EACH WITH A DEEP CLONED BUTTON 70
AN INTRODUCTION TO METHOD OVERLOADING
 STEP 20c: DEEP AND SHALLOW CLONING TOGETHER 72
SOME EXTENSION EXERCISES
 STEP 21: A WINDOW WITH TWO IDENTICAL BUTTONS 76
 STEP 21a: START WITH A NEW BUTTON, AND CLONE IT TWICE 78
 STEP 21b: TAKE A NEW BUTTON, CLONE IT ONCE, ASSIGN IT TWICE 79
EXCEPTION HANDLING
 STEP 22: DO NOTHING - LET THE LANGUAGE DEAL WITH IT! 81
 STEP 22a: RETURN AN ERROR CODE 82
 STEP 22b: COMBINE ERROR-HANDLING CODE WITH NORMAL CASE 82
 STEP 22c: BUNDLE ERROR-HANDLING CODE INTO ROUTINES 83
A DETOUR: AN INTRODUCTION TO INHERITANCE 85
DL's EXCEPTION HANDLING SYSTEM 87
 STEP 23: HANDLING FATAL ERRORS 90
 STEP 23a: ONLY TESTING FOR A PENDING EXCEPTION 92
 STEP 23b: CLEARING WHICHEVER EXCEPTION WE HAPPEN TO CATCH 95
 STEP 23c: CLEARING EACH EXCEPTION IN ITS PARTICULAR WAY 97
 STEP 23d: AN EXTENSION EXERCISE 101
 STEP 23e: RETHROWING EXCEPTIONS 103
 STEP 24: A FULL CLASS DEFINITION, COMPLETE WITH EXCEPTIONS 107
INHERITANCE 111
 STEP 25: A CHILD CLASS INHERITING FROM ITS PARENT CLASS 112
 STEP 25a: A CHILD CLASS INHERITING ITS PARENT'S PROPERTY 114
 STEP 25b: INHERITANCE AND METHOD OVERRIDING 115
 STEP 25c: INHERITANCE AND PARAMETERISED CONSTRUCTORS 117
 STEP 25d: COMPLETING THE CLASSES – AN EXTENSION EXERCISE 121
POLYMORPHISM 122
CLASS HIERARCHIES
 STEP 26: DEFINE THE CLASS HIERARCHY 123
 STEP 26a: AN OVERVIEW OF THE CLASS DEFINITIONS 124
 STEP 26b: DEFINE THE BASE CLASS – SHAPE 125
 STEP 26c: DEFINE THE SUBCLASSES – eg RECTANGLE 128
 STEP 26d: WRITE THE APPLICATION FILE 130
A FINAL CLASS JUST FOR FUN – SELFAWARE CLASS 130
APPENDICES
 A: DL's CLASS SYSTEM 132
 B: DL's ROUTINES BY PROGRAM CONTEXT 133
 C: DL's CONSTANTS 134
 D: DL's VARIABLE 134
 E: DL ROUTINES THAT TEST FOR TYPES 135
 F: DL ROUTINES THAT RELATE TO CLASSES 135
 G: DL ROUTINES THAT RELATE TO PROPERTIES 135
 H: DL ROUTINES THAT RELATE TO METHODS 135
 I: DL ROUTINES THAT RELATE TO ERROR HANDLING 135
 J: DL's FATAL ERROR MESSAGES 136

Alexander Caracatsanis 3

A BEGINNER’S GUIDE TO
OBJECT ORIENTED PROGRAMMING

IN EUPHORIA
USING DIAMOND LITE

PREFACE AND ACKNOWLEDGEMENTS

From time to time Euphoria (Eu) programmers show an interest in developing applications
using the principles and practices of Object Oriented Programming (OOP). This "Guide" is an
attempt to foster this interest by presenting a series of steps that a beginner might take to
learn how to write Eu programs in an object-oriented (OO) way, using the library of routines in
Michael Nelson's Diamond Lite (DL).

I will assume that the reader is familiar with simple Eu programming, and the basic OOP
concepts. Since I aim to address the needs of the raw beginner I will provide simple, detailed,
incremental examples and explanations – those with more experience will know what material
to gloss over. At the end I have included several appendices as tables summarising various
aspects of DL – its system of classes; its predefined constants and variables; its routines and
their allowable program contexts; and its fatal error messages. The material reflects some of
my own learning steps, and my assumptions about what a beginner might need to know. I
welcome feedback from other Euphorians – beginners and seasoned programmers – regarding
the content, style, order, utility, and accuracy of the material, as well as comments on the
suitability of the examples and suggestions for improvements in the presentation.

I chose DL because it was promoted as suitable for beginners. I have no other motive for using
DL – I am not trying implicitly to promote it, and am not receiving any payment for it. Michael
Nelson has read my drafts, to correct my code and errors of fact, but the writing and
presentation are my own (as are any mistakes you find). We corresponded closely for more
than six months, and I benefited from his corrections, comments and code. Wherever I have
used his code extensively, I have acknowledged doing so in the appropriate place in the text. I
have also modified his library diamondlite.e by adding comments to demonstrate the call
chain of the routines (I have not modified the statements themselves). I have called the
modified file DL.e. When we come to it in the text, I discuss how to benefit from its use.

AN ORIENTATION TO OOP

The Eu Reference Manual says that although Eu is not an OO language, it achieves many of the
benefits of OO languages in a much simpler way. This is primarily because of its support for
sequences, which allow us to create arbitrarily complex data structures. Furthermore since DL
itself is written in Eu, there is nothing you can do with it that ultimately could not have been
done in pure Eu. So why use OOP?

Because as programs become larger and more complex, the procedural approach to
programming becomes increasingly challenged – and programs become harder to plan, code,
and maintain. This is partly because in procedural programming we think in terms of operating
on data – how to capture data, read it, change it, file it, display it, and so on – and eventually
struggle with the complexity of achieving these tasks.

In OOP we become interested in the data itself: what it is, and what it can do. We think about
our programming in ways that simulate (model) our thinking about ordinary "things" (objects)
– their characteristics (properties); what they can do (methods); the category (class) they
belong to; what they have inherited from other objects, and where they stand in a hierarchy of
related objects; what they are composed of; how they are an "entity" or unit (encapsulated);
how we never know what's inside them (their data is hidden) until they interact (interface)
with us in predefined ways; and how that same interaction with others, in different contexts,

Alexander Caracatsanis 4

can lead to very different expressions of that object's properties and capabilities
(polymorphism). Modelling real-world objects, and reusing existing code, are important
aspects of OOP.

In OOP, a class is a design or a "blueprint" for objects belonging to the same category by
virtue of sharing the same characteristics. A class models in the domain of computers,
something (an entity) that exists in the world around us. It is an abstraction – a framework –
that defines the relationship between data, the things the data can do, and the things that can
be done to or with that data. Because it provides this "framework", we can think of a class as a
data structure. And since it defines the format of an object, it only has the potential to become
an object.

In the domain of computers, an object is a manifestation, instance, or realisation of a class
during program execution – for a while, at run-time, it exists in the computer's memory.

AN ORIENTATION TO DIAMOND LITE

DL provides a predefined, consistent, preformulated way of achieving these OO capabilities –
particularly encapsulation, data hiding, polymorphism, inheritance, and pass-by-reference.

In DL both a class and an object are referred to, and implemented as, an entity. Where the
distinction is important, a class can be referred to as a class entity; and an object can be
referred to as an instance entity (or, more simply, as an instance).

A class may contain instance properties or instance methods (that can be incorporated into
instances that you create), and class properties or class methods (that pertain only to the class
itself). An object (instance entity) may contain only instance properties and instance methods.

An entity consists of two parts – a handle (which is like a "tag" with which to refer to the
entity), and a value (which is like a "composite" of all the entity's components). DL finds and
works with an entity via its handle, which is a sequence of three integers – the first represents
the class; the second represents the instance; and the third is Eu's largest negative integer.

DL provides a base class called Entity, which automatically passes three capabilities
(methods) to each class that you design:
v new(), which makes it possible for a class to create a new instance, with properties set to

their default values and methods ready and available for use when called
v clone(), which makes it possible for an instance to produce a copy of itself, with its

properties set to the values they had at the moment of copying
v delete(), which makes it possible for an instance to be decommissioned

DL also has another class – a special class – called Exception, which has no properties or
methods, but from which you can create new classes of your own to handle recoverable errors
that might occur while your program is running. (Note, however, that you may not create
instances of Exception or of your own exception classes.)

And whenever you design a class, DL will automatically create a subclass called Null_Class,
which contains no properties or methods, and which is used for error reporting. DL also
automatically creates Null_Instance, a single instance of Null_Class, which can only contain
a reference to data that is used in reporting errors. (Note that you may not create subclasses
of Null_Class.)

If you want your classes to have more functionality than this, you'll have to design them
yourself, using the tools provided by DL and Eu. In the meantime you might like to have a look
at APPENDIX A for a sneak preview of DL's class system – we'll discuss it fully later.

Alexander Caracatsanis 5

FORMATTING AND CONVENTIONS USED HERE

In the little projects I discuss here, I'll be adopting the convention of creating two source files
– the first for the definition of the class (eg ClassFile.e); the second for the instantiation and
application of the class (eg ClassDemo.ex). On each occasion:
ClassFile.e will begin with the statement: include diamondlite.e
ClassDemo.ex will begin with the statement: include ClassFile.e

I'll also use the following colour scheme:
v FileName.ext filenames
v keyword eg: include
v datatype eg: atom, entity, sequence, object
v CONSTANT a DL constant, eg: NONE, NIL, CLASS, INSTANCE
v routine() any routine, function, procedure, or method
v {sequence} an Eu sequence
v sequence[i] brackets
v -- comments eg: -- this is a comment!
v greyed-out old code we have met before, to contrast it against our new code

The application file will generally look like this:

procedure main()
 -- executable code here
end procedure

main()
if getc(0) then end if -- in case you need to prevent the console from disappearing

I've taken the liberty of adding comments to diamondlite.e to help you see DL in action. It
will display messages on your screen – eg: DL: call_method() calls.. – to help you "trace"
the execution of your program and show you how DL interacts with your application. It's not as
detailed as Eu's trace facility, but it should be sufficient for our purposes. I've called this
modified file DL.e. I encourage you to use it whenever you want to study what DL is doing
behind the scenes. (Make sure you save it in the same place as your other include files.)

INTRODUCTORY CONCEPTS – THE VERY BEGINNING

In the next six steps I want to introduce you to some concepts at the heart of DL, and the
syntax for one of its very important routines. In order not to distract you with lots of code, I'll
be using some very rudimentary examples. Once you’ve understood the concepts you won’t
code the specific items we use in these six steps – they are there only for introductory
teaching purposes, and as a reference for revision. We'll discuss these concepts again, in more
detail, when we apply them to code that will implement functionality relevant to "real world"
projects.

STEP 1: NO CLASS AT ALL – JUST AN INCLUDE FILE!

Let's begin with the statement that will appear somewhere in every DL-style OOP program that
we write: include diamondlite.e (or, for teaching purposes, DL.e). Let's see what happens
when an application executes that statement. Consider the following file IncludeDL.ex:

-- IncludeDL.ex v1.0

include DL.e

procedure main()

Alexander Caracatsanis 6

end procedure

main()

We haven't done any OO programming of our own yet – we're just peering into DL. We're
asking Eu to include (in IncludeDL.ex) whatever is in DL.e, and carry out any executable
statements therein. For our purposes it will be enough to say that at this point Eu uses DL to
do some initialisations, set some internal values, create the base class (Entity) and special
classes (Exception, Null_Class), and create a predefined instance (Null_Instance). The
application is now ready to locate and use any part of DL which may be called at run-time. Run
this application and note the output:

DL: method()
DL: method()
DL: method()

These comments emanate from DL.e. They demostrate that a routine called method() is
executed three times. As a result of this execution, three methods will have been declared:
new(), clone(), and delete(). They belong to the base class Entity, and will be inherited
automatically by every normal class that we will code later on.

STEP 2: PREDEFINED CLASSES AND AN INSTANCE

We can learn more about what's happened so far, by adding comments to our file:

-- IncludeDL.ex v1.1

include DL.e

procedure main()
 puts(1, "\n\nEX: In main()..")
 puts(1, "\nEX: Entity = ") print(1, Entity)
 puts(1, "\nEX: Exception = ") print(1, Exception)
 puts(1, "\nEX: Null_Class = ") print(1, Null_Class)
 puts(1, "\nEX: Null_Instance = ") print(1, Null_Instance)
end procedure

main()

Run this application and note the screen display:

DL: method()
DL: method()
DL: method()

EX: In main()..
EX: Entity = {1,0,-1073741824}
EX: Exception = {2,0,-1073741824}
EX: Null_Class = {3,0,-1073741824}
EX: Null_Instance = {3,1,-1073741824}

It tells us that DL executed three calls to method() (to create the new(), clone(), and
delete() methods of Entity). We then went to our application's procedure main(), which
displayed four different sequences, each of three elements. Each sequence is a handle – a
reference or a "tag" – that is automatically associated with one of these predefined entities.

Alexander Caracatsanis 7

Every time our application runs, these predefined entities will be given the same handles – ie
they are constants. Our application will use these methods via their handles.

The first element of the handle represents the number of a class, in the order that it was
created – Entity was created first ({1..) ; Exception was created next ({2..); and
Null_Class came third ({3..).

(Qu: What will be the value of the first element of the handle of the very next class that DL
creates? Ans: 4)

The second element of the handle represents the number of each instance, in the order of its
creation. Null_Instance is the very first instance created, so its handle gets the integer 1 as
the second element. And since Null_Instance is an instance of Null_Class (whose class
number is 3), you can see why its handle begins with {3,1,..

(Qu: What will be the value of the second element of the handle of the very next instance that
DL creates? Ans: 2)

And now for the third element. It is always the number -1073741824, Eu's largest negative
integer. DL places it there to help create a sequence that would be extremely unlikely to be
one of your own application's data. It's a constant called MARKER in DL – I'll refer to it as M.

STEP 3: WE CREATE OUR FIRST INSTANCE

So far we've watched IncludeDL.ex execute some internal code in the file DL.e. We've seen it
create three predefined classes, and give each of them a predefined, unique, and constant
handle. And we've seen it create a predefined instance (and give it a unique handle). We can
visualise the situation at this point like this:

What's the very next thing we can do? Well, although Null_Class and Null_Instance have
already been created, we can't do much with them – they have no data or actions associated
with them. We might be able to do something with the class Exception, but since it's there to
help handle run-time errors (and since we haven't made any mistakes yet!), it might be best
to leave it alone for the time being. Entity looks interesting – it's got no data, but it does have
methods. We can use Entity as a class from which to create an instance (entity). We can
represent what we need to achieve as follows:

Entity
{1,0,M}

new()
clone()
delete()

Exception
{2,0,M}

Null_Class
{3,0,M}

NNNuuullllll___IIInnnssstttaaannnccceee
{{{333,,,111,,,MMM}}}

Entity
{1,0,M}

new()
clone()
delete()

IIInnnssstttOOOfffEEEnnnttt iiitttyyy
{{{111,,,222,,, MMM}}}

Alexander Caracatsanis 8

This isn't a very useful thing to do in its own right, but it will help us explore some basic
concepts of DL, and give us practice in using some of DL's syntax – particularly the routine
call_method(), which we'll be using very often.

Our class (Entity) is already defined, so we don't have to write any code for it. But what we
can do is to write an application to create an instance of Entity:

-- InstanceOfEntity.ex v1.0

include DL.e

procedure main()
 entity InstOfEntity

 puts(1, "\nEX: In main()..")
 InstOfEntity = call_method(Entity, "new", NONE)
end procedure

main()

This program does the following:
1. it includes DL.e and precreates the classes, instance, and other internal values we

discussed above
2. it goes to main()
3. it declares a new variable called InstOfEntity of type entity – a sequence of three integers,

being a reference to an instance (as described before)
4. it displays the message: EX: In main()..
5. it calls the DL routine call_method(), passing three arguments
6. it returns a result, a three-integer-sequence reference, which it assigns to InstOfEntity

The routine call_method() says this: "Call the method named new(), on the target entity
named Entity, without passing any arguments to it". We can think of call_method() as DL's
way of implementing Entity.new().

Run the application and note the screen display:

We see three calls to method() as part of the initial processing of the included file DL.e Then
we go to the file InstanceOfEntity.ex, which displays EX: In main().. and calls the DL
routine call_method(). This then calls the DL routine Entity_new(), which creates the new
entity (InstOfEntity), and returns a reference ({1,2,M}) to it. We can picture the situation as
on the next page:

DL: method()
DL: method()
DL: method()
EX: In main()..
DL: call_method() calls..
DL: Entity_new(), which returns ref to new entity: {1,2,M}

Alexander Caracatsanis 9

Notice that the references of both the class and its instance have the same first element –
{1,.. – as they should, since they're from the same class. Notice that whereas Entity's second
element is 0 (because Entity is a class), the second element of InstOfEntity is 2 (signifying
the second instance entity that our application has created). The third element, MARKER (M),
is a constant – it's the same in all references.

(Qu: What was the first instance entity that our program created?
Ans: the precreated Null_Instance, whose reference is always {3,1,M})

STEP 4: A FIRST LOOK INSIDE AN INSTANCE – THE METHOD new()

We've created an instance of the predefined class Entity – an object that "comes alive"
during the execution of our program. What can our instance do? Recalling that our instance
came from Entity, which doesn't have any data (properties), we can assume that
InstOfEntity doesn't have any data either, but that it must have inherited some methods.

Using the syntax with which we previously created InstOfEntity from Entity, we could try to
create a new instance of this instance like this:

This syntax would mean "Call the method named new() on the target entity named
InstOfEntity without passing any arguments to it" – DL's implementation of
InstOfEntity.new() Let's use this in a modified application – InstanceOfInstance.ex:

-- InstanceOfInstance.ex v1.0

include diamondlite.e -- or DL.e

procedure main()
 entity InstOfEntity, InstOfInstEnt

 puts(1, "\nEX: In main()..")
 InstOfEntity = call_method(Entity, "new", NONE)
 InstOfInstEnt = call_method(InstOfEntity, "new", NONE)
end procedure

Entity
{1,0,M}

new()
clone()
delete()

IIInnnssstttOOOfffEEEnnnttt iiitttyyy
{{{111,,,222,,, MMM}}}

call_method(Entity, "new", NONE)

Entity
{1,0,M}

new()
clone()
delete()

IIInnnssstttOOOfffEEEnnntttiii tttyyy

{{{111,,,222,,,MMM}}}

call_method(InstOfEntity, "new", NONE)

IIInnnssstttaaannnccceeeOOOfffIIInnnssstttOOOfffEEEnnntttiiitttyyy

{{{111,,,333,,,MMM}}}

Alexander Caracatsanis 10

main()

When you run this application your screen should display something like this:

In call_method().
Class Entity does not define instance method new#0.
In main program.

We get an error message! What we've stumbled across is this: InstOfEntity has not inherited
the method new() from Entity, and so it can't create a new instance of itself – another brand
new "itself" – from scratch. When you think about it, it makes sense – "I" can't bring forth
"me", "myself", anew, fresh, from zero. At best, I can only create an offspring of myself – a
kind of "copy" of me. If I were a bacterium, I might even be able to split myself into two
identical bacteria – "clone" copies of me – but I still couldn't produce another new "me" from
scratch, with all the properties and behaviours I had at the very start of my existence (before I
was even old enough to reproduce!).

So we realise that an instance doesn't inherit the method new() from Entity. Accordingly, we
call new() a class method – it's available to the class, but not to an instance of the class.

STEP 5: A SECOND LOOK INSIDE AN INSTANCE – THE METHOD clone()

Let's turn our attention to the next method available in Entity (clone()), to see whether it is
contained in InstOfEntity – because if it is, then we will be able to create an instance that is a
copy of InstOfEntity, with all the qualities it possessed at the very moment of being copied.
We can visualise our task like this:

This syntax would mean "Call the method named clone() on the target entity named
InstOfEntity without passing any arguments to it" – DL's implementation of
InstOfEntity.clone() Let's use this in a modified application – CloneOfInstance.ex:

-- CloneOfInstance.ex v1.0

include DL.e

procedure main()
 entity InstOfEntity, CloneOfInstEnt

 puts(1, "\nEX: In main()..")
 InstOfEntity = call_method(Entity, "new", NONE)

 -- delete this – it doesn't work!
 -- InstOfInstEnt = call_method(InstOfEntity, "new", NONE)

 CloneOfInstEnt = call_method(InstOfEntity, "clone", NONE)

Entity
{1,0,M}

new()
clone()
delete ()

IIInnnssstttOOOfffEEEnnntttiii tttyyy

{{{111,,,222,,,MMM}}}

CCClllooonnneeeOOOfffIIInnnssstttOOOfffEEEnnntttiii tttyyy

{{{111,,,333,,,MMM}}}

call_method(InstOfEntity, "clone", NONE)

Alexander Caracatsanis 11

end procedure

main()

When you run this application you should see the following on your screen:

DL: method()
DL: method()
DL: method()
EX: In main()..
DL: call_method() calls..
DL: Entity_new(), which returns ref to new entity: {1,2,M}
DL: call_method() calls..
DL: Entity_clone(), which returns ref to cloned entity: {1,3,M}

As before we have the three calls to method(), to create Entity's methods (new(), clone(),
and delete()). We then go to our main program, which calls DL's call_method() routine; this
then calls DL's Entity_new() routine, which creates InstOfEntity and returns its reference.
Execution then continues at the application's next call to DL's call_method() routine; this
then calls DL's Entity_clone() routine, which creates CloneOfInstEnt and returns its
reference. Incidentally, notice that both our instances have references whose first element is 1
– because they both come from the class Entity (whose reference is {1,0,M}) – and whose
second elements are 2 and 3 consecutively (since 1 has already been used as part of the
reference to another instance).

(Qu: Which one? Ans: Null_Instance, whose reference is {3,1,M})

So we've discovered that the method clone() is inherited by an instance – and accordingly it's
called an instance method. (Remember that the method new() is a class method – it isn't
inherited by an instance.) We can visualise the situation schematically like this:

There's another point we can make at this stage. When we represent our classes and instances
pictorially, we show them as "containing" methods inside them. But when we look at the
output on the screen after our application has executed with DL.e, we get a more dynamic
picture – we see our application interacting with DL in such a way that there is a to-and-fro
movement between Eu, our application, DL, and back again. Instead of thinking that classes
and instances "contain" things, we can think of them as "having access to" program elements
– eg: InstOfEntity has access to a clone() method, but not to a new() method.

A PAUSE: PROGRAM CONTEXT

DL uses the term program context to describe this dynamic situation. For example when the
method clone() is executing we would recognise that program context as an instance method;
when the method new() is executing we would recognise that program context as a class
method. We haven't written any code to define a class yet, but if we had, and if we were
registering a property, declaring a method, or ending the class definition, then we would

Entity
{1,0,M}

new()
clone()
delete()

IIInnnssstttOOOfffEEEnnntttiii tttyyy
{{{111,,,222,,,MMM}}}
ccclllooonnneee((()))

call_method(Entity , "new", NONE) call_method(InstOfEntity, "clone", NONE)

CCClllooonnneeeOOOfffIIInnnssstttOOOfffEEEnnntttiii tttyyy

{{{111,,,333,,,MMM}}}

Alexander Caracatsanis 12

recognise that program context as the class definition. And when our application executes
something that doesn't involve any of the above – eg displaying "EX: In main().." – we would
recognise that program context as the main program. So program context refers to the aspect
of the program that is executing at any time – not to the physical layout or order of the code
written by the programmer.

To summarise... When execution starts, the program context is main program. We then go to
class definition context, which executes over the time that a class is created, properties are
registered, methods are declared, and the class definition is formally closed. Then, executing
call_method() from the main program shifts the context to instance method or class method
as appropriate. When the method returns, program context returns to main program. It's
helpful to be aware of the dynamic changes in the program context, because it helps you plan
and write your code – some DL routines can only be used in certain program contexts, but not
in others. (See APPENDIX B for a summary of what's allowed where.)

Finally, notice how heavily DL relies on handles. We'll have more to say about them later, but
for now just notice that DL doesn't manipulate large chunks of data structures in the way
we've represented them as rectangles or ellipses – it uses references to help it locate what it
needs to use when it is called for.

BACK TO THE BASIC STEPS

STEP 6: A THIRD LOOK INSIDE AN INSTANCE – THE METHOD delete()

It's time for us to see whether our instance InstOfEntity has inherited delete(), the
remaining method predefined by Entity, and to see how we might use it. We visualise our task
as follows:

This syntax would mean "Call the method named delete() on the target entity named
InstOfEntity without passing any arguments to it". It is DL's way of implementing
InstOfEntity.delete() Let's use it in a modified application – DeletedInstance.ex:

-- DeletedInstance.ex v1.0

include DL.e

procedure main()
 entity InstOfEntity, CloneOfInstEnt

 puts(1, "\nEX: In main()..")
 InstOfEntity = call_method(Entity, "new", NONE)
 CloneOfInstEnt = call_method(InstOfEntity, "clone", NONE)
 VOID = call_method(InstOfEntity, "delete", NONE)
end procedure

main()

Entity
{1,0,M}

new()
clone()
delete()

IIInnnssstttOOOfffEEEnnntttiii tttyyy
{{{111,,,222,,,MMM}}}
ccclllooonnneee((()))
dddeeellleeettteee((()))

call_method(InstOfEntity, "delete", NONE)

DDDeeellleeettteeeIIInnnssstttOOOfffEEEnnntttiiitttyyy

Alexander Caracatsanis 13

Most of the syntax should be looking familiar by now. You might have been surprised by the
value VOID. This is a DL variable; it means "no meaningful return value". This makes sense –
we're decommissioning our instance (an act that will result in an absence of an instance), so
there shouldn't be anything left afterwards to which to give a meaningful value!

DL also has a number of constants. We've already met NONE, which means "an empty
sequence" ({}). There's also NIL, which means "no meaningful numeric value – 0". NONE
and NIL can be used as default place-holders until a specific sequence or a specific number
comes along to take their place. (Have a look at APPENDIX C and D for a summary of all
these values.) Very soon we'll be finding such a use for another DL constant. But first, let's run
the application and note the screen display:

DL: method()
DL: method()
DL: method()
EX: In main()..
DL: call_method() calls..
DL: Entity_new(), which returns ref to new entity: {1,2,M}
DL: call_method() calls..
DL: Entity_clone(), which returns ref to cloned entity: {1,3,M}
DL: call_method() calls..
DL: Entity_delete(), which returns ref to Null_Instance: {3,1,M}

Most of it should be familiar by now – creating Entity 's methods; going to the application;
creating a new instance of Entity and returning its reference; creating an instance
(CloneOfInstEnt) that is a copy of InstOfEntity, and returning its reference; and calling the
DL routine Entity_delete() to decommission InstOfEntity. But why do we get back to
Null_Instance? And what's happened to CloneOfInstEnt?

When you think about it, it should make sense. When we decommission an instance, we
destroy it – we send it to the "Instance Graveyard", where it has no further existence. It has
become a "non-instance" – a Null_Instance. All decommissioned instances end up here,
irrespective of their origins. What's more, Null_Instance itself can be used as a default place-
holder, meaning "no meaningful instance". Later on we'll see how we can replace it with more
meaningful instance values.

And now to the question we asked before: what's happened to the instance CloneOfInstEnt?
Well, just before our application ended, DL saw to it that the instance was automatically
decommissioned, so we didn't see it happening. But it is possible to delete it explicitly. We can
picture our task like this:

To achieve this, we will modify our application DeletedInstance.ex like this:

-- DeletedInstance.ex v1.1

include DL.e

Entity IIInnnssstttOOOfffEEEnnntttiii tttyyy DDDeeellleeettteeedddCCClllooonnneee

CCClllooonnneeeOOOfffIIInnnssstttEEEnnnttt

call_method(CloneOfInstEnt, "delete", NONE)

Alexander Caracatsanis 14

procedure main()
 entity InstOfEntity, CloneOfInstEnt

 puts(1, "\nEX: In main()..")
 InstOfEntity = call_method(Entity, "new", NONE)
 CloneOfInstEnt = call_method(InstOfEntity, "clone", NONE)
 VOID = call_method(InstOfEntity, "delete", NONE)
 VOID = call_method(CloneOfInstEnt, "delete", NONE)
end procedure

main()

Run the application and notice the screen display:

DL: method()
DL: method()
DL: method()
EX: In main()..
DL: call_method() calls..
DL: Entity_new(), which returns ref to new entity: {1,2,M}
DL: call_method() calls..
DL: Entity_clone(), which returns ref to cloned entity: {1,3,M}
DL: call_method() calls..
DL: Entity_delete(), which returns ref to Null_Instance: {3,1,M}
DL: call_method() calls..
DL: Entity_delete(), which returns ref to Null_Instance: {3,1,M}

Notice the added reference to Null_Instance, signifying that CloneOfInstEnt has been
explicitly decommissioned. All the other steps have remained the same.

We can now ask another question: having successfully deleted our own instances, can we go
one step further and delete the class (Entity) from which they were created? In other words,
can we do this:

The following code in DeletedEntity.ex should look familiar to you by now:

-- DeletedEntity.ex v1.0

include DL.e

procedure main()
 VOID = call_method(Entity, "delete", NONE)
end procedure

main()

Entity
{1,0,M}

new()
clone()
delete()

DDDeeellleeettteee dddEEEnnnttt iiitttyyy

call_method(Entity, "delete", NONE)

Alexander Caracatsanis 15

Run the application and note the screen display:

FATAL ERROR:
In call_method().
Class Entity does not define class method delete#0.
In main program.

We can't do that! We can't decommission a class. The error message tells us that the class
Entity does not "contain" (or have access to) a delete() method capable of decommissioning
itself, only instances of the class. This makes sense – we don't want to expose our class to the
risk of death, whether by design or accident. And we don't want to destroy a perfectly good
blueprint! (By the way, now might be a good time to take a quick look at APPENDIX J, a table
summarising the meaning of all DL's error messages – then use it as a quick reference.)

PAUSE: A RECAP

Before we write more code of our own, let's summarise the main points we've made so far:

1. we've seen that our application interacts with diamondlite.e through some code within it,

and through code that we write
2. we've seen some of diamondlite.e's initialisations – particularly in creating its predefined

classes and an instance, as well as declaring predefined methods for our normal classes to
inherit

3. we've learnt to use the routine call_method() to invoke certain DL methods on their
target entity, and we've had a glimpse of what happens when certain methods are called

4. we've distinguished between class methods and instance methods
5. we've tried our hand at creating a new instance entity (from a class), and a copy of that

entity; and we've learnt how to decommission our instances (and that we cannot delete a
class!)

6. we've introduced DL's system for providing references for our classes and instances
7. we've learnt something about the various program contexts that apply as our application

executes
8. we've introduced some constants that are defined in DL, and which can act as default

place-holders
9. we've learnt that some program elements may be inherited from classes – and that some

may not!

From now on we will be writing code for our own classes, instances, and other functionality. As
we proceed one step at a time, resist the temptation of thinking that you could achieve the
same results using fewer lines of code in non-OO Eu. Remember that the benefits of OOP are
realised in the way it helps us think about our programming tasks; in the way it helps us
organise large, complex programs; in the way it helps us reuse our code; and in the way it
helps us model objects in the world beyond computers.

CREATING OUR FIRST CLASS

STEP 7: AN INERT CLASS

Let's suppose our task is to create an application to model a fail-safe object that could be
relied upon to be impassive, remain inert, do nothing under any and all circumstances – an
InertEntity.

This object's blueprint would define the qualities and capabilities of all such objects – that they
have no data, and that they cannot perform any actions (other than coming into existence,
making copies of themselves, and being decommissioned). This class, which we can call
InertClass, will need to ensure that any object created from it will contain nothing and do

Alexander Caracatsanis 16

nothing, and that it will be brought to life and eventually extinguished automatically with no
ability to interact with the world. It would inherit its most basic qualities from DL's base class -
Entity – the methods new(), clone(), and delete().

We can picture the situation like this:

Or even....

These drawings represent an entity InertEntity that has access to methods called clone()
and delete(). The object and its contents are detailed in the class definition InertClass,
which in turn has inherited from Entity these methods as well as the method new() – to
which it has access.

Our next task is to write the code in the application file to create InertEntity. We've already
met this – it's:

It says: "Call the method new() on InertClass, passing no arguments, and return a handle to
assign to the entity InertEntity." It implements InertClass.new() We now have to code the
class InertClass in the class definition file, as follows:

-- InertClass.e v1.0

include DL.e

global constant InertClass = class("InertClass", Entity)
end_class()

The first line includes the file DL.e. The second line calls the routine class(), passing as
arguments the name of the class (InertClass) and the identifier for its superclass (Entity); it
will return a reference (InertClass) to the class. From here on, any access to the class will
occur only through this reference – hence the importance of making it a global constant. The
last line calls the routine end_class() to terminate the class definition.

To see how the class behaves, we’ll create an application file InertDemo.ex:

-- InertDemo.ex v1.0

InertEntity
ccclllooonnneee((()))
dddeeellleeettteee((()))

InertClass
new()
clone()
delete()

Entity
new()
clone()
delete()

InertClass

Entity
new()
clone()
delete()

InertEntity
ccclllooonnneee((()))
dddeeellleeettteee((()))

InertEntity = call_method(InertClass, "new", NONE)

Alexander Caracatsanis 17

include InertClass.e

procedure main()
 entity InertEntity
 InertEntity = call_method(InertClass, "new", NONE)
end procedure

main()

The first line includes the definition of the class in InertClass.e. The second line declares an
object called InertEntity, of type entity. The third line invokes the routine call_method(),
which takes as arguments:
v the reference to the class itself (InertClass)
v the method new(), which is inherited from the base class Entity
v a sequence of the arguments to be passed to the method. NONE is a DL constant, whose

value is the empty sequence – so we could code: call_method(InertClass, "new", {})

When you run the application file InertDemo.ex you should see:

DL: method()
DL: method()
DL: method()
DL: class() calls new_class(): returns ref to new class {4,0,M}
DL: end_class()
DL: call_method() calls..
DL: Entity_new(), which returns ref to new entity {4,2,M}

We see the three calls to method() followed by a call to DL's routine class() (made from
InertClass.e), which in turn calls DL's routine new_class(), which returns a reference to the
class InertClass ({4,0,M}), before closing the class definition with end_class(). The
application then calls call_method(), which in turn calls the DL routine Entity_new(); this
returns a reference ({4,2,M}) which is assigned to InertEntity. Had we used diamondlite.e,
we wouldn't have seen any of this – only a blank screen, because this entity is unable to
interact with us in any way.

At this point we can emphasise a few things:
v Note the order of execution of the application:

1. some initialisations from the included file DL.e (lines 1, 2, 3)
2. some processing pertaining to the included class definition file InertClass.e (lines 4, 5)
3. an interaction between executable statements in the application file InertDemo.ex,

and DL.e (lines 6, 7)
v Note that the first element of the handle of the class is the same as the first element of the

handle of its entity (ie 4) – as it should be, since InertEntity is an instance of InertClass.
v Note also that the second element of the handle of the entity is the integer 2 – as it should

be, since this is the second entity that our application has created (Null_Instance was the
first; its handle is {3,1,M}).

v Be aware that even though we can draw entities "containing" things inside them, it is more
accurate to think of classes and objects "having access to" certain program elements and
constructs.

v Finally, note that something else has happened automatically, behind the scenes –
InertEntity has been decommissioned. We'll look at that process in more detail later.

Now would be a good time to read through STEPs 1 to 6 to revise these concepts and see how
they apply to our present tasks.

Alexander Caracatsanis 18

STEP 8: AN INERT CLASS WITH A DEFAULT CONSTRUCTOR

So far we've designed a class (InertClass) and have given it brief existence as an object
(InertEntity), but we've had no say in how this object came to life, the state it was in at the
moment of its creation, or how it expired. These matters were taken care of by DL, by what we
could call the inherited "automatic constructor" and "automatic destructor".

But sometimes we do need to have a say in the state of an object at the moment of its
creation. For instance, over the course of its existence an object might need to keep track of
something about itself (eg how many instances it has created); that "something" will have to
be set to some initial value when the object is created – we won't be able to leave it up to the
default constructor to do it.

To enable us to do such things, we will have to incorporate in the design of the class a
capability (a method) called a default constructor, to supplant (override) DL's "automatic
constructor" (which will immediately become unavailable to any new entity of this class). This
default constructor will not be able to receive data from outside the object, and it will only be
able to create an object in the manner specified in the definition of the method.

Now we don't actually need a default constructor for our present purposes, but we can use it to
introduce us to DL's consistent syntax for writing methods within a class. We'll use this syntax
repeatedly, so I introduce it now:

 function foo(parameter_list)
 -- statements
 return some_value
 end function
 method(a, b, c, routine_id("foo"))

This code has two parts:
v the method is defined as a function, taking a certain number of parameters, executing

its statements, and returning its appropriate value
v the method is then registered with DL (declared) using the routine method().

method()'s parameters are as follows:
v a is the name we've chosen to give to this method – eg: "myFooMethod"
v b is the number of parameters in foo's parameter_list – eg: 0 or 1 etc...
v c is a named integer constant defined in DL, and identified by the word INSTANCE or

CLASS, depending on whether this method is being called on an object, or on a class
(respectively)

v routine_id() will return a reference to the method named foo; this reference will be used
to invoke foo whenever you subsequently call myFooMethod

You can substitute anything you want for foo. I'll use the following self-documenting syntax:
 ClassName_methodName_N (where N = number of parameters)

PAUSE: OVERRIDING METHODS

We are free to give our constructor any name at all – eg "makeObject" for a above – and it
will work just fine. But we will call our default constructor "new", because we will want it to be
used in place of the automatic constructor (new()) that our class inherited from its superclass
(Entity). When we do this, we are using our own method to override – to supplant; to be used
instead of – the method that our class already inherited. If we don't do this, the automatic
constructor (Entity.new()) will remain available, and someone could then use it to make a
new entity of this class, bypassing our own carefully coded (and presumably important and
necessary) constructor!

Alexander Caracatsanis 19

To understand overriding better, consider the following diagram:

It depicts a class, MyClass, that has inherited Entity's constructor new() (and clone() and
delete()) – as described in previous paragraphs – and that contains four (programmer-
defined) constructors (new(), myNew(), newObject(), and makeNew()). Each of these
will be capable of constructing some kind of new entity (according to the code in the function's
body), but only MyClass 's new() will be able to override Entity's new() and "disable" it so
that an entity can no longer be created from it. Remember that what we have drawn here is a
static diagram to illustrate an idea. If we think about it in dynamic terms, we can say that
MyClass's user-defined default constructor new() is there to deny access to Entity's new().

The general principle is that we can write methods to override (or to be used in place of)
methods that a class has already inherited – provided that the overriding methods have the
same name and same parameters as the overridden methods. We won't appreciate the full
significance of this until we discuss inheritance much later on...

BACK TO THE CONSTRUCTOR...

We now have all we need in order to code explicitly how our class will construct an entity of its
type. Go back to InertClass.e and add the following:

-- InertClass.e v1.1

include DL.e

global constant InertClass = class("InertClass”, Entity)
 function InertClass_new_0()
 entity newInert

 newInert = call_method(super(), "new", NONE)

 return newInert
 end function
 method("new", 0, CLASS, routine_id("InertClass_new_0"))
end_class()

What have we done?
v We've included the library of routines in diamondlite.e
v We've then called class(), passing as arguments the name of our own class (InertClass)

and its superclass (Entity)
v This function has returned a reference to our own class – a reference that we've assigned

to a global constant with the same name as our class. (We could've given it any other
name, but this convention is self-documenting – we'll always know which class we're
referring to.)

Entity
new()
clone()
delete()

MyClass
new()
myNew()
newObject()
makeNew()

Alexander Caracatsanis 20

v We've then defined our default constructor (method) as a function, and registered it with
DL using the routine method()

v We've called our function InertClass_new_0 because it will call the new() method that
InertClass inherited from the base class Entity. And we've added the zero because there
will be no parameters.

v We've then declared a variable of the predefined type entity; we've called it newInert.
(We could've called it anything – even "new". But be careful – Entity [the base class] is
not the same as entity [the predefined type]; and new [if used as an identifier for a
variable of type entity] is not the same as "new" [the name of the new() method].)

v We've then invoked call_method(), passing it three arguments. This will call the method
new() (to which it passes an empty sequence [NONE] of arguments) of the superclass of
InertClass. (Think of call_method() as DL's way of implementing SuperClass.new().)

v call_method() has returned a reference to the newly created object
v We've assigned this to the variable newInert, which is returned by the function
v We've then registered the method by calling the procedure method(), to which we've

passed as arguments:
Ø the name we've given to our method – "new", to override Entity's new()
Ø the number of arguments we are passing – in this case 0
Ø the named constant signifying that we're using a class method – CLASS
Ø and a reference to our default constructor method – "InertClass_new_0"

v Finally, we've ended the class definition by calling the procedure end_class()

To help us demonstrate that our default constructor method really does something, I'll add one
more statement:

-- InertClass.e v1.2

include DL.e

global constant InertClass = class("InertClass", Entity)
 function InertClass_new_0()
 entity newInert

 newInert = call_method(super(), "new", NONE)
 puts(1, "\nDL: About to leave default constructor.. ")

 return newInert
 end function
 method("new", 0, CLASS, routine_id("InertClass_new_0"))
end_class()

To see how the class behaves now, we’ll change InertDemo.ex to this:

-- InertDemo.ex v1.1

include InertClass.e

procedure main()
 entity InertEntity

 puts(1, "\nEX: Before construction of the object.. ")
 InertEntity = call_method(InertClass, "new", NONE)
 puts(1, "\nEX: After construction of the object")
end procedure
main()

Alexander Caracatsanis 21

This file contains an application of the class. As before, it includes our class definition in file
InertClass.e As before, it declares an object (InertEntity) of type entity. Then it displays a
short message informing us that we haven't yet created our object. We then invoke
call_method() which calls the method new() (with no arguments), which we utilised when
we defined and registered our default constructor. (Think of call_method() as implementing
InertClass.new().) We are now taken to our own constructor, which displays a short
message telling us that we're about to leave it, before going back to the main program (where
we're told that we've finished instantiating our object).

When you run InertDemo.ex you'll see the following screen display:

DL: method()
DL: method()
DL: method()
DL: class() calls new_class(): returns ref to new class {4,0,M}
DL: method()
DL: end_class()
EX: Before construction of the object..
DL: call_method() calls..
DL: super(), which calls the method of this target's direct superclass
DL: call_method() calls..
DL: Entity_new(), which returns ref to new entity {4,2,M}
DL: About to leave default constructor..
EX: After construction of the object

Notice the three calls to method() (part of the initial processing of DL.e) followed by a call to
class(). This calls new_class(), which returns a reference ({4,0,M}) to InertClass, which
calls method() (to register our default constructor) before ending the class definition with
end_class() Execution continues in the application file

(EX: Before construction of the object..),
which calls the new() method of its target (InertClass). We are now in our default
constructor, which contains explicit instructions for creating an object of the class. It declares a
variable (newInert) of type entity, then calls the DL routine super(), which in effect gains
access to the overridden method – Entity's new() – and returns a reference ({4,2,M}) to the
new entity (newInert). After a short message to confirm that we've been in the default
constructor (DL: About to leave default constructor..)
execution continues in the application file

(EX: After construction of the object).

Had we run our application using diamondlite.e, we would have seen the following:

EX: Before construction of the object..
DL: About to leave default constructor..
EX: After construction of the object

Again, InertEntity was decommissioned silently and automatically by DL before our
application ended. The next step is to learn how we can control this process.

STEP 9: AN INERT CLASS WITH A DEFAULT DESTRUCTOR

It's now time to be more explicit about the destruction of our entity. We introduced this topic
in STEP 6, where we found that DL provides us with a destructor (delete()) that's
automatically inherited (from the base class Entity) by every class we write. We've been
relying on it to decommission our object automatically at the end of our application.

Alexander Caracatsanis 22

But our object may have special requirements of its own that need to be taken into account. It
may need to release certain resources that it's still holding onto. It may need to divest itself of
things (even other entities) it has accumulated. It may even need to keep track of the process
of its own demise.

To fulfill these purposes, the programmer has to design a default destructor. Reread STEP 6
and STEP 8, with the default destructor in mind. The concepts, and most of the syntax, will
apply here too. All we need do is to note the differences.

Let's go back to our last version of InertClass.e and add the code for our default destructor:

-- InertClass.e v1.3

include DL.e

global constant InertClass = class("InertClass", Entity)
 function InertClass_new_0()
 entity newInert

 newInert = call_method(super(), "new", NONE)
 puts(1, "\nDL: About to leave default constructor.. ")

 return newInert
 end function
 method("new", 0, CLASS, routine_id("InertClass_new_0"))

 function InertClass_delete_0()
 puts(1, "\nDL: In default destructor, destructing the object..")

 return call_method(super(), "delete", NONE)
 end function
 method("delete", 0, INSTANCE, routine_id("InertClass_delete_0"))
end_class()

What have we done? We've overridden the method delete() that our class inherited from
Entity. We can diagram the situation as below:

And we've passed to method() a named constant called INSTANCE, to signify that the
method is to apply to an object of the c lass, rather than to the class itself. To see how the
class behaves now, let's go back to the file InertDemo.ex and add two more statements:

-- InertDemo.ex v1.2

include InertClass.e

procedure main()

Entity
new()
clone()
delete()

InertClass
new()

delete()

Alexander Caracatsanis 23

 entity InertEntity

 puts(1, "\nEX: Before construction of the object.. ")
 InertEntity = call_method(InertClass, "new", NONE)
 puts(1, "\nEX: After construction of the object")

 VOID = call_method(InertEntity, "delete", NONE)
 puts(1, "\nEX: After destruction of the object")
end procedure

main()

This file contains an application of the class. Everything is as it was before, apart from the call
to the function call_method(), which in effect calls the method delete() (with an empty
sequence of arguments) upon our entity (InertEntity), and assigns the returned value to
VOID (a variable used to hold discarded values). (Think of call_method() as implementing
the syntax: InertEntity.delete().) We're taken to the default destructor we designed, and
are rewarded with a short message telling us the deed is being done. We're then returned to
the main application, to see a message telling us it's all over. We can picture what we've done,
like this:

We'll run InertDemo.ex with DL.e to study the execution of the program:

DL: method()
DL: method()
DL: method()
DL: class() calls new_class(): returns ref to new class {4,0,M}
DL: method()
DL: method()
DL: end_class()
EX: Before construction of the object..
DL: call_method() calls..
DL: super(), which calls the method of this target's direct superclass
DL: call_method() calls..
DL: Entity_new(), which returns ref to new entity {4,2,M}
DL: About to leave default constructor..
EX: After construction of the object
DL: call_method() calls..
DL: In default destructor, destructing the object..
DL: super(), which calls the method of this target's direct superclass
DL: call_method() calls..
DL: Entity_delete(), which returns ref to Null_Instance: {3,1,M}

IIInnneeerrrtttEEEnnntttiiitttyyy
{{{444,,,222,,,MMM}}}
ccc lllooonnneee((()))
dddeeellleeettteee((()))

call_method(InertEntity, "delete", NONE)

NNNuuulll lll___IIInnnssstttaaannnccceee
{{{333,,,111,,,MMM}}}

class("InertClass", Entity)

InertClass
{4,0,M}

new()

delete()

Entity
{1,0,M}
new()
clone()
delete()

call_method(InertEntity, "new", NONE)

Alexander Caracatsanis 24

EX: After destruction of the object

The greyed-out portions of the display represent output that is exactly the same as that of
STEP 8. Notice the extra method() during the class definition program context – that is the
result of declaring an extra method (the default destructor that we coded, which wasn't there
before). We pick up the story from the point after which we have left the default constructor
and are back in main(). We are then taken to our default destructor, which overrides the
automatic destructor to return a reference to an entity that represents the final resting place of
all destructed entities – Null_Instance, {3,1,M}.

Had we run InertDemo.ex with diamondlite.e we would have seen the following output:

EX: Before construction of the object..
DL: About to leave default constructor..
EX: After construction of the object
DL: In default destructor, destructing the object..
EX: After destruction of the object

INTRODUCING PROPERTIES

STEP 10: A SIMPLE CLASS WITH A PROPERTY – AND HOW TO GET IT

So far our entities have merely come and gone. The programmer has displayed signs of their
existence ("We are here, constructing..."; "..., destructing..."; etc), but we have yet to hear
from the entities themselves, because they had nothing within them to say, and nothing to say
it with anyway. We need to give our entities some data (properties).

We incorporate a property into our class definition by registering it with DL using the
procedure property(a, b, c), which takes three arguments:
v a is the name we choose to give to this property – eg "myProperty"
v b is a named constant, either INSTANCE or CLASS, depending on whether we're dealing

with what's inside an object of the class, or with the class as a whole
v c is the value of the property – eg "priceless", or 1000000 etc

To see how this might work, let's build up a new class that will contain some data. We will
create a file SimpleClass.e (To keep things uncluttered, we'll use the automatic constructor
and destructor.)

-- SimpleClass.e v1.0

include DL.e

global constant SimpleClass = class("SimpleClass", Entity)
 property("myName", INSTANCE, "Alex")
end_class()

We've defined a class (SimpleClass) that closely resembles the definition of InertClass (see
STEP 7), except that now it has something in it – a property. We've declared, initialised, and
registered with DL, this property (a variable) that will be a component of each object
(INSTANCE) of the class; we've called this property myName, and we've given it an initial
value "Alex".

To see how this class behaves, we'll write a file SimpleDemo.ex, in which we'll create an
entity of the class; and we'll design code to access the property within the class. Look at this:

-- SimpleDemo.ex v1.0

Alexander Caracatsanis 25

include SimpleClass.e

procedure main()
 entity MySimpleObject

 MySimpleObject = call_method(SimpleClass, "new", NONE)
 puts(1, myName)
end procedure

main()

The file is almost exactly like that of InertDemo.ex, but it adds a call to Eu's routine puts(),
to display a human-readable string ("Alex") which is the value of the variable (myName),
which is the sole piece of data (property) available to MySimpleObject from its class
SimpleClass. Run SimpleDemo.ex

You should see an error message – myName has not been declared . This may have
surprised you, because we have already declared myName – in property(). What happened?
We've tried to use puts() to interrogate MySimpleObject and get the value of myName
directly. We need to remember that in OOP the data (properties) and the operations (methods)
allowable upon it, are bound together (encapsulated) in the class, thereby hiding the details
from our applications, except through strictly defined access points (interfaces).

DL provides a routine get_property(), which takes two arguments – the name of the entity
(eg MySimpleObject), and the name of the property (eg myName) – and returns the value of
the property (eg: "Alex"). Let's modify SimpleDemo.ex, using this routine to give us access
to the property (which is turning out to be a very private individual).

-- SimpleDemo.ex v1.1

include SimpleClass.e

procedure main()
 entity MySimpleObject
 MySimpleObject = call_method(SimpleClass, "new", NONE)

 -- remove this – it doesn't work!
 -- puts(1, myName)

 puts(1, get_property(MySimpleObject, "myName"))
end procedure

main()

We've now asked puts() to ask get_property() to return the value ("Alex") of this object's
(MySimpleObject) property (myName). Run SimpleDemo.ex to see....

an error message! We're told:

In get_property()
Access to SimpleClass instance property myName denied.
In main program.

We're denied access to the property directly from our application – the property is a private
member of the class. (All properties are private in DL!) We need an access point (or "bridge",
or interface) between our object and the application that's trying to get at its data. The routine

Alexander Caracatsanis 26

call_method() is available for this task. It will require a suitable method to call. The following
changes to SimpleClass.e define and register a method (getName) implemented as the
function SimpleClass_getName_0():

-- SimpleClass.e v1.1

include diamondlite.e -- or DL.e

global constant SimpleClass = class("SimpleClass", Entity)
 property("myName", INSTANCE, "Alex")

 function SimpleClass_getName_0()
 puts(1, "\nDL: getName(), whose target is..")

 return get_property(this(), "myName")
 end function
 method("getName", 0, INSTANCE, routine_id("SimpleClass_getName_0"))
end_class()

What have we done? Having generated a reference (SimpleClass) for our class
("SimpleClass") whose superclass is Entity, we called the procedure property() to register
an instance variable (INSTANCE), called MyName, whose value is "Alex". We then designed a
programmer-defined function (SimpleClass_getName_0), to invoke the function
get_property() which will identify the variable called "myName" as a property of this class.
We then called the procedure method() to register the details with DL. Finally, we ended the
class definition with end_class(). Let's now modify SimpleDemo.ex accordingly:

-- SimpleDemo.ex v1.2

include SimpleClass.e

procedure main()
 entity MySimpleObject
 sequence itsValue

 MySimpleObject = call_method(SimpleClass, "new", NONE)

 -- remove these – they don't work!
 -- puts(1, myName)
 --puts(1, get_property(MySimpleObject, "myName"))

 itsValue = call_method(MySimpleObject, "getName", NONE)
 puts(1, "\nEX: MySimpleObject.myName = " & itsValue)
end procedure

main()

Now, puts() will work once call_method() invokes the getName method on
MySimpleObject and returns the property's value (assigned to itsValue). Run the application
with DL.e and note the output:

DL: method()
DL: method()
DL: method()
DL: class() calls new_class(): returns ref to new class {4,0,M}
DL: property()

Alexander Caracatsanis 27

DL: method()
DL: end_class()
DL: call_method() calls..
DL: Entity_new(), which returns ref to new entity {4,2,M}
DL: call_method() calls..
DL: getName(), whose target is..
DL: this(), which returns ref to target entity: {4,2,M}
DL: get_property() returns value of instance property
EX: MySimpleObject.myName = Alex

Much of the display should look familiar by now...
v the three calls to method()
v the class definition,

Ø getting a reference ({4,0,M}) to the class SimpleClass,
Ø registering a property() and a method(),
Ø and ending with end_class()

v using the inherited default constructor to return a reference ({4,2,M}) to an instance
(MySimpleObject) of the class

Using call_method(), we then invoke the method getName() on MySimpleObject. This
gives us access to our function SimpleClass_getName_0(). Notice the call to the DL routine
this() – we'll see it often. It returns the reference to the entity that is the target of our current
method – here, it happens to be MySimpleObject, {4,2,M} – and uses it as the target of the
next call (in this case, a call to the routine get_property()). (We can imagine a dialogue:
"Call the entity's method. Which entity's method? This entity's method.") The result is that we
gain access to the value of the (otherwise private) property (myName).

STEP 11: A SIMPLE CLASS WITH A PROPERTY – AND HOW TO SET IT

We've had some interaction with the object, in the sense that we've found a way to access the
value of its (private) property, using a consistent means provided by the function
call_method(), which has allowed us to implement a public accessor method (in this case, a
getter - getName); we were then able to call the Eu routine puts(), to display the value.

Now we need to know how to access a private property and have our application change the
property's value – by order of the programmer, or by input from the user. Thinking back to the
discussion in STEP 10, we can make the following predictions:
v that our application won't be able to change the property directly – by assigning a new

value to it – ie myName = "Christopher" won't work
v that in our class definition we will have to define another public accessor method – this

time a setter – which we might call "setName"
v that this method will need to be implemented as a function whose signature is likely to be

MySimpleClass_setName_1(parameter), and which will likely be registered using the
procedure method()

v that our application won't be able to call the setter directly, but that it may invoke it via a
call to call_method()

Let's convince ourselves about the first point. We won't change SimpleClass.e, but we'll
change SimpleDemo.ex as follows:

-- SimpleDemo.ex v1.3

include SimpleClass.e

procedure main()
 entity MySimpleObject
 sequence itsValue

Alexander Caracatsanis 28

 MySimpleObject = call_method(SimpleClass, "new", NONE)

 myName = "Christopher"
 itsValue = call_method(MySimpleObject, "getName", NONE)
 puts(1, "\nMySimpleObject.myName = " & itsValue)
end procedure

main()

This application appears to be doing the following things:
v creating a new object (MySimpleObject) of type entity, as an instance of SimpleClass
v assigning the name "Christopher" to the object's private property myName
v declaring a variable itsValue of type sequence
v accessing the public method getName
v displaying the value of myName

Run the application, and confirm that you get....

an error message: myName has not been declared

You probably realise already that the application doesn't recognise the object's property
(myName). Let's go back to the file SimpleClass.e, and define a public method analogous to
getName(), to give us a way of accessing the property:

-- SimpleClass.e v1.2

include DL.e

global constant SimpleClass = class("SimpleClass", Entity)
 property("myName", INSTANCE, "Alex")

 function SimpleClass_getName_0()
 puts(1, "\nDL: getName(), whose target is..")

 return get_property(this(), "myName")
 end function
 method("getName", 0, INSTANCE, routine_id("SimpleClass_getName_0"))

 function SimpleClass_setName_1(sequence anyName)
 puts(1, "\nDL: setName(), whose target is..")

 set_property(this(), "myName", anyName)

 return NIL
 end function
 method("setName", 1, INSTANCE, routine_id("SimpleClass_setName_1"))
end_class()

This class definition is almost exactly like the one in STEP 10, except for the function
SimpleClass_setName_1(), which takes one parameter (anyName) of type sequence. This
function calls the procedure set_property(), which sets this class' property myName to the
value passed in as anyName. The procedure method() then registers the name of the
method as "setName".

Turning now to our application, we might think of calling SimpleClass_setName_1() directly,
like this:

Alexander Caracatsanis 29

-- SimpleDemo.ex v1.4

include SimpleClass.e

procedure main()
 entity MySimpleObject
 sequence itsValue

 MySimpleObject = call_method(SimpleClass, "new", NONE)

 -- delete this – it doesn't work!
 -- myName = "Christopher"

 SimpleClass_setName_1("Christopher")
 itsValue = call_method(MySimpleObject, "getName", NONE)
 puts(1, "\nMySimpleObject.myName = " & itsValue)
end procedure

main()

This results in an error message: SimpleClass_setName_1() has not been declared
Clearly this identifier is outside the scope of the application.

Or we could even try calling set_property() direct, like this:

-- SimpleDemo.ex v1.5

include SimpleClass.e

procedure main()
 entity MySimpleObject
 sequence itsValue

 MySimpleObject = call_method(SimpleClass, "new", NONE)

 -- delete these – they don't work!
 -- myName = "Christopher"
 -- SimpleClass_setName_1("Christopher")

 set_property(this(), "myName", "Christopher")

 itsValue = call_method(MySimpleObject, "getName", NONE)
 puts(1, "\nMySimpleObject.myName = " & itsValue)
end procedure

main()

We get another error message: In this(). Not allowed.
This is because neither set_property() nor this() are allowed during main program context –
only during method context. The correct approach, of course, is to use call_method():

-- SimpleDemo.ex v1.6

include SimpleClass.e

Alexander Caracatsanis 30

procedure main()
 entity MySimpleObject
 sequence itsValue

 MySimpleObject = call_method(SimpleClass, "new", NONE)

 -- delete the folowing statements – none of them work!
 --myName = "Christopher"
 --SimpleClass_setName_1("Christopher")
 --set_property(this(), "myName", "Christopher")

 VOID = call_method(MySimpleObject, "setName", {"Christopher"})

 itsValue = call_method(MySimpleObject, "getName", NONE)
 puts(1, "\nMySimpleObject.myName = " & itsValue)
end procedure

main()

Run the application with DL.e and note the output:

DL: method()
DL: method()
DL: method()
DL: class() calls new_class(): returns ref to new class {4,0,M}
DL: property()
DL: method()
DL: method()
DL: end_class()
DL: call_method() calls..
DL: Entity_new(), which returns ref to new entity {4,2,M}
DL: call_method() calls..
DL: setName(), whose target is..
DL: this(), which returns ref to target entity: {4,2,M}
DL: set_property() sets value of instance property
DL: call_method() calls..
DL: getName(), whose target is..
DL: this(), which returns ref to target entity: {4,2,M}
DL: get_property() returns value of instance property
EX: MySimpleObject.myName = Christopher

The greyed-out portions are the same as those in the previous step(s), and should be looking
quite familiar by now. Notice that we have had to register one more method() in the class
definition – setName(). Notice that when call_method() is invoked by the main program, it
calls the method setName() on its target instance MySimpleObject. Note that this entity's
reference is {4,2,M}, and that this is the sequence that is consistently returned by the DL
routine this() – as it should be, since setName() and getName() are called (in turn) on the
same entity. Notice also that whereas getName() is coded before setName() in the file, they
are executed by the application in the reverse order – illustrating that program context does
not necessarily follow the layout of the code.

Oh and notice the value of the property – it isn't "Alex" any more!

Now suppose that we wanted to display the value of the property within the function
SimpleClass_setName_1(), immediately after the property's new value had been set. Our
intuition might be to code it like this:

Alexander Caracatsanis 31

-- in SimpleClass.e v1_3

function SimpleClass_setName_1(sequence anyName)
 puts(1, "\nDL: In the setName method....\n")

 set_property(this(), "myName", anyName)
 puts(1, "\nDL: " & myName)

 return NIL
end function
method("setName", 1, INSTANCE, routine_id("SimpleClass_setName_1"))

Make this change to your function in SimpleClass.e, and run SimpleDemo.ex (v1.7).

You should get an error message: myName has not been declared

The property is not within the scope of this function, even though it's in the same class
definition. The correct way to achieve this functionality, is to use the routine get_property():

function SimpleClass_setName_1(sequence anyName)
 puts(1, "\nDL: In the setName method....\n")

 set_property(this(), "myName", anyName)
 printf(1, "The property = %s\n", {get_property(this(), "myName")})

 return NIL
end function
method("setName", 1, INSTANCE, routine_id("SimpleClass_setName_1"))

Change your SimpleClass.e file to incorporate the printf() routine (call it v1.4) , and run
SimpleDemo.ex (call it v 1.8) with DL.e Examine the screen display using the discussion
above, and get a feel for the dynamic way the program context changes as the application
interacts with the class definition and with DL itself.

THE INEVITABLE "HELLO WORLD" PROGRAM!

We now know enough to try our hand at writing an OOP version of the Hello World program.
Start using diamondlite.e from now on, but feel free to go back to DL.e if you get stuck,
want to clarify what your program is doing, or want to revise something.

STEP 12: A GREETING CLASS WITH A PARAMETERISED CONSTRUCTOR

If you think about InertClass and SimpleClass, you'll realise that their construction (and, for
that matter, their destruction) has been determined by the code in the file defining the class.
This hasn't been a terrible limitation, because we've been able to set the initial value of
properties using the procedure property(), and we've learnt how to design (accessor)
methods to assign new values to properties (setters) and retrieve those values (getters).

But sometimes it is necessary or desirable to have the application initialise the properties of
the class, either through statements in the code itself, or else by user input. Moreover, if the
class has to keep track of its objects in some way, any book-keeping tasks that depend on
input can be done here. The parameterised constructor is a programmer-defined method with
which to accomplish such tasks.

We'll design a class that contains a property whose initial value is an empty sequence – a
string of length 0. We'll also incorporate in our design the capability to have the property

Alexander Caracatsanis 32

initialised by the application the moment it instantiates the class (rather than at some later
time – by using a setter, for instance).

We will create a file called GreetingClass.e – it will look very similar to the minimal versions
of our previous classes. (The comments are numbered in the order I wrote them.)

-- GreetingClass.e v1.0

-- 1 include the library
include diamondlite.e

-- 2 get a reference to the class, whose superclass is Entity
global constant GreetingClass = class("GreetingClass", Entity)

 -- 4 register a property, and initialise it to an empty sequence
 property("message", INSTANCE, NONE)

 -- 5 define a (redundant) default constructor; it takes no arguments;
 -- when called, it will override the automatic constructor inherited from Entity
 function GreetingClass_new_0()
 entity newGreeting
 newGreeting = call_method(super(), "new", NONE)

 return newGreeting
 end function
 method("new", 0, CLASS, routine_id("GreetingClass_new_0"))

 -- 6 define a parameterised constructor; it takes one argument;
 -- when called it will not override the automatic constructor,
 -- because it has a different signature: new(param)
 function GreetingClass_new_1(sequence msg)
 entity newGreeting
 newGreeting = call_method(super(), "new", NONE)

 set_property(newGreeting, "message", msg)

 return newGreeting
 end function
 method("new", 1, CLASS, routine_id("GreetingClass_new_1"))

 -- 7 define a method to get the property's value
 function GreetingClass_getMessage_0()
 sequence text
 text = get_property(this(), "message")

 return text
 end function
 method("getMessage", 0, INSTANCE, routine_id("GreetingClass_getMessage_0"))

 -- 8 define a (redundant) default destructor; it takes no arguments;
 -- when called, it will override the automatic destructor inherited from Entity
 function GreetingClass_delete_0()
 return call_method(super(), "delete", NONE)
 end function
 method("delete", 0, INSTANCE, routine_id("GreetingClass_delete_0"))

-- 3 end the class definition

Alexander Caracatsanis 33

end_class()

There should be no surprises here – we've encountered all this code before. We will now write
a file GreetingDemo.ex to instantiate the class and implement its functionality.

-- GreetingDemo.ex v1.0

-- 1 include the file with the class definition
include GreetingClass.e

-- 2 define the procedure main()
procedure main()
 -- 3 declare the variable myGreetingObject of type entity
 entity myGreetingObject

 myGreetingObject = call_method(GreetingClass, "new", {"Hello World!"})
end procedure

-- 4 call the procedure main()
main()

Run the application. You'll see a blank screen – all we've done is to create a new entity
(myGreetingObject) and initialise its property (message) to "Hello World".

Now that we've got the skeleton set down, let's make some changes to help us see how the
object of the class behaves under the control of the application. For a start let's create two
objects of the class – one to be constructed by the default constructor; the other by the
parameterised constructor. And let's add some messages to inform us which stage of the
program we're in at any given moment.

-- GreetingClass.e v1.1

include diamondlite.e

global constant GreetingClass = class("GreetingClass", Entity)
 property("message", INSTANCE, NONE)

 function GreetingClass_new_0()
 entity newGreeting

 puts(1, "\nNow in default destructor....")
 newGreeting = call_method(super(), "new", NONE)

 return newGreeting
 end function
 method("new", 0, CLASS, routine_id("GreetingClass_new_0"))

 function GreetingClass_new_1(sequence msg)
 entity newGreeting

 puts(1, "\nNow in parameterised constructor....")
 newGreeting = call_method(super(), "new", NONE)
 set_property(newGreeting, "message", msg)

 return newGreeting
 end function

Alexander Caracatsanis 34

 method("new", 1, CLASS, routine_id("GreetingClass_new_1"))

 function GreetingClass_getMessage_0()
 sequence text

 puts(1, "\nNow in method getMessage()....")
 text = get_property(this(), "message")

 return text
 end function
 method("getMessage", 0, INSTANCE, routine_id("GreetingClass_getMessage_0"))

 function GreetingClass_delete_0()
 puts(1, "\nNow in default destructor....")

 return call_method(super(), "delete", NONE)
 end function
 method("delete", 0, INSTANCE, routine_id("GreetingClass_delete_0"))
end_class()

These simple messages will tell us whether the different components of the class definition
execute on cue. Now let's change GreetingDemo.ex to construct two objects in different
ways:

-- GreetingDemo.ex v1.1

include GreetingClass.e

procedure main()
 entity myDefGreetObj, -- to be constructed by default constructor
 myParamGreetObj -- to be constructed by parameterised constructor

 puts(1, "\nNow in main(), before object construction....")

 myDefGreetObj = call_method(GreetingClass, "new", NONE)
 myParamGreetObj = call_method(GreetingClass, "new", {"Hello World!"})

 puts(1, "\nNow in main(), after object construction....")
end procedure

main()

When you run this application you should see four lines displayed on the screen:

Now in main(), before object construction....
Now in default constructor....
Now in parameterised constructor....
Now in main(), after object construction....

You can confirm that the application ran as desired. You may be wondering why we didn't see
the message Now in default destructor.... That's because we haven't made a call to this
destructor, so our objects were destructed by the automatic destructor inherited from Entity.
Change GreetingDemo.ex to call the default destructor, and then run the application.

-- GreetingDemo.ex v1.2

Alexander Caracatsanis 35

include GreetingClass.e

procedure main()
 entity myDefGreetObj, myParamGreetObj

 puts(1, "\nNow in main(), before object construction....")

 myDefGreetObj = call_method(GreetingClass, "new", NONE)
 myParamGreetObj = call_method(GreetingClass, "new", {"Hello World!"})

 puts(1, "\nNow in main(), after object construction....")

 VOID = call_method(myDefGreetObj, "delete", NONE)
 VOID = call_method(myParamGreetObj, "delete", NONE)
end procedure

main()

You should now see the four previous lines, followed by two lines saying:

Now in default destructor....
(.... one line for each object being destructed.)

Now let's display some values, so that we can confirm that our objects are being constructed
with the correct properties. Let's change GreetingClass.e as follows:

-- GreetingClass.e v1.2

include diamondlite.e

global constant GreetingClass = class("GreetingClass", Entity)
 property("message", INSTANCE, NONE)

 function GreetingClass_new_0()
 entity newGreeting

 puts(1, "\nNow in default destructor....")
 newGreeting = call_method(super(), "new", NONE)
 set_property(newGreeting, "message", NONE)
 printf(1, "\nmessage = %s", {get_property(newGreeting,"message")})

 return newGreeting
 end function
 method("new", 0, CLASS, routine_id("GreetingClass_new_0"))

 function GreetingClass_new_1(sequence msg)
 entity newGreeting

 puts(1, "\nNow in parameterised constructor....")
 newGreeting = call_method(super(), "new", NONE)
 set_property(newGreeting, "message", msg)

 -- two syntaxes for achieving the same purpose: display message =
 printf(1, "\nmessage = %s", {get_property(newGreeting,"message")})
 printf(1, "\nmessage = %s", {msg})

 return newGreeting
 end function

Alexander Caracatsanis 36

 method("new", 1, CLASS, routine_id("GreetingClass_new_1"))

 function GreetingClass_getMessage_0()
 sequence text

 puts(1, "\nNow in method getMessage()....")
 text = get_property(this(), "message")
 printf(1, "\nmessage = %s", {text})

 return text
 end function
 method("getMessage", 0, INSTANCE, routine_id("GreetingClass_getMessage_0"))

 function GreetingClass_delete_0()
 puts(1, "\nNow in default destructor....")

 return call_method(super(), "delete", NONE)
 end function
 method("delete", 0, INSTANCE, routine_id("GreetingClass_delete_0"))
end_class()

Run GreetingDemo.ex (v1.3), and note the series of messages that confirm that the class is
behaving correctly:
v We start in main(), in main program context, before any object is constructed.
v One object is constructed by the default constructor, which sets the property

message = (ie an empty sequence).
v The second object is constructed by the parameterised constructor, which sets the property

message = Hello World! (and displays it twice, according to the two syntaxes used in the
constructor).

v Then we go to the method getMessage(), which displays message = Hello World!.
v And finally each object is destructed in the default destructor (hence two messages).

STEP 13: A GREETING CLASS WITH A PARAMETERISED DESTRUCTOR

Just as we can provide arguments with which a parameterised constructor can initialise our
objects, so we can provide arguments for a parameterised destructor to decommission our
object in a manner of our choosing. We don't really need this destructor for our present
purposes; but just as in the section above, it gives us an opportunity to practise coding and
demonstrate that the syntax works as it should. We will modify GreetingClass.e to include a
parameterised destructor:

-- GreetingClass.e v1.3

include diamondlite.e

global constant GreetingClass = class("GreetingClass", Entity)
 property("message", INSTANCE, NONE)

 function GreetingClass_new_0()
 entity newGreeting

 puts(1, "\nNow in default destructor....")
 newGreeting = call_method(super(), "new", NONE)
 set_property(newGreeting, "message", NONE)
 printf(1, "\nmessage = %s", {get_property(newGreeting,"message")})

 return newGreeting

Alexander Caracatsanis 37

 end function
 method("new", 0, CLASS, routine_id("GreetingClass_new_0"))

 function GreetingClass_new_1(sequence msg)
 entity newGreeting

 puts(1, "\nNow in parameterised constructor....")
 newGreeting = call_method(super(), "new", NONE)
 set_property(newGreeting, "message", msg)
 printf(1, "\nmessage = %s", {get_property(newGreeting,"message")})
 printf(1, "\nmessage = %s", {msg})

 return newGreeting
 end function
 method("new", 1, CLASS, routine_id("GreetingClass_new_1"))

 function GreetingClass_getMessage_0()
 sequence text

 puts(1, "\nNow in method getMessage()....")
 text = get_property(this(), "message")
 printf(1, "\nmessage = %s", {text})

 return text
 end function
 method("getMessage", 0, INSTANCE, routine_id("GreetingClass_getMessage_0"))

 function GreetingClass_delete_0()
 puts(1, "\nNow in default destructor....")

 return call_method(super(), "delete", NONE)
 end function
 method("delete", 0, INSTANCE, routine_id("GreetingClass_delete_0"))

 -- 9 define a (redundant) parameterised destructor; it takes one argument;
 -- when called it will not override the automatic destructor,
 -- because it has a different signature: delete(param)
 function GreetingClass_delete_1(sequence finish)
 puts(1, "\nNow in parameterised destructor....")
 printf(1, "\ndestructing %s", {finish})

 set_property(this(), "message", "Goodbye World!")

 printf(1, "\nmessage = %s",
 {get_property(this(), "message")})

 return call_method(super(), "delete", NONE)
 end function
 method("delete", 1, INSTANCE, routine_id("GreetingClass_delete_1"))
end_class()

The syntax should be familiar by now, as we have met it all before. All that remains is for us to
make the appropriate modification to GreetingDemo.ex to demonstrate that our second
object (myParamGreetObj) is decommissioned appropriately:

-- GreetingDemo.ex v1.4

Alexander Caracatsanis 38

include GreetingClass.e

procedure main()
 entity myDefGreetObj, myParamGreetObj

 puts(1, "\nNow in main(), before object construction....")

 myDefGreetObj = call_method(GreetingClass, "new", NONE)
 myParamGreetObj = call_method(GreetingClass, "new", {"Hello World!"})

 puts(1, "\nNow in main(), after object construction....")

 VOID = call_method(myDefGreetObj, "delete", NONE)
 VOID = call_method(myParamGreetObj, "delete", {"myParamGreetObj"})
end procedure

main()

You'll see the same messages displayed as before, verifying that each component of the class
behaves as dictated by the code. However in place of the previous final message

Now in default destructor....

you will see three new messages:

Now in parameterised destructor....
destructing myParamGreetObj
message = Goodbye World!

STEP 14: A GREETING CLASS WITH A SETTER METHOD

We know how to let the constructor initialise properties of our class; we've learnt how to pass
arguments to our destructor; and we know how to design a getter accessor method in case we
want to access data. Alot of the code for this class hasn't been truly necessary. And we haven't
really used our class to best advantage, because much of its functionality is still hard-coded in
the class definition itself. Nevertheless the exercise has been useful, to give us coding practice
and to demonstrate that the class really works as designed.

We have one more coding task to achieve – the design and testing of a setter method to
change the property's value. We don't really need it for this particular program, but we'll do it
in anticipation of a time when we'll be asking our application – rather than the class definition
– to set new values for properties. As before, we'll incorporate statements that will
demonstrate that the class behaves as it should. Again, we'll be getting more coding practice.

We won't need much discussion about this task – we've met all this code before. Here is the
new version of GreetingClass.e

-- GreetingClass.e v1.4

include diamondlite.e

global constant GreetingClass = class("GreetingClass", Entity)
 property("message", INSTANCE, NONE)

 function GreetingClass_new_0()
 entity newGreeting

Alexander Caracatsanis 39

 puts(1, "\nNow in default destructor....")
 newGreeting = call_method(super(), "new", NONE)
 set_property(newGreeting, "message", NONE)
 printf(1, "\nmessage = %s", {get_property(newGreeting,"message")})

 return newGreeting
 end function
 method("new", 0, CLASS, routine_id("GreetingClass_new_0"))

 function GreetingClass_new_1(sequence msg)
 entity newGreeting

 puts(1, "\nNow in parameterised constructor....")
 newGreeting = call_method(super(), "new", NONE)
 set_property(newGreeting, "message", msg)
 printf(1, "\nmessage = %s", {get_property(newGreeting,"message")})
 printf(1, "\nmessage = %s", {msg})

 return newGreeting
 end function
 method("new", 1, CLASS, routine_id("GreetingClass_new_1"))

 -- 10 define a method to set the property's value
 function GreetingClass_setMessage_1(sequence new_msg)
 puts(1, "\nNow in method setMessage()....")

 set_property(this(), "message", new_msg)

 printf(1, "\nmessage = %s", {get_property(this(), "message")})
 printf(1, "\nmessage = %s", {new_msg})

 return NIL
 end function
 method("setMessage", 1, INSTANCE, routine_id("GreetingClass_setMessage_1"))

 function GreetingClass_getMessage_0()
 sequence text

 puts(1, "\nNow in method getMessage()....")
 text = get_property(this(), "message")
 printf(1, "\nmessage = %s", {text})

 return text
 end function
 method("getMessage", 0, INSTANCE, routine_id("GreetingClass_getMessage_0"))

 function GreetingClass_delete_0()
 puts(1, "\nNow in default destructor....")

 return call_method(super(), "delete", NONE)
 end function
 method("delete", 0, INSTANCE, routine_id("GreetingClass_delete_0"))

 function GreetingClass_delete_1(sequence finish)
 puts(1, "\nNow in parameterised destructor....")
 printf(1, "\ndestructing %s", {finish})

Alexander Caracatsanis 40

 set_property(this(), "message", "Goodbye World!")

 printf(1, "\nmessage = %s",
 {get_property(this(), "message")})

 return call_method(super(), "delete", NONE)
 end function
 method("delete", 1, INSTANCE, routine_id("GreetingClass_delete_1"))
end_class()

And now for the corresponding changes to our application, GreetingDemo.ex

-- GreetingDemo.ex v1.5

include GreetingClass.e

procedure main()
 entity myDefGreetObj, myParamGreetObj

 puts(1, "\nNow in main(), before object construction....")

 myDefGreetObj = call_method(GreetingClass, "new", NONE)
 myParamGreetObj = call_method(GreetingClass, "new", {"Hello World!"})
 puts(1, "\nNow in main(), after object construction....")
 VOID = call_method(myDefGreetObj, "setMessage", {"Greetings Earthlings!"})
 VOID = call_method(myDefGreetObj, "delete", NONE)
 VOID = call_method(myParamGreetObj, "delete", {"myParamGreetObj"})
end procedure

main()

We see a longer list of messages, each demonstrating the progress of the application as it
executes each component of the class:
v we begin in main()
v we construct two objects (whose properties are initialised to an empty sequence and

"Hello World!" respectively)
v we go back to main()
v we change the property's value to "Greetings Earthlings!" (which we display twice, using

two different syntaxes)
v we destruct the objects – one via the default destructor; the other by passing an argument

to the parameterised destructor (which changes the value of the property to "Goodbye
World!").

STEP 15: THE GREETING CLASS STRIPPED DOWN

So far we've designed our class tediously, giving it redundant features and unnecessary work
to do. We did this to practise building up the basic components of a class, get experience in
coding in DL, and prove to ourselves that the components of the class work in the manner and
order they were supposed to.

In real-world programs, however, we want the class to confine itself to providing a blueprint
for properties and methods which our application's objects can acquire, leaving it up to the
application to do the job the user desires.

We'll suppose that our task is to write a program to display three messages on the screen:

"Hello World!"; "Greetings Earthlings!"; and "Goodbye World!".

Alexander Caracatsanis 41

Using the procedural programming paradigm, we would think in terms of doing something to
(in this case displaying) three separate pieces of data (the three messages). We could do this
in our application by coding something like:

puts(1, "Hello World!")
puts(1, "\nGreetings Earthlings!")
puts(1, "\nGoodbye World!")

Using the OOP paradigm, however, we would think in terms of there being one piece of data (a
message) that may be assigned different values, each of which may be accessed for display on
the screen. We could then think of this piece of data (ie a property) as having three states: an
initial value ("Hello World! "); a reset value ("Greetings Earthlings!"); and a final value
("Goodbye World!"). We would have to provide a mechanism (ie methods) for achieving
these states – let's say a constructor (for the initial value); a destructor (for the final value);
and a setter (for any other values). We would then have to provide a mechanism for retrieving
any of these values at any time – ie a getter method. We would think in terms of putting all of
this functionality into one class. Finally we would code an application that instantiated the
class, and used the methods to access the property (in its different states), which it would
display on the screen.

To show you how this might be achieved I've taken GreetingClass.e and stripped it right
down to its bare essentials. We've met all of this code before, so I won't elaborate on it. But
I've commented the steps I took, in the order I took them.

-- GreetingClass.e v1.5

-- 1 include the DL library
include diamondlite.e

-- 2 get a reference to the class, whose superclass is Entity
global constant GreetingClass = class("GreetingClass", Entity)
 -- 4 register a property, and initialise it to an empty sequence
 property("message", INSTANCE, NONE)

 -- 5 define a parameterised constructor; it takes one argument
 -- it does not override the inherited automatic (zero parameter) constructor
 function GreetingClass_new_1(sequence msg)
 entity newGreeting

 newGreeting = call_method(super(), "new", NONE)
 set_property(newGreeting, "message", msg)

 return newGreeting
 end function
 method("new", 1, CLASS, routine_id("GreetingClass_new_1"))

 -- 6 define a method to set the property's value
 function GreetingClass_setMessage_1(sequence new_msg)
 set_property(this(), "message", new_msg)

 return NIL
 end function
 method("setMessage", 1, INSTANCE, routine_id("GreetingClass_setMessage_1"))

 -- 7 define a method to get the property's value
 function GreetingClass_getMessage_0()
 sequence text

Alexander Caracatsanis 42

 text = get_property(this(), "message")

 return text
 end function
 method("getMessage", 0, INSTANCE, routine_id("GreetingClass_getMessage_0"))

 -- 8 define a default destructor to override the inherited automatic destructor
 -- it displays a final message
 function GreetingClass_delete_0()
 set_property(this(), "message", "Goodbye World!")

 printf(1, "\nDuring destruct, it is: %s", {get_property(this(), "message")})

 return call_method(super(), "delete", NONE)
 end function
 method("delete", 0, INSTANCE, routine_id("GreetingClass_delete_0"))

-- 3 end the class definition
end_class()

Now the corresponding application file, GreetingDemo.ex, becomes:

-- GreetingDemo.ex v1.6

-- 1 include the file with the class definition
include GreetingClass.e

-- 2 define the procedure main()
procedure main()
 -- 3 declare a variable of type entity
 entity myParamGreetObj

 -- 4 create an instance of the class using a parameterised constructor,
 -- initialise its property, and return a reference to the object
 myParamGreetObj = call_method(GreetingClass, "new", {"Hello World!"})

 -- 5 display the value of the initialised property
 printf(1, "\nInitialise greeting to: %s",
 {call_method(myParamGreetObj, "getMessage", NONE)})

 -- 6 now assign a new value to the property
 VOID = call_method(myParamGreetObj, "setMessage", {"Greetings Earthlings!"})

 -- 7 and display the new value
 printf(1, "\nAfter resetting, it is: %s",
 {call_method(myParamGreetObj, "getMessage", NONE)})

 -- 8 use a default destructor to destroy the object
 -- and display a final message
 VOID = call_method(myParamGreetObj, "delete", NONE)
end procedure

-- 9 call the procedure main()
main()

Now we're letting the application do most of the work. It instantiates the class with an object,
initialises the property (message) to "Hello World! ", and returns a reference

Alexander Caracatsanis 43

(myParamGreetObj) to the object. It then displays the value of that property using Eu's
printf(). Next, it resets the value of the property, and again uses printf() to display it
("Greetings Earthlings!"). Finally it invokes the default destructor to decommission the
object, and while doing so it resets the value of the property and immediately displays it
("Goodbye World!"). Note that this message could not be displayed by our application after
the object's destruction, because by that time the object and all its components have gone out
of scope, and are beyond the reach of our application code.

Although our application is one step closer to the real world, it lacks one important capability –
it cannot interact with the user at run-time. The next step will examine how we can achieve
this task.

INTERACTING WITH THE USER

STEP 16: A PRODUCT CLASS WITH USER INPUT

We've progressed a step at a time, initially placing alot of the executable code in the class
definition, then replacing it with executable code in the application itself. Doing this has
allowed the application to do more of the work. Now it's time to let the user do some of the
work, interacting with the application by supplying values for some of the data required by the
program.

We will exemplify this functionality by designing an application to do the following:

1. prompt the user to input two numbers
2. calculate their product
3. display the product on the screen

Using the procedural paradigm, we would think of the task in terms of actions to be performed
on data:

1. get_first_number
2. get_second_number
3. calculate_product
4. display_product

Using the OO paradigm, we would think more like this:

1. we have a class
2. the class contains two properties (ie states, or pieces of data) – num_1; num_2
3. the class consists of at least four methods –

Ø one to set the first number
Ø one to set the second number
Ø one to calculate the product
Ø one to get the product
Actually, there are two more methods – a constructor and a destructor – but we'll just
use DL's automatic defaults. And if we wanted to, we could add three more methods –
v one to get the first number
v one to get the second number
v and a third to display the product

4. we then design an application to instantiate the class, get the user's input, and
accomplish the job using the tools provided by the class specification.

Using the OO paradigm for such a simple program might seem excessively tedious – but it's
worth doing for practice on the way to more complex programs.

We have already seen this code before, so I won't go over it again – the comments should be
clear enough. Let's begin with the class specification for ProductClass.e:

-- ProductClass.e v1.0

Alexander Caracatsanis 44

-- 1 include the DL library
include diamondlite.e

-- 2 define a class called Product, whose superclass is Entity,
-- and get a reference to be assigned to a global constant
global constant Product = class("Product", Entity)
 -- 3 register two properties, num1 and num2,
 -- and give each of them a default value of zero
 property("num1", INSTANCE, 0)
 property("num2", INSTANCE, 0)

 -- 4 a method to set the first number
 function Product_setFirstNum_1(integer n1)
 set_property(this(), "num1", n1)
 return NIL
 end function
 method("setFirstNum", 1, INSTANCE, routine_id("Product_setFirstNum_1"))

 -- 5 a method to set the second number
 function Product_setSecondNum_1(integer n2)
 set_property(this(), "num2", n2)
 return NIL
 end function
 method("setSecondNum", 1, INSTANCE, routine_id("Product_setSecondNum_1"))

 -- 6 a method to get the first number
 function Product_getFirstNum_0()
 return get_property(this(), "num1")
 end function
 method("getFirstNum", 0, INSTANCE, routine_id("Product_getFirstNum_0"))

 -- 7 a method to get the second number
 function Product_getSecondNum_0()
 return get_property(this(), "num2")
 end function
 method("getSecondNum", 0, INSTANCE, routine_id("Product_getSecondNum_0"))

 -- 8 a method to calculate the product
 function Product_calcProduct_0()
 atom product
 product = get_property(this(), "num1") * get_property(this(), "num2")
 return product
 end function
 method("calcProduct", 0, INSTANCE, routine_id("Product_calcProduct_0"))

 -- 9 a method to display the product
 function Product_showProduct_0()
 puts(1, "\nTheir product is: ")
 print(1, call_method(this(), "calcProduct", NONE))
 return NIL
 end function
 method("showProduct", 0, INSTANCE, routine_id("Product_showProduct_0"))

-- 10 end the class definition
end_class()

Alexander Caracatsanis 45

We've designed a class that contains the two properties, with methods to set them and get
them, as well as methods to calculate and display their product. Now let's design an
application ProductDemo.ex to instantiate and use this class:

-- ProductDemo.ex v1.0

-- 1 include the class definition and other libraries
include ProductClass.e
include get.e

-- 2 define procedure main()
procedure main()
 -- 3 declare variables
 sequence first, second

 -- 4 create an object of the class Product, and get a reference of type entity
 entity multiply
 multiply = call_method(Product, "new", NONE)

 -- 5 input the first integer
 puts(1, "Enter the first integer: ") first = get(0)

 -- 6 set the first property to the value input by the user
 VOID = call_method(multiply, "setFirstNum", {first[2]})

 -- 7 input the second integer
 puts(1, "\nEnter the second integer: ") second = get(0)

 -- 8 set the second property to the value input by the user
 VOID = call_method(multiply, "setSecondNum", {second[2]})

 -- 9 get and display the value of each property
 puts(1, "\n\nThe first integer is: ")
 print(1, call_method(multiply, "getFirstNum", NONE))

 puts(1, "\nThe second integer is: ")
 print(1, call_method(multiply, "getSecondNum", NONE))

 -- 10 display the product on the screen
 VOID = call_method(multiply, "showProduct", NONE)
end procedure

-- 11 call procedure main()
main()

Notice how our application has taken charge, as it were, calling method after method to get
the job done –
v create an instance of the class
v input and set the first number
v input and set the second number
v get and display the first number
v get and display the second number
v display the product.

You might be wondering why our application hasn't called a method to calculate the product
("calcProduct" in our class definition file). Well it turns out that it doesn't need to, because
calcProduct is invoked internally, in the class definition, within the routine responsible for

Alexander Caracatsanis 46

implementing the method showProduct. It would be redundant to have our application call
calcProduct all over again.

The point to notice is this: it's a good idea for the application to do as much of the work as
possible; but there may be some work that's best done quietly within the class itself.
Calculating the product is an example of such a task. Why? Because the point of our
ProductClass is to go ahead and calculate the product of two data – our application shouldn't
have to call it to do the very job it was created for!

Run the application, responding to the prompts by entering integers. Notice that the
application displays your entries to confirm that the properties have been set to the values you
entered, and confirm that the product displayed on your screen is correct. If you're curious to
"trace" the execution of your program, use DL.e and examine the display output against a
hard copy of your class definition file and application file. The exercise may be tedious, but
worth doing from time to time to help you become familiar with the flow of your programs as
they go from one program context to the next.

At last, we've created an application that interacts with the user on the one hand, and with a
class on the other hand. We're now ready to accomplish more ambitious tasks.

MAKING COPIES OF OBJECTS

STEP 17: COPYING OBJECTS BY ASSIGNING A REFERENCE

So far each of our applications has used only one object of its corresponding class. But since
one advantage of OOP is to make it possible for us to reuse code, and since a class is often
likened to a blueprint from which to create objects, there will be times when we'll want our
application to create multiple instances of any given class. It's time for us to learn how to do
this.

DL provides us with a method called clone(), with which we can create multiple objects of a
class. We introduced it in STEP 5 – it will help you to read that section again now. I will
discuss how to use this method, but I want to get to it in a roundabout way, to point out some
interesting things along the way.

Let's start with the basic concept behind ProductClass. It consisted of two properties num1
and num2, which could be multiplied together to yield a variable that we called product.
(There were supporting methods to help us set, get, calculate, and display these values, but
we'll ignore them for now.) All these elements made up a data structure called a class.

Let's start the discussion by thinking of the three variables as a "unit", and let's consider how
we might use procedural programming to produce something like a "copy" of it. Look at this
sample of code in Eu:

-- Purpose: to make a "copy" of x
integer x, y
x = 10
y = x -- now y is assigned the same value as x
? y -- displays the integer 10

If you run this code you will confirm that y now has the same value as x (ie 10) – so we can
think of y as a "copy" of x. Of course once "copied", the two variables are free to take different
values. For example, continuing the above code:

x = 20
? x -- now x is 20

Alexander Caracatsanis 47

? y -- but y is still 10
y = 30
? y -- now y is 30
? x -- but x is still 20

Now let's take our "unit" (num1, num2, product), think of it as a sequence, and use the syntax
above to create a "copy" of it. Look at CopySequence.ex below:

-- CopySequence.ex v1.0

integer num1, num2, product

num1 = 10
num2 = 20
product = (num1 * num2) -- ie 200

sequence source, copy

source = {num1, num2, product}
copy = source -- assign to copy all the elements of source

puts(1, "The source sequence is: ") ? source -- ie {10, 20, 200}
puts(1, "The copied sequence is: ") ? copy -- ie {10, 20, 200}

-- now change source in some way; eg double every element
source = (source * 2)
puts(1, "The source sequence is now: ") ? source -- ie {20, 40, 400}

-- and confirm that copy remains unchanged
puts(1, "The copied sequence is still: ") ? copy -- ie {10, 20, 200}

-- now change copy in some way; eg halve every element
copy = (copy / 2)
puts(1, "The copied sequence is now: ") ? copy -- ie {5, 10, 100}

-- and confirm that source remains unchanged
puts(1, "The source sequence is still: ") ? source -- ie {20, 40, 400}

What have we done? We've declared a variable called source, and assigned to it a "unit" of
data (in this case a sequence of three integers – num1, num2, product). Then we've declared
another, independent variable – called copy – to which we've assigned the same values as
source. We've demonstrated that each sequence could be manipulated independently, such
that changing source wouldn't automatically change copy (and vice versa). So we can feel
justified in thinking of copy as an "identical twin" of source.

Now let's apply this reasoning to the task of making a copy of an object of ProductClass.
Let's go back to our application ProductDemo.ex, and let's create a second instance ("copy")
of our class (Product) using the model we've already tested in CopySequence.ex. We'll call
our new file AssignCopyDemo.ex:

-- AssignCopyDemo.ex v1.0

include ProductClass.e
include get.e

procedure main()

Alexander Caracatsanis 48

 sequence first, second
 entity source, copy

 source = call_method(Product, "new", NONE)

 puts(1, "Enter the first integer: ") first = get(0)
 VOID = call_method(source, "setFirstNum", {first[2]})

 puts(1, "\nEnter the second integer: ") second = get(0)
 VOID = call_method(source, "setSecondNum", {second[2]})

 puts(1, "\n\nSource's first integer is: ")
 print(1, call_method(source, "getFirstNum", NONE))

 puts(1, "\nSource's second integer is: ")
 print(1, call_method(source, "getSecondNum", NONE))

 VOID = call_method(source, "showProduct", NONE)

 copy = source

 -- get and display the value of each property of copy
 puts(1, "\n\nCopy's first integer is: ")
 print(1, call_method(copy, "getFirstNum", NONE))

 puts(1, "\nCopy's second integer is: ")
 print(1, call_method(copy, "getSecondNum", NONE))

 -- display copy's product on the screen
 VOID = call_method(copy, "showProduct", NONE)
end procedure

main()

Run AssignCopyDemo.ex to confirm that copy and source do indeed display the same
values. Then let's do what we did in CopySequence.ex –
v change source, and confirm that copy remains unchanged
v then change copy, and confirm that source remains unchanged

We'll change AssignCopyDemo.ex as follows:

-- AssignCopyDemo.ex v1.1

include ProductClass.e
include get.e

procedure main()
 sequence first, second
 entity source, copy

 source = call_method(Product, "new", NONE)

 puts(1, "Enter the first integer: ") first = get(0)
 VOID = call_method(source, "setFirstNum", {first[2]})

 puts(1, "\nEnter the second integer: ") second = get(0)
 VOID = call_method(source, "setSecondNum", {second[2]})

Alexander Caracatsanis 49

 puts(1, "\n\nSource's first integer is: ")
 print(1, call_method(source, "getFirstNum", NONE))

 puts(1, "\nSource's second integer is: ")
 print(1, call_method(source, "getSecondNum", NONE))

 VOID = call_method(source, "showProduct", NONE)

 copy = source

 puts(1, "\n\nCopy's first integer is: ")
 print(1, call_method(copy, "getFirstNum", NONE))

 puts(1, "\nCopy's second integer is: ")
 print(1, call_method(copy, "getSecondNum", NONE))

 VOID = call_method(copy, "showProduct", NONE)

 puts(1, "\n\nNow change source's properties....")
 puts(1, "\nEnter the first integer: ") first = get(0)
 VOID = call_method(source, "setFirstNum", {first[2]})

 puts(1, "\nEnter the second integer: ") second = get(0)
 VOID = call_method(source, "setSecondNum", {second[2]})

 puts(1, "\n\nSource's first integer is: ")
 print(1, call_method(source, "getFirstNum", NONE))

 puts(1, "\nSource's second integer is: ")
 print(1, call_method(source, "getSecondNum", NONE))

 VOID = call_method(source, "showProduct", NONE)

 puts(1, "\n\nNow back to copy....")
 puts(1, "\nCopy's first integer is: ")
 print(1, call_method(copy, "getFirstNum", NONE))

 puts(1, "\nCopy's second integer is: ")
 print(1, call_method(copy, "getSecondNum", NONE))

 VOID = call_method(copy, "showProduct", NONE)
end procedure

main()

Run the application. You should find that when you input new values for first and second in
source, those same values unexpectedly appear in copy! This isn't what we predicted from the
model we developed in CopySequence.ex, so clearly something's not right. Before we get to
that, however, let's see out of curiosity what'll happen to source, if we reset first and second
in copy. Look at the following version of AssignCopyDemo.ex:

-- AssignCopyDemo.ex v1.2

include ProductClass.e
include get.e

Alexander Caracatsanis 50

procedure main()
 sequence first, second
 entity source, copy

 source = call_method(Product, "new", NONE)

 puts(1, "Enter the first integer: ") first = get(0)
 VOID = call_method(source, "setFirstNum", {first[2]})

 puts(1, "\nEnter the second integer: ") second = get(0)
 VOID = call_method(source, "setSecondNum", {second[2]})

 puts(1, "\n\nSource's first integer is: ")
 print(1, call_method(source, "getFirstNum", NONE))

 puts(1, "\nSource's second integer is: ")
 print(1, call_method(source, "getSecondNum", NONE))

 VOID = call_method(source, "showProduct", NONE)

 copy = source

 puts(1, "\n\nCopy's first integer is: ")
 print(1, call_method(copy, "getFirstNum", NONE))

 puts(1, "\nCopy's second integer is: ")
 print(1, call_method(copy, "getSecondNum", NONE))

 VOID = call_method(copy, "showProduct", NONE)

 puts(1, "\n\nNow change copy's properties....")

 puts(1, "\nEnter the first integer: ") first = get(0)
 VOID = call_method(copy, "setFirstNum", {first[2]})

 puts(1, "\nEnter the second integer: ") second = get(0)
 VOID = call_method(copy, "setSecondNum", {second[2]})

 puts(1, "\n\nCopy's first integer is: ")
 print(1, call_method(copy, "getFirstNum", NONE))

 puts(1, "\nCopy's second integer is: ")
 print(1, call_method(copy, "getSecondNum", NONE))

 VOID = call_method(copy, "showProduct", NONE)

 puts(1, "\n\nNow back to source....")
 puts(1, "\nSource's first integer is: ")
 print(1, call_method(source, "getFirstNum", NONE))

 puts(1, "\nSource's second integer is: ")
 print(1, call_method(source, "getSecondNum", NONE))

 VOID = call_method(source, "showProduct", NONE)
end procedure

main()

Alexander Caracatsanis 51

Again we find that when we change copy, the changes automatically appear in source. We're
forced to conclude that while we can produce an independent "copy" of an ordinary variable by
assigning to copy the value(s) of source, we can't use the same syntax to produce
independent multiple instances of the same class.

This is because the identifiers we've been using for variables of type entity (ie the names
we've been giving to our instances – "InertEntity", "MySimpleObject", "multiply ",
"source", "copy ", "MyGreetingObject"), and even the identifiers for the global constants
returned by the routine class() (ie "InertClass", "SimpleClass", "GreetingClass",
"Product"), are really handles, or references (or an "alias") with respect to the class.

Let's make a detour to examine what this means. Interestingly, this digression will lead us
back to the topic of making multiple instances of a class.

A DETOUR: DL's HANDLES

We introduced the topic of handles (or perhaps more formally, references) in AN
ORIENTATION TO DL, and watched them in action for awhile beginning at STEP 2. Normally
DL (like Eu) deals with them silently on our behalf, leaving us free to think about more direct
programming tasks. But understanding them can help us see why AssignCopyDemo.ex didn't
work in the way we had expected. Moreover handles can help us better understand DL's class
hierarchy, and how DL keeps track of the classes and instances we create. And they can
suggest another way by which we might create multiple instances – our main task, after all. So
we examine them in detail now.

We can think of a handle as a reference that identifies (or stands for, or is an alias for) a
program element, by means of which we can gain access to the program element itself.
Anything we do by use of the reference, we are actually doing to the program element to
which it refers. It's like having a mansion (the program element) that opens out onto (let's
say) the main road (one reference), a side road (a second reference), and a back laneway (a
third reference). Each entrance (reference) is different – but each gives us access to the same
mansion (program element), and having gained access we can do all sorts of things to it.

In AssignCopyDemo.ex the identifier source wasn't "the object itself" – it was a reference
(doorway) to it. So when we declared the identifier copy and assigned it the value of source,
it was as if we were saying "Let copy give us access to the same object as source." – ie we
gave our mansion two entrances, source and copy. That's why any change we made to the
object by using source, could be displayed by using copy (and vice versa).

You already know what these references "look like" in DL. They're sequences of three integer
elements – {a, b, c} – where:
a is the class number
b is the instance (ie the object's) number (for a class, this will be 0)
c is Eu's largest negative integer (a constant called MARKER = –1073741824)

Each reference is unique. Each element (except MARKER) is incremented automatically by Eu
according to a predefined plan. You will recall that DL predefines three classes – Entity (with
its three methods – new(), delete(), and clone()); Exception (with no properties or
methods); and Null_Class (again, with no properties or methods). Entity is automatically
inherited by each normal class we declare. Exception is automatically inherited by each
exception we declare. We can define subclasses (but not properties or methods) of Exception;
but we cannot define subclasses of Null_Class. And we can't c reate instances of Exception or
Null_Class. DL automatically creates Null_Instance (an instance of Null_Class) for us.
Have a look at APPENDIX A again, for a pictorial representation of this.

Alexander Caracatsanis 52

You will recall the following:
v Entity's reference is {1, 0, MARKER}
v Exception 's reference is {2, 0, MARKER}
v Null_Class' reference is {3, 0, MARKER}
v programmer's classes are referenced as {4, 0, ...}, {5, 0, ...}, etc
v Null_Instance' reference is {3, 1, MARKER}
v the reference for any class' delete() method is also {3, 1, MARKER}
v new() and clone() methods are referenced by consecutive integers

To help make sense of this, have a look at the following program HandleNums.ex. The class
definition and application code are all in the one file, which is amply commented. Run the
application and check out all the numbers!

-- HandleNums.ex

include diamondlite.e

entity newEntity

puts(1, "\nHandle to Entity = ") print(1, Entity) -- {1, 0, MARKER}

puts(1, "\nHandle to Entity.new() = ")
newEntity = call_method(Entity, "new", NONE) print(1, newEntity) -- {1, 2, MARKER}

puts(1, "\nHandle to Entity.clone() = ")
print(1, call_method(newEntity, "clone", NONE)) -- {1, 3, MARKER}

puts(1, "\nHandle to Entity.delete() = ")
print(1, call_method(newEntity, "delete", NONE)) -- {3, 1, MARKER}

puts(1, "\n\nHandle to Exception = ") print(1, Exception) -- {2, 0, MARKER}

puts(1, "\n\nHandle to Null_Class = ") print(1, Null_Class) -- {3, 0, MARKER}

puts(1, "\nHandle to Null_Instance = ") print(1, Null_Instance) -- {3, 1, MARKER}

global constant MyClass = class("MyClass", Entity)
 puts(1, "\n\nHandle to MyClass = ")
 print(1, MyClass) -- {4, 0, MARKER}
end_class()

--

entity myOb_1, myOb_2, myOb_3

myOb_1 = call_method(MyClass, "new", NONE)
puts(1, "\n\nHandle to myOb_1.new() = ") print(1, myOb_1) -- {4, 3, MARKER}

puts(1, "\nHandle to myOb_1.clone() = ")
print(1, call_method(myOb_1, "clone", NONE)) -- {4, 4, MARKER}

puts(1, "\nHandle to myOb_1.delete() = ")
print(1, call_method(myOb_1, "delete", NONE)) -- {3, 1, MARKER}

myOb_2 = call_method(MyClass, "new", NONE)
puts(1, "\n\nHandle to myOb_2.new() = ") print(1, myOb_2) -- {4, 5, MARKER}

Alexander Caracatsanis 53

puts(1, "\nHandle to myOb_2.clone() = ")
print(1, call_method(myOb_2, "clone", NONE)) -- {4, 6, MARKER}

puts(1, "\nHandle to myOb_2.delete() = ")
print(1, call_method(myOb_2, "delete", NONE)) -- {3, 1, MARKER}

myOb_3 = call_method(MyClass, "new", NONE)
puts(1, "\n\nHandle to myOb_3.new() = ") print(1, myOb_3)-- {4, 7, MARKER}

puts(1, "\nHandle to myOb_3.clone() = ")
print(1, call_method(myOb_3, "clone", NONE)) -- {4, 8, MARKER}

puts(1, "\nHandle to myOb_3.delete() = ")
print(1, call_method(myOb_3, "delete", NONE)) -- {3, 1, MARKER}

--

As I said before, this detour into handles/references can also lead us back to our main topic.
Look at the application portion of the file, and notice the declaration:

entity myOb_1, myOb_2, myOb_3

We now know that each of these is a reference to a class. Now look at what is assigned to each
reference. It's the value returned by invoking call_method(). And what's the target of each
of these calls? It's myClass. And what's that? A reference to the class we defined earlier in the
file, when we invoked class(). Could this syntax illustrate another way of creating multiple
instances of a class?

BACK TO MAKING COPIES OF OBJECTS

STEP 17a: COPYING OBJECTS BY DECLARING NEW INSTANCES OF A CLASS

Our previous attempt to create multiple instances of a class failed because we didn't know
about references at the time. But while learning about them, we may have hit upon a solution.
The solution appears to be this: declare multiple identifiers of type entity, and assign to each
of them a unique reference returned from call_method() using as target (a reference to) the
class we wish to instantiate (and which we would have already defined in our class file).

Let's explore this idea by writing an application NewCopyDemo.ex using ProductClass.

-- NewCopyDemo.ex v1.0

include ProductClass.e

procedure main()
 entity source, copy

 source = call_method(Product, "new", NONE)
 copy = call_method(Product, "new", NONE)

 -- get and display the value of each property of source
 puts(1, "Source's details....")
 puts(1, "\nSource's first integer is: ")
 print(1, call_method(source, "getFirstNum", NONE))

 puts(1, "\nSource's second integer is: ")
 print(1, call_method(source, "getSecondNum", NONE))

Alexander Caracatsanis 54

 -- display source's product on the screen
 VOID = call_method(source, "showProduct", NONE)

 -- get and display the value of each property of copy
 puts(1, "\n\nCopy's details....")
 puts(1, "\nCopy's first integer is: ")
 print(1, call_method(copy, "getFirstNum", NONE))

 puts(1, "\nCopy's second integer is: ")
 print(1, call_method(copy, "getSecondNum", NONE))

 -- display copy's product on the screen
 VOID = call_method(copy, "showProduct", NONE)
end procedure

main()

Running this application doesn't produce startling results – each property, and therefore the
product, is 0 (the default values). But at least both source and copy are the same. Let's test
the code a bit more by setting the properties of source and seeing whether they are reflected
in copy.

-- NewCopyDemo.ex v1.1

include ProductClass.e
include get.e

procedure main()
 sequence first, second
 entity source, copy

 source = call_method(Product, "new", NONE)

 puts(1, "Enter the first integer: ") first = get(0)
 VOID = call_method(source, "setFirstNum", {first[2]})

 puts(1, "\nEnter the second integer: ") second = get(0)
 VOID = call_method(source, "setSecondNum", {second[2]})

 puts(1, "Source's details....")
 puts(1, "\nSource's first integer is: ")
 print(1, call_method(source, "getFirstNum", NONE))

 puts(1, "\nSource's second integer is: ")
 print(1, call_method(source, "getSecondNum", NONE))

 VOID = call_method(source, "showProduct", NONE)

 -- now create a new instance ("copy") of the class
 copy = call_method(Product, "new", NONE)

 puts(1, "\n\nCopy's details....")
 puts(1, "\nCopy's first integer is: ")
 print(1, call_method(copy, "getFirstNum", NONE))

 puts(1, "\nCopy's second integer is: ")

Alexander Caracatsanis 55

 print(1, call_method(copy, "getSecondNum", NONE))

 VOID = call_method(copy, "showProduct", NONE)
end procedure

main()

When you run this application you will see that irrespective of what you do to source, you
can't get copy to change from the default values. A little thought reveals why – copy is the
reference returned from the routine call_method(), whose target is the method new(), the
default constructor. In other words using this syntax, we will succeed in creating a new
instance of the class – but only in its default, initialised state. This isn't the kind of copy we
had in mind. It's like seeing a house that you really like, and asking the builder to construct
one just like it for you – only to find that (s)he builds a house based on the original plans,
without the extensions and renovations that were subsequently added to the house you liked
so much. To accomplish that job, we'll have to turn to the method clone().

STEP 17b: COPYING OBJECTS USING THE METHOD clone()

Our task is to create multiple instances without having to use the (constructor) method new()
(which as we've seen, can only create instances with their default property values). We do this
by using the method clone(), which is inherited from the universal base class Entity, by each
class we design. This method will make and return a copy of each property of its target class,
giving us a new instance with the same property values. We get the job done by using the
routine call_method(), and passing to the method clone() and its target, the name of the
class.

To see how this is done let's create a new application CloneCopyDemo.ex, based on our
previous file NewCopyDemo.ex, and note the additional syntax:

-- CloneCopyDemo.ex v1.0

include ProductClass.e
include get.e

procedure main()
 sequence first, second
 entity source, copy

 source = call_method(Product, "new", NONE)

 puts(1, "Enter the first integer: ") first = get(0)
 VOID = call_method(source, "setFirstNum", {first[2]})

 puts(1, "\nEnter the second integer: ") second = get(0)
 VOID = call_method(source, "setSecondNum", {second[2]})

 puts(1, "Source's details....")
 puts(1, "\nSource's first integer is: ")
 print(1, call_method(source, "getFirstNum", NONE))

 puts(1, "\nSource's second integer is: ")
 print(1, call_method(source, "getSecondNum", NONE))

 VOID = call_method(source, "showProduct", NONE)

 -- delete this – it doesn't work!

Alexander Caracatsanis 56

 -- copy = call_method(Product, "new", NONE)

 -- invoke clone() on source to make copy
 copy = call_method(source, "clone", NONE)

 puts(1, "\n\nCopy's details....")
 puts(1, "\nCopy's first integer is: ")
 print(1, call_method(copy, "getFirstNum", NONE))

 puts(1, "\nCopy's second integer is: ")
 print(1, call_method(copy, "getSecondNum", NONE))

 VOID = call_method(copy, "showProduct", NONE)
end procedure

main()

When you run this application you should find that the values you gave to source's properties
are reflected in the values of copy's properties. So far, so good. Let's now change source, and
see whether copy remains unchanged. Here's the next version of CloneCopyDemo.ex:

-- CloneCopyDemo.ex v1.1

include ProductClass.e
include get.e

procedure main()
 sequence first, second
 entity source, copy

 source = call_method(Product, "new", NONE)

 puts(1, "Enter the first integer: ") first = get(0)
 VOID = call_method(source, "setFirstNum", {first[2]})

 puts(1, "\nEnter the second integer: ") second = get(0)
 VOID = call_method(source, "setSecondNum", {second[2]})

 puts(1, "Source's details....")
 puts(1, "\nSource's first integer is: ")
 print(1, call_method(source, "getFirstNum", NONE))

 puts(1, "\nSource's second integer is: ")
 print(1, call_method(source, "getSecondNum", NONE))

 VOID = call_method(source, "showProduct", NONE)

 copy = call_method(source, "clone", NONE)

 -- reset source's property values:
 VOID = call_method(source, "setFirstNum", {10})
 VOID = call_method(source, "setSecondNum", {20})

 -- get and display the new value of each property of source
 puts(1, "\n\nSource's new details....")
 puts(1, "\nSource's first integer is: ")
 print(1, call_method(source, "getFirstNum", NONE))

Alexander Caracatsanis 57

 puts(1, "\nSource's second integer is: ")
 print(1, call_method(source, "getSecondNum", NONE))

 -- display source's product on the screen
 VOID = call_method(source, "showProduct", NONE)

 puts(1, "\n\nCopy's details....")
 puts(1, "\nCopy's first integer is: ")
 print(1, call_method(copy, "getFirstNum", NONE))

 puts(1, "\nCopy's second integer is: ")
 print(1, call_method(copy, "getSecondNum", NONE))

 VOID = call_method(copy, "showProduct", NONE)
end procedure

main()

Run this application. You should find that this time copy's values rema in unchanged whatever
we do to source's values. The final test is to determine whether we can change copy's values
without those changes being reflected automatically in source. Let's make the following
changes to CloneCopyDemo.ex:

-- CloneCopyDemo.ex v1.2

include ProductClass.e
include get.e

procedure main()
 sequence first, second
 entity source, copy

 source = call_method(Product, "new", NONE)

 puts(1, "Enter the first integer: ") first = get(0)
 VOID = call_method(source, "setFirstNum", {first[2]})

 puts(1, "\nEnter the second integer: ") second = get(0)
 VOID = call_method(source, "setSecondNum", {second[2]})

 puts(1, "Source's details....")
 puts(1, "\nSource's first integer is: ")
 print(1, call_method(source, "getFirstNum", NONE))

 puts(1, "\nSource's second integer is: ")
 print(1, call_method(source, "getSecondNum", NONE))

 VOID = call_method(source, "showProduct", NONE)

 copy = call_method(source, "clone", NONE)

 -- get and display the value of each property of copy
 puts(1, "\n\nCopy's details....")
 puts(1, "\nCopy's first integer is: ")
 print(1, call_method(copy, "getFirstNum", NONE))

Alexander Caracatsanis 58

 puts(1, "\nCopy's second integer is: ")
 print(1, call_method(copy, "getSecondNum", NONE))

 VOID = call_method(copy, "showProduct", NONE)

 -- reset copy's property values:
 VOID = call_method(copy, "setFirstNum", {10})
 VOID = call_method(copy, "setSecondNum", {20})

 -- get and display the new value of each property of copy
 puts(1, "\n\nCopy's new details....")
 puts(1, "\nCopy's first integer is: ")
 print(1, call_method(copy, "getFirstNum", NONE))

 puts(1, "\nCopy's second integer is: ")
 print(1, call_method(copy, "getSecondNum", NONE))

 -- display source's product on the screen
 VOID = call_method(copy, "showProduct", NONE)

 -- now check the value of each property of source
 puts(1, "\n\nSource's details....")
 puts(1, "\nSource's first integer is: ")
 print(1, call_method(source, "getFirstNum", NONE))

 puts(1, "\nSource's second integer is: ")
 print(1, call_method(source, "getSecondNum", NONE))

 -- display source's product on the screen
 VOID = call_method(source, "showProduct", NONE)
end procedure

main()

When you run this application you'll be able to confirm that we've finally succeeded in creating
a copy of our original object – a true copy that is free to vary independently of the source
object from which it was created.

A RECAP AND A LOOK AHEAD....

We have discussed several important concepts here, which we can summarise as follows:
1. the identifiers we use for entities are actually handles or references, implemented as three-

element sequences of integers; they are generated automatically by DL (according to a
predetermined plan), and are the means by which the entities are located and used.

2. by using the modified version of diamondlite.e we have been able to see an interaction
between our application, our class definition, and DL – backwards and forwards – gaining
access to DL's routines, our own methods, and our own properties as the need arises. This
dynamic view of program execution complements the static, diagrammatic view of classes
and objects as "having" or "containing" things.

3. we have been able to appreciate the importancee of program context – our application
begins in main program context up to the point where the routine class() executes; we
then enter class definition context , where properties and methods are registered and the
class is set up; after end_class() executes we go back to main program context , from
which point the application will enter instance/class method context as the program
dictates.

4. we noted that the method new() actually creates a brand new entity in its default state,
with properties set to their initial values, and methods poised to execute when called.

Alexander Caracatsanis 59

5. we noted that the method clone() makes a (bitwise) copy of an entity in its present state,
with properties set at their current value; the source and the copy are then free to take
different paths during program execution.

We are now able to write an outline for a generic class – GenericClass.e

include diamondlite.e

global constant Generic = class("Generic", Entity)
 property("aNumber", INSTANCE, NIL)
 property("aString", INSTANCE, NONE)
 property("anEntity", INSTANCE, Null_Instance)

 function Generic_new_0()
 entity newGeneric
 newGeneric = call_method(super(), "new", NONE)
 return newGeneric
 end function
 method("new", 0, CLASS, NULL_METHOD)

 function Generic_clone_0()
 entity cloneGeneric
 cloneGeneric = call_method(super(), "clone", NONE)
 return cloneGeneric
 end function
 method("clone", 0, INSTANCE, NULL_METHOD)

 function Generic_setProperty_1(object x)
 set_property(this(), <property_name>, x)
 return NIL
 end function
 method("setProperty", 1, INSTANCE, NULL_METHOD)

 function Generic_getProperty_0()
 return get_property(this(), <property_name>)
 end function
 method("getProperty", 0, INSTANCE, NULL_METHOD)
end_class()

Its corresponding application could look something like this – GenericDemo.ex

include GenericClass.e

procedure main()
 entity myGeneric, myClone

 myGeneric = call_method(Generic, "new", NONE)
 VOID = call_method(myGeneric, "setProperty", {<property_value>})
 myClone = call_method(myGeneric, "clone", NONE)
 -- invoke call_method(myClone, "getProperty", NONE) to return a property_value
 -- display or otherwise use this value
end procedure

main()

Alexander Caracatsanis 60

Most of this should look familiar by now. Notice the syntax NULL_METHOD – it's another
place-holder, that will eventually be occupied by a valid routine_id() when a proper and
functioning program is coded. As it stands now, it represents a method that does nothing and
returns NIL.

You may be puzzled by the property whose value is Null_Instance. We haven't come across
this before – it means that this property is designed to contain an instance (rather than an Eu
fundamental data type). A class containing an entity? We explore this functionality in the next
sections.

A QUICK LOOK AT COMPOSITION

So far our classes' properties have been one or other of Eu's fundamental data types. But we
are now looking at a class with a property that is itself an entity, ie a unit that has certain
qualities and capabilities. This might surprise you at first, but it makes sense when you think
about it - many real-life objects are composed of (or "contain") other objects "within" them,
that are meant to work together, but that can also exist and function independently. My car
has a radio, which is designed to function seamlessly within the car – the radio and the car
could still function independently of one another, but the car benefits from having the added
functionality provided by the radio. Looked at like this, we could say that the radio is an
attribute (a "feature") of the car, even though the radio could potentially function without the
car (eg on a boat, instead).

How should we code such a situation? Your intuition might be to simply place the radio inside
the car, like this:

global constant Car = class("Car", Entity)
 global constant Radio = class("Radio", Entity)
 end_class()
end_class()

That is not legal syntax, and for an important reason: you don't just want to dump the radio
on the back seat of the car – you want to put it in its correct place, wire it up, and make it an
integral, functioning part of the car. That's why we have to make the radio a property of the
car. We can picture our task as below. How might we achieve it?

In real life we would:
1. make a new radio, and have it ready
2. make a new car, with space for a radio
3. set the radio in the space in the car

We could achieve this result using the following point-form algorithm:
1. design the blueprint for a radio
2. design the blueprint for a car
3. allocate space for a radio
4. specify the construction of a new car
5. specify the construction of a new radio
6. set the new radio in its allocated space

We could code this process in three separate files. First, Radio.e:

Car
property(Radio)

Radio
property() etc...
method() etc...

Alexander Caracatsanis 61

-- Radio.e v1.0

-- 1 design the radio blueprint
global constant Radio = class("Radio", Entity) -- {4,0,M}
 -- to keep things simple, nothing in here!
 -- our class will use Entity's methods new(), clone(), and delete()
end_class()

Then Car.e….

-- Car.e v1.0

-- 2 design the car blueprint
global constant Car = class("Car", Entity) -- {5,0,M}
 -- 3 allocate space for a radio
 property("aRadio", INSTANCE, Null_Instance)

 function Car_new_0()
 entity newCar, newRadio

 -- 4 specify the construction of a new car
 newCar = call_method(super(), "new", NONE) -- {5,2,M}

 -- 5 specify the construction of a new radio
 newRadio = call_method(Radio, "new", NONE) -- {4,3,M}

 -- 6 set the new radio in its allocated space
 set_property(newCar, "aRadio", newRadio)

 return newCar -- {5,2,M}
 end function
 method("new", 0, CLASS, routine_id("Car_new_0"))
end_class()

And finally an application to create the finished product – CarRadioDemo.ex:

-- CarRadioDemo.ex v1.0

-- don't forget these include files!
include diamondlite.e
include Radio.e
include Car.e

procedure main()
 entity myCar
 myCar = call_method(Car, "new", NONE) -- {5,2,M}
end procedure

main()

Run the application with DL.e We've met all this syntax in previous steps, but we haven't used
it in quite this way before. Compare the class definition files with the point-form algorithm to
ensure you understand the steps. Notice the detailed code in the constructor Car.new() – it
really does create the new entity (two, in this case), and handles the assignment to the
property. Also notice the screen display - particularly the handles:

Alexander Caracatsanis 62

1. for class Radio: {4,0,M}
2. for class Car: {5,0,M}
3. for Null_Instance: {3,1,M} -- you don't see this – it is implied!
4. for newCar (ie myCar): {5,2,M} -- an instance of Car, therefore handle = {5,....}
5. for newRadio: {4,3,M} -- an instance of Radio, therefore handle = {4,....}

Being able to create a data structure that represents an entity with a property that is itself an
entity, will enable us to simulate more complex real-world objects – even objects that we see
on our computer screen. We explore this idea in the next steps.

DEEP AND SHALLOW CLONING

Now that we can model the creation of more complex entities, we are in a position to examine
how to copy them. In STEP 17b we considered how to use the method clone() and we found
that it produced a bitwise copy of an entity as it was at the moment of cloning – the copy had
all the property values of the source, and the same capabilities.

In the next few steps we will be exploring several ways of creating and copying entities,
illustrating them with simplistic simulations of GUI designs. I am indebted to Michael Nelson
for suggesting this approach to the topic, and for some of the code I use below.

The objective is not to learn how to create GUI's, but rather to use the idea of GUI's to
illustrate some of the things we can achieve with cloning. A secondary objective is to give us
practice in OO thinking, and in coding using DL. I'll present the material incrementally, but
here is an overview of the simulations we'll consider:
1. create a single window – Window_1
2. clone a window to produce two identical entities – Window_1 and Window_11
3. create a single window (Window_1) with a single button (Button_1) in it
4. create two windows, each with a button in it, using different approaches:

• create two new windows (Window_1; Window_2) and two new buttons (Button_1;
Button_2)

• create one new window with one new button (Window_1; Button_1), and clone them
– Window_11 ; Button_11

• create two new windows (Window_1; Window_2), a new button (Button_1), and its
(shallow) clone (Button_11)

• create two new windows (Window_1; Window_2), a new button (Button_1), and its
(deep) clone (Button_21)

5. create three windows, each with a button in it, using different approaches:
• Window_1 with Button_1
• Window_2 with Button_11 (a shallow clone of Button_1)
• Window_3 with Button_21 (a deep clone of Button_1)

6. create one window, with two buttons in it, using different approaches:
• create a new button (Button_1) and clone it (Button_11)
• create a new button, clone it twice, and use the clones (Button_11; Button_12)
• create a new button, clone it once, and use it twice (Button_11; Button_11)

The details will become clear as our discussion unfolds.

STEP 18: CLONING A WINDOW

Let's begin by imagining that we wish to model a blank window which we eventually intend to
copy. We can think of the window as an entity, with properties and capabilities. To keep things
simple, let's give it one property (an id number) and three basic capabilities (of being opened,
of being copied, and of being closed).

Alexander Caracatsanis 63

We can describe this functionality using the point-form algorithm below:
1. design the blueprint for a window
2. allocate space for its id
3. create a new window
4. give it its own id
5. clone this window
6. decommission both windows

We can now specify a class definition to achieve this functionality – Window.e
(NOTE: I've supplied handle numbers here and there, to help you keep track of the process.)

-- Window.e v1.0

-- 1 design the window blueprint
global constant Window = class("Window", Entity) –- {4,0,M}
 -- 2 allocate space for its id
 property("idNum", INSTANCE, NIL)

 -- * something new here: a class property, "counter". It is discussed below.
 property("counter", CLASS, 0)

 function Window_new_0()
 entity newWindow
 integer id

 -- 3 create a new window
 newWindow = call_method(super(), "new", NONE)

 -- 4 give it its own id; update the class counter
 id = get_property(this(), "counter") + 1 -- this() returns {4,0,M}
 set_property(newWindow, "idNum", id)
 set_property(this(), "counter", id) –- this() returns {4,0,M}

 return newWindow
 end function
 method("new", 0, CLASS, routine_id("Window_new_0"))

 -- 5 clone this window using Entity 's clone() method
 -- 6 delete this window using Entity 's delete() method

 -- 7 a method to allow us to access a window's id number
 function Window_getID_0()
 integer id
 id = get_property(this(), "idNum")
 return id
 end function
 method("getID", 0, INSTANCE, routine_id("Window_getID_0"))
end_class()

We have introduced a class property ("counter") for the first time. This is a property that
pertains to the class as a whole – it is not automatically available to instances of the class. In
this particular case it's there to keep count of the number of instances that have been created;
it is incremented each time the method new() is invoked. Notice that its default value is NIL
– 0 – to which it returns each time the application is rerun.

We have met the instance property ("idNum", in this case) before. Every instance of Window
will have this property, whose default value is NIL – to which it returns each time we create a

Alexander Caracatsanis 64

new entity. Accordingly each time we invoke method new() we have to set "idNum" with the
current value of "counter", or else we would only know its default value.

Notice that our default constructor creates a new entity and takes responsibility for
incrementing the class counter, and setting the new entity's "idNum". We didn't create a
separate method for this because in DL all methods are public , and we don't want an
application to be able to meddle with our object's id.

And notice the use of the routine this() within the class method new(). As we've seen before,
this() returns a reference to the current entity – from within an instance method, it returns a
reference to the current instance entity; but from within a class method, it returns a reference
to the current class entity (in this case, the class Window). So we could have written:
 get_property(Window, "counter") and set_property(Window, "counter", id)
in place of: get_property(this(), "counter") and set_property(this(), "counter", id)

Now let's go about creating and displaying two identical windows on the screen:

We have two choices – we can create a new window, clone it, and display them both; or we
can create two new windows and display them. Let's create an application to simulate (very
simplistically!) these options – WindowDemo.ex:

-- WindowDemo.ex v1.0

include diamondlite.e
include Window.e

procedure main()
 entity Window1, Window2

 -- create two new windows, and show their ID numbers
 Window1 = call_method(Window, "new", NONE) -- {4,2,M}
 Window2 = call_method(Window, "new", NONE) -- {4,3,M}
 puts (1, "\nTwo brand new windows:")
 printf(1, "\nWindow1.id = %d", call_method(Window1,"getID",NONE))
 printf(1, "\nWindow2.id = %d", call_method(Window2,"getID",NONE))

 -- create a new window and clone it; show the ID numbers
 -- use Window1 as our new window – code 'reuse'
 Window2 = call_method(Window1, "clone", NONE) -- {4,4,M}
 puts (1, "\n\nNew and cloned window:")
 printf(1, "\nWindow1.id = %d", call_method(Window1,"getID",NONE))
 printf(1, "\nWindow2.id = %d", call_method(Window2,"getID",NONE))
end procedure

main()

If you run the application with diamondlite.e you will see:

Window_1

Window_2

Alexander Caracatsanis 65

Two brand new windows: -- BTW - HERE ARE THE ENTITY HANDLES:
Window1.id = 1 -- Window1 is {4,2,M}
Window2.id = 2 -- Window2 is {4,3,M}

New and cloned window:
Window1.id = 1 -- Window1 is {4,2,M}
Window2.id = 1 -- Window2 (ie clone of Window1) is {4,4,M}

It confirms that whereas new() creates two different windows (hence different id's) with their
default values, clone() creates a second window that is a copy of the first (with property
values equal to those at the moment of copying). We could go on like this, creating as many
copies of our window as we need. (If you're not sure of the flow of execution, run the
application with DL.e and follow the handle numbers.)

STEP 19: A WINDOW WITH A BUTTON

Now let's go a step further, and imagine that we are looking at a screen with a window that
has a button on it; the button has the word "PUSH" on it.

We can think of the button as an entity, with properties (eg text, colour, size etc) and
capabilities. This situation is similar to the one we met before – a car with a radio – so we
should be able to use similar syntax.

The point form algorithm for achieving this functionality would then be something like this:
1. design the blueprint for a button
2. allocate space for text; initialise it to an empty string
3. construct a new button
4. set its text to the string "PUSH"
5. design the blueprint for a window
6. allocate space for an entity of class button
7. create a new window
8. create a new button
9. assign the new button to window's property "button"

We will begin by coding the class definition for the button – Button.e:

-- Button.e v1.0

-- 1 design the button blueprint
global constant Button = class("Button", Entity) -- {4,0,M}
 -- 2 allocate space for text; initialise it to an empty string
 property("text", INSTANCE, NONE)

 function Button_new_0()
 entity newButton

 -- 3 construct a new button
 newButton = call_method(super(), "new", NONE) -- {4,3,M}

 -- 4 set its text to the string "PUSH"
 set_property(newButton, "text", "PUSH")

Window

PUSH

Alexander Caracatsanis 66

 return newButton
 end function
 method("new", 0, CLASS, routine_id("Button_new_0"))

 function Button_getText_0()
 return get_property(this(), "text")
 end function
 method("getText", 0, INSTANCE, routine_id("Button_getText_0"))
end_class()

We could have taken a different approach. We could have initialised the property "text" to
"PUSH" - like this: property("text", INSTANCE, "PUSH") - and then used the automatic
default constructor instead of coding our own default constructor. We have also supplied a
method getText() to make it possible for us to retrieve the value in property "text".

And now we'll code the class definition for the window – Window.e

-- Window.e v1.1

-- 5 design the window blueprint
global constant Window = class("Window", Entity) -- {5,0,M}
 property("counter", CLASS, NIL)
 property("idNum", INSTANCE, 0)

 -- 6 allocate space for an entity of class Button
 property("button", INSTANCE, Null_Instance)

 -- allocate space for the text in window's button
 property("buttonText", INSTANCE, NONE)

 function Window_new_0()
 entity newWindow, newButton
 integer id
 sequence itsText -- the button's text

 -- 7 create a new window
 newWindow = call_method(super(), "new", NONE) -- {5,2,M}
 id = get_property(this(), "counter") + 1 -- this() returns {5,0,M}
 set_property(newWindow, "idNum", id)
 set_property(this(), "counter", id) -- this() returns {5,0,M}

 -- 8 call Button.new() to create a new button with text "PUSH"
 newButton = call_method(Button, "new", NONE) -- {4,3,M}

 -- 9 assign the new button to window's property "button"
 set_property(newWindow, "button", newButton)

 -- call newButton.getText() to return the button's text
 itsText = call_method(newButton, "getText", NONE)

 -- assign that text to window's property
 set_property(newWindow, "buttonText", itsText)

 return newWindow
 end function
 method("new", 0, CLASS, routine_id("Window_new_0"))

Alexander Caracatsanis 67

 -- to clone the window use the automatic default clone() method
 -- to delete the window use the automatic default delete() method

 -- a method to allow us to access a window's id number
 function Window_getID_0()
 integer id
 id = get_property(this(), "idNum")
 return id
 end function
 method("getID", 0, INSTANCE, routine_id("Window_getID_0"))

 -- a method to allow us to access the handle of window's button
 function Window_getButton_0()
 return get_property(this(), "button")
 end function
 method("getButton", 0, INSTANCE, routine_id("Window_getButton_0"))

 -- a method to allow us to access the text of window's button
 function Window_getText_0()
 return get_property(this(), "buttonText")
 end function
 method("getText", 0, INSTANCE, routine_id("Window_getText_0"))
end_class()

Notice that we've coded a default constructor to do the job of creating entities for us, like this:
1. create a new window
2. increment the class counter
3. assign a value to the window's ID number
4. create a new button using Button.new() - which we coded previously in Button.e
5. assign the (handle of the) new button to the new window's "button" property
6. use the new button's getText() method to return the button's text (ie "PUSH")
7. assign that text to the new window's property "buttonText"
8. return a reference to the new window

We have also added a method getText() to make it possible for us to retrieve the text of the
button on the window. And of course we still have the method getID() to give us access to
the window's id number.

And finally we code the application file – WindowDemo.ex:

-- WindowDemo.ex v1.1

include diamondlite.e
include Button.e
include Window.e

procedure main()
 entity myWindow

 -- create a new window, show its ID number, its button's handle,
 -- and its button's text
 myWindow = call_method(Window, "new", NONE) -- {5,2,M}

 puts (1, "\nA new window:")
 printf(1, "\nmyWindow.id = %d", call_method(myWindow,"getID",NONE))

Alexander Caracatsanis 68

 puts(1, "\nmyWindow.getButton() returns the button's handle: ")
 print(1, call_method(myWindow, "getButton", NONE)) -- {4,3,M}

 puts(1, "\nmyWindow.getText() returns the button's text: " &
 call_method(myWindow, "getText", NONE))
end procedure

main()

Run the application with diamondlite.e, and note the screen display:

A new window: -- this is myWindow, whose handle is {5,2,M}
myWindow.id = 1
myWindow.getButton() returns the button's handle: {4,3,M}
myWindow.getText() returns the button's text: PUSH

It confirms that we have created a new window; that it contains a (reference to a) button; and
that the button says "PUSH".

STEP 20: TWO WINDOWS, EACH WITH AN IDENTICAL BUTTON - ALL NEW

Now let's go a step further and simulate a situation in which we have two windows on our
screen, each with an identical button - like this:

There are a couple of ways of approaching this task, depending on what we want to achieve.

For a start we can create a new entity Window_1 with its corresponding button, and then we
can create another new entity - Window_2 - with its own (new) button. This would be
acceptable if we were prepared to accept the creation of new entities in their default state.
This solution would only require a small change to the application - WindowDemo.ex:

-- WindowDemo.ex v1.2

include diamondlite.e
include Button.e
include Window.e

procedure main()
 entity myWindow1, myWindow2

 -- create a new window, show its ID number, its button's handle,
 -- and its button's text
 myWindow1 = call_method(Window, "new", NONE) -- {5,2,M}

 puts (1, "\nWindow1:")
 printf(1, "\nmyWindow1.id = %d", call_method(myWindow1,"getID",NONE))

 puts(1, "\nmyWindow1.getButton() returns the button's handle: ")
 print(1, call_method(myWindow1, "getButton", NONE)) -- {4,3,M}

Window_1

PUSH Window_2

PUSH

Alexander Caracatsanis 69

 puts(1, "\nmyWindow1.getText() returns the button's text: " &
 call_method(myWindow1, "getText", NONE))

 -- create a second window, show its ID number, its button's handle,
 -- and its button's text
 myWindow2 = call_method(Window, "new", NONE) -- {5,4,M}

 puts (1, "\n\nWindow2:")
 printf(1, "\nmyWindow2.id = %d", call_method(myWindow2,"getID",NONE))

 puts(1, "\nmyWindow2.getButton() returns the button's handle: ")
 print(1, call_method(myWindow2, "getButton", NONE)) -- {4,5,M}

 puts(1, "\nmyWindow2.getText() returns the button's text: " &
 call_method(myWindow2, "getText", NONE))
end procedure

main()

If we run the application we will be able to confirm that both windows are new entities (they
have different id's), and that both buttons are new entities (t hey have different handles); the
output is presented below:

Window1: -- this is myWindow1, whose handle is {5,2,M}
myWindow1.id = 1
myWindow1.getButton() returns the button's handle: {4,3,M}
myWindow1.getText() returns the button's text: PUSH

Window2: -- this is myWindow2, whose handle is {5,4,M}
myWindow2.id = 2
myWindow2.getButton() returns the button's handle: {4,5,M}
myWindow2.getText() returns the button's text: PUSH

STEP 20a: TWO WINDOWS, EACH WITH AN IDENTICAL BUTTON - SHALLOW CLONE

Another solution might be to start with a new window/button combination, and clone
everything. We would then have two identical windows with two identical buttons. We can
achieve this result using the automatic default constructor already available to the class
Window. We would need to modify our application as follows:

-- WindowDemo.ex v1.3

include diamondlite.e
include Button.e
include Window.e

procedure main()
 entity myWindow, clonedWindow

 myWindow = call_method(Window, "new", NONE) -- {5,2,M}

 puts (1, "\nA new window:")
 printf(1, "\nmyWindow.id = %d", call_method(myWindow,"getID",NONE))

 puts(1, "\nmyWindow.getButton() returns the button's handle: ")

Alexander Caracatsanis 70

 print(1, call_method(myWindow, "getButton", NONE)) -- {4,3,M}

 puts(1, "\nmyWindow.getText() returns the button's text: " &
 call_method(myWindow, "getText", NONE))

 -- create a cloned window, show its ID number, its button's handle,
 -- and its button's text
 clonedWindow = call_method(myWindow, "clone", NONE) -- {5,4,M}

 puts (1, "\n\nA cloned window:")
 printf(1, "\nclonedWindow.id = %d", call_method(clonedWindow,"getID",NONE))

 puts(1, "\nclonedWindow.getButton() returns the button's handle: ")
 print(1, call_method(clonedWindow, "getButton", NONE)) -- {4,3,M}

 puts(1, "\nclonedWindow.getText() returns the button's text: " &
 call_method(clonedWindow, "getText", NONE))
end procedure

main()

If we now run the application we can confirm that the windows are copies (they have the same
id), as are the buttons (they have the same handle):

A new window: -- this is myWindow, whose handle is {5,2,M}
myWindow.id = 1
myWindow.getButton() returns the button's handle: {4,3,M}
myWindow.getText() returns the button's text: PUSH

A cloned window: -- this is clonedWindow, whose handle is {5,4,M}
clonedWindow.id = 1
clonedWindow.getButton() returns the button's handle: {4,3,M}
clonedWindow.getText() returns the button's text: PUSH

In some situations this would be exactly what we need. The second window's button is a
"shallow" copy of the first window's button - it is really a reference to the first window's button,
rather than a true, "stand-alone" copy in its own right. When we need to create a copy that is
an entity in its own right, we need to produce what is known as a "deep" clone.

STEP 20b: TWO WINDOWS, EACH WITH AN IDENTICAL BUTTON - DEEP CLONE

We saw that we could create a clone of a window containing a reference to a clone of a button
that itself resides on the first window. We achieved this as follows:
1. we created a new entity called Window_1, using Entity.new()
2. we created Button_1 ("PUSH") using Button.new(), and got its handle
3. using this handle, we assigned Button_1 to Window_1 's "button" property
4. using Button_1's method getText(), we retrieved its text "PUSH"
5. we assigned that string to Window_1 's "buttonText" property
6. using Window_1.clone() we created Window_2, and found that it was a bitwise copy of

Window_1 - containing the same id, the same reference to the button, and the same text,
as in Window_1

Now suppose that we want Window_2 to have its "own" copy of the original button, rather
than merely a handle to Window_1's cloned button. We achieve this by designing a clone
method in class Window, to override the class' automatic default clone() method. We can
describe the necessary steps using the following point-form algorithm:
1. create a copy of a Window entity

Alexander Caracatsanis 71

2. get the value in its property "button" - this value will be a reference to a button entity
3. use this reference to create a clone of the button
4. set the value of this button entity to Window's "button" property
5. get the button's text
6. set this value to Window's "buttonText" property

We can code this process as follows - Window.e:

-- Window.e v1.2

global constant Window = class("Window", Entity) -- {5,0,M}
 property("counter", CLASS, 0)
 property("idNum", INSTANCE, NIL)
 property("button", INSTANCE, Null_Instance)
 property("buttonText", INSTANCE, NONE)

 function Window_new_0()
 entity newWindow, newButton
 integer id
 sequence itsText -- the button's text

 newWindow = call_method(super(), "new", NONE) -- {5,2,M}

 id = get_property(this(), "counter") + 1
 set_property(newWindow, "idNum", id)
 set_property(this(), "counter", id)
 newButton = call_method(Button, "new", NONE) -- {4,3,M}
 set_property(newWindow, "button", newButton)
 itsText = call_method(newButton, "getText", NONE)
 set_property(newWindow, "buttonText", itsText)

 return newWindow
 end function
 method("new", 0, CLASS, routine_id("Window_new_0"))

 function Window_clone_0()
 entity clonedWindow, refButton, clonedButton
 sequence itsText

 -- use Entity.clone() to create a cloned window;
 -- it will contain a button with "PUSH"
 clonedWindow = call_method(super(), "clone", NONE) -- {5,4,M}

 -- get the value in the cloned window's "button" property
 -- it will be a reference to a button entity
 refButton = get_property(clonedWindow, "button") -- {4,3,M}

 -- use the clone() method of the button entity in the cloned window's
 -- "button" property to create a new cloned button
 clonedButton = call_method(refButton, "clone", NONE) -- {4,5,M}

 -- assign the new cloned button to the cloned window's "button" property
 set_property(clonedWindow, "button", clonedButton)

 -- use the new cloned button's getText() method to return its text
 itsText = call_method(clonedButton, "getText", NONE)

Alexander Caracatsanis 72

 -- set that text to the cloned window's "buttonText" property
 set_property(clonedWindow, "buttonText", itsText)

 return clonedWindow
 end function
 method("clone", 0, INSTANCE, routine_id("Window_clone_0"))

 function Window_getID_0()
 integer id
 id = get_property(this(), "idNum")
 return id
 end function
 method("getID", 0, INSTANCE, routine_id("Window_getID_0"))

 function Window_getButton_0()
 return get_property(this(), "button")
 end function
 method("getButton", 0, INSTANCE, routine_id("Window_getButton_0"))

 function Window_getText_0()
 return get_property(this(), "buttonText")
 end function
 method("getText", 0, INSTANCE, routine_id("Window_getText_0"))
end_class()

Now when we run WindowDemo.ex (call it v1.4) we get the following result:

A new window: -- this is myWindow, whose handle is {5,2,M}
myWindow.id = 1
myWindow.getButton() returns the button's handle: {4,3,M}
myWindow.getText() returns the button's text: PUSH

A cloned window: -- this is clonedWindow, whose handle is {5,4,M}
clonedWindow.id = 1
clonedWindow.getButton() returns the button's handle: {4,5,M}
clonedWindow.getText() returns the button's text: PUSH

By following the handle numbers we can confirm that the second window is a copy of the first
(it has the same id), but that it has its own copy of a button - not just a reference to the first
window's button. (If you are unsure about this, run the application with DL.e, and trace the
appearance of new handle numbers.) This is the essence of "deep" copying - it makes it
possible for us to "go back", "deep" into the original entity, and create a cloned entity of that.

AN INTRODUCTION TO METHOD OVERLOADING

STEP 20c: DEEP AND SHALLOW CLONING TOGETHER

We can now look at how we might change our code in order to give us maximum flexibility - to
do shallow cloning, or to do deep cloning as and when we want to. For instance, we might
want to achieve the following result:

Alexander Caracatsanis 73

And we might want to stipulate that the button in Window_2 will be a shallow clone of the
button in Window_1, whereas the button in Window_3 will be a deep clone of the button in
Window_1.

We can achieve this functionality by using DL's support for method overriding and method
overloading.

We are familiar with method overriding - where one method supplants another method of the
same name and parameter-list. For example the new() and clone() methods that we have
written, are used in place of the corresponding new() and clone() methods inherited from
Entity. Our own methods have the same name and parameter-list as the automatically
inherited methods.

Method overloading refers to a situation in which our file contains several methods with the
same name, but which differ in either or both of the following ways:
1. one is a class method while the other is an instance method
2. the methods have a different number of parameters

We are therefore able to write code in which methods that do a similar job are more easily
recognised by being given the same name, even if they use different parameters, in different
contexts.

So we can modify our file Window.e such that it contains two clone() methods - one with no
parameters (this one will override the corresponding method inherited from Entity), and an
overloaded method with one parameter (with which to do deep cloning).

-- Window.e v1.3

global constant Window = class("Window", Entity) -- {5,0,M}
 property("counter", CLASS, 0)
 property("idNum", INSTANCE, NIL)
 property("button", INSTANCE, Null_Instance)
 property("buttonText", INSTANCE, NONE)

 function Window_new_0()
 entity newWindow, newButton
 integer id
 sequence itsText -- the button's text

 newWindow = call_method(super(), "new", NONE) -- {5,2,M}

 id = get_property(this(), "counter") + 1
 set_property(newWindow, "idNum", id)
 set_property(this(), "counter", id)

 newButton = call_method(Button, "new", NONE) -- {4,3,M}
 set_property(newWindow, "button", newButton)

Window_1

PUSH Window_2

PUSH

Window_3

PUSH

Alexander Caracatsanis 74

 itsText = call_method(newButton, "getText", NONE)
 set_property(newWindow, "buttonText", itsText)

 return newWindow
 end function
 method("new", 0, CLASS, routine_id("Window_new_0"))

 -- this method overrides the one inherited from Entity;
 -- it is redundant here, but is included for illustration purposes
 function Window_clone_0()
 entity clonedWindow
 clonedWindow = call_method(super(), "clone", NONE)
 return clonedWindow
 end function
 method("clone", 0, INSTANCE, routine_id("Window_clone_0"))

 -- an overloaded method clone(sequence deep); it differs from clone() above
 function Window_clone_1(object deep)
 entity clonedWindow, refButton, clonedButton
 sequence itsText

 VOID = deep -- to discard "deep"

 clonedWindow = call_method(super(), "clone", NONE)-- {5,4,M}
 refButton = get_property(clonedWindow, "button") -- {4,3,M}
 clonedButton = call_method(refButton, "clone", NONE) -- {4,5,M}
 itsText = call_method(clonedButton, "getText", NONE)

 set_property(clonedWindow, "button", clonedButton)
 set_property(clonedWindow, "buttonText", itsText)

 return clonedWindow
 end function
 method("clone", 1, INSTANCE, routine_id("Window_clone_1"))

 function Window_getID_0()
 integer id
 id = get_property(this(), "idNum")
 return id
 end function
 method("getID", 0, INSTANCE, routine_id("Window_getID_0"))

 function Window_getButton_0()
 return get_property(this(), "button")
 end function
 method("getButton", 0, INSTANCE, routine_id("Window_getButton_0"))

 function Window_getText_0()
 return get_property(this(), "buttonText")
 end function
 method("getText", 0, INSTANCE, routine_id("Window_getText_0"))
end_class()

We can change WindowDemo.ex accordingly, to mediate the new functionality:

-- WindowDemo.ex v1.5

Alexander Caracatsanis 75

include diamondlite.e
include Button.e
include Window.e

procedure main()
 entity myWindow, clonedWindow, deepClonedWindow

 myWindow = call_method(Window, "new", NONE) -- {5,2,M}

 -- Window_1
 puts (1, "\nA new window:")
 printf(1, "\nmyWindow.id = %d", call_method(myWindow,"getID",NONE))

 puts(1, "\nmyWindow.getButton() returns the button's handle: ")
 print(1, call_method(myWindow, "getButton", NONE)) -- {4,3,M}

 puts(1, "\nmyWindow.getText() returns the button's text: " &
 call_method(myWindow, "getText", NONE))

 -- Window_2
 clonedWindow = call_method(myWindow, "clone", NONE) -- {5,4,M}

 puts (1, "\n\nA cloned window:")
 printf(1, "\nclonedWindow.id = %d", call_method(clonedWindow,"getID",NONE))

 puts(1, "\nclonedWindow.getButton() returns the button's handle: ")
 print(1, call_method(clonedWindow, "getButton", NONE)) -- {4,3,M}

 puts(1, "\nclonedWindow.getText() returns the button's text: " &
 call_method(clonedWindow, "getText", NONE))

 -- Window_3
 deepClonedWindow = call_method(myWindow, "clone", {"deep"}) -- {5,4,M}

 puts (1, "\n\nAnother cloned window:")
 printf(1, "\ndeepClonedWindow.id = %d",
 call_method(deepClonedWindow,"getID",NONE))

 puts(1, "\ndeepClonedWindow.getButton() returns the button's handle: ")
 print(1, call_method(deepClonedWindow, "getButton", NONE)) -- {4,3,M}

 puts(1, "\ndeepClonedWindow.getText() returns the button's text: " &
 call_method(deepClonedWindow, "getText", NONE))
end procedure

main()

When we run this application we see the following screen display:

A new window:
myWindow.id = 1
myWindow.getButton() returns the button's handle: {4,3,M}
myWindow.getText() returns the button's text: PUSH

A cloned window:
clonedWindow.id = 1
clonedWindow.getButton() returns the button's handle: {4,3,M}

Alexander Caracatsanis 76

clonedWindow.getText() returns the button's text: PUSH

Another cloned window:
deepClonedWindow.id = 1
deepClonedWindow.getButton() returns the button's handle: {4,6,M}
deepClonedWindow.getText() returns the button's text: PUSH

We can confirm that all three windows are clones – they have the same id (1). We see that the
button in the second window is merely a shallow clone of the button in the first window – ie it
has the same reference ({4,3,M}) as the first button. We see that the button in the third
window comes from the same class (Button – {4,0,M}) as the other two buttons, but that it
is a different entity – ie it has a different reference value. Finally, we observe that all three
buttons have the same text – PUSH.

SOME EXTENSION EXERCISES

STEP 21: A WINDOW WITH TWO IDENTICAL BUTTONS

Now let's say that we want to have two identical buttons (same text, same colour etc) on the
same window - like this:

Our task is to simulate this situation (very simplistically). Since we have all the code necessary
to create a new window with a new button bearing the text "PUSH", it would seem that the
best thing to do is simply to clone the button we already have. (We could have decided to
create a new button, but we would have ended up with a button in its default state, which is
not what we need.)

We could achieve this functionality using the following algorithm:
1. design the button prototype
2. allocate space for text; initialise it to an empty string
3. construct a new button
4. set its text to the string "PUSH"
5. design the window prototype
6. allocate space for an entity of class button
7. create a new window
8. create a new button
9. assign the new button to window's property "button"
10. make a copy of the button we already have

We will have to alter Window.e accordingly. For one thing the property "button" will have to
be changed to something like "allButtons", to accommodate a sequence of entities (two
buttons in this case). And the property "buttonText" could be changed to "allTexts", to
accommodate a sequence of text strings (in this case, {"PUSH", "PUSH"}) corresponding to
each button.

-- Window.e v1.4

-- 5 design the window prototype
global constant Window = class("Window", Entity) -- {5,0,M}
 property("counter", CLASS, NIL) –- the class counter

Window

PUSH PUSH

Alexander Caracatsanis 77

 property("idNum", INSTANCE, NIL) –- a place for window's ID number
 property("allButtons", INSTANCE, NONE) -- a place for all button entities
 property("allTexts", INSTANCE, NONE) -- a place for all buttons' texts

 function Window_new_0()
 entity newWindow, newButton, cloneButton
 integer id
 sequence itsText, -- the button's text
 buttons, -- to accommodate all buttons in the property
 texts -- to accommodate all texts in the property

 buttons = {} texts = {} -- initialise the sequences

 newWindow = call_method(super(), "new", NONE) -- {5,2,M}
 -- give it its own id; update the class counter
 id = get_property(this(), "counter") + 1 -- this() returns {5,0,M}
 set_property(newWindow, "idNum", id)
 set_property(this(), "counter", id) -- this() returns {5,0,M}

 -- populate the sequences; there's nothing in there yet!
 buttons = get_property(newWindow, "allButtons")
 texts = get_property(newWindow, "allTexts")

 newButton = call_method(Button, "new", NONE) -- {4,3,M}; new entity
 buttons = append(buttons, newButton) -- grow the sequence of buttons
 set_property(newWindow, "allButtons", buttons) -- assign to property
 itsText = call_method(newButton, "getText", NONE) -- get button's text
 texts = append(texts, itsText) -- grow the sequence of texts
 set_property(newWindow, "allTexts", texts) -- assign to property

 -- 10 make a copy of the button we already have
 cloneButton = call_method(newButton, "clone", NONE) -- {4,4,M}; clone
 buttons = append(buttons, cloneButton) -- grow the sequence of buttons
 set_property(newWindow, "allButtons", buttons) -- assign to property
 itsText = call_method(cloneButton, "getText", NONE) -- get button's text
 texts = append(texts, itsText) -- grow the sequence of texts
 set_property(newWindow, "allTexts", texts) -- assign to property

 return newWindow
 end function
 method("new", 0, CLASS, routine_id("Window_new_0"))

 function Window_getID_0()
 integer id
 id = get_property(this(), "idNum")
 return id
 end function
 method("getID", 0, INSTANCE, routine_id("Window_getID_0"))

 function Window_getText_0()
 return get_property(this(), "allTexts") -- note the change here!
 end function
 method("getText", 0, INSTANCE, routine_id("Window_getText_0"))
end_class()

We will have to modify WindowDemo.ex a bit to demonstrate what we've achieved:

Alexander Caracatsanis 78

-- WindowDemo.ex v1.6

include diamondlite.e
include Button.e
include Window.e

procedure main()
 entity myWindow
 sequence texts texts = {}
 -- create a new window, show its ID number, and show its buttons' texts
 myWindow = call_method(Window, "new", NONE) -- {5,2,M}
 texts = call_method(myWindow, "getText", NONE)
 puts (1, "\nA new window:")
 printf(1, "\nmyWindow.id = %d", call_method(myWindow,"getID",NONE))
 printf(1, "\nNew button's text is %s", {texts[1]})
 printf(1, "\nCloned button's text is %s", {texts[2]})
end procedure

main()

Run the application with diamondlite.e and confirm that we've simulated the existence of a
single window, with two identical buttons bearing the word "PUSH".

A COUPLE OF ALTERNATIVES

As often happens in programming there are several different ways of accomplishing the same
task. You were probably dissatisfied with Window.e - eg some code was repeated in the body
of method new(); and you had to be aware of two entities (a new button and a cloned button)
instead of one entity "twice".

What we did was:
1. create a new button (with its initialised text)
2. assign to the corresponding property...

Ø the (new) button
Ø its text

3. create a cloned button (with its initialised text)
4. assign to the corresponding property...

Ø the (clone) button
Ø its text

STEP 21a: START WITH A NEW BUTTON, AND CLONE IT TWICE

We could improve the code by doing this:
1. create a new button (with its initialised text)
2. clone it twice, on each occasion assigning to the corresponding property...

Ø the (cloned) button
Ø its text

Here is a stripped-down version of Window.e to illustrate this process:

-- Window.e v1.5

global constant Window = class("Window", Entity) -- {5,0,M}
 property("allButtons", INSTANCE, NONE)
 property("allTexts", INSTANCE, NONE)

Alexander Caracatsanis 79

 function Window_new_0()
 entity newWindow, newButton, cloneButton
 sequence itsText, buttons, texts

 buttons = {} texts = {} -- initialise the sequences

 newWindow = call_method(super(), "new", NONE) -- {5,2,M}

 buttons = get_property(newWindow, "allButtons")
 texts = get_property(newWindow, "allTexts")

 newButton = call_method(Button, "new", NONE) -- {4,3,M}
 for i = 1 to 2 do
 -- the handles for these buttons will be {4,4,M} and {4,5,M}
 cloneButton = call_method(newButton, "clone", NONE)
 buttons = append(buttons, cloneButton)
 set_property(newWindow, "allButtons", buttons)
 itsText = call_method(cloneButton, "getText", NONE)
 texts = append(texts, itsText)
 set_property(newWindow, "allTexts", texts)
 end for
 return newWindow
 end function
 method("new", 0, CLASS, routine_id("Window_new_0"))

 function Window_getText_0()
 return get_property(this(), "allTexts")
 end function
 method("getText", 0, INSTANCE, routine_id("Window_getText_0"))
end_class()

STEP 21b: START WITH A NEW BUTTON, CLONE IT ONCE, AND ASSIGN IT TWICE

Another solution might go like this:
1. create a new button (with its initialised text)
2. clone it once
3. assign it, and its text, to the corresponding property twice

Here is another stripped-down version of Window.e to illustrate this process:

-- Window.e v1.6

global constant Window = class("Window", Entity) -- {5,0,M}
 property("allButtons", INSTANCE, NONE)
 property("allTexts", INSTANCE, NONE)

 function Window_new_0()
 entity newWindow, newButton, cloneButton
 sequence itsText, buttons, texts

 buttons = {} texts = {} -- initialise the sequences

 newWindow = call_method(super(), "new", NONE) -- {5,2,M}

 buttons = get_property(newWindow, "a llButtons")
 texts = get_property(newWindow, "allTexts")

Alexander Caracatsanis 80

 newButton = call_method(Button, "new", NONE) -- {4,3,M}
 cloneButton = call_method(newButton, "clone", NONE) -- {4,4,M} only!

 for i = 1 to 2 do
 buttons = append(buttons, cloneButton)
 set_property(newWindow, "allButtons", buttons)
 itsText = call_method(cloneButton, "getText", NONE)
 texts = append(texts, itsText)
 set_property(newWindow, "allTexts", texts)
 end for
 return newWindow
 end function
 method("new", 0, CLASS, routine_id("Window_new_0"))

 function Window_getText_0()
 return get_property(this(), "allTexts")
 end function
 method("getText", 0, INSTANCE, routine_id("Window_getText_0"))
end_class()

Here is a stripped-down version of WindowDemo.ex to demonstrate how they work:

-- WindowDemo.ex v1.7 & v1.8

include diamondlite.e
include Button.e
include Window.e

procedure main()
 entity myWindow
 sequence texts texts = {}
 myWindow = call_method(Window, "new", NONE)
 texts = call_method(myWindow, "getText", NONE)
 puts (1, "\nA new window:")
 printf(1, "\nOne button's text is %s", {texts[1]})
 printf(1, "\nThe other button's text is %s", {texts[2]})
end procedure

main()

On each occasion the screen will display:

A new window:
One button's text is PUSH
The other button's text is PUSH

These two class definitions certainly reduce the amount of repetitious code; and they are
easier to read and understand. Ultimately all three approaches appear to produce the same
result. But if you look at the handle numbers I've added along the way (or if you run the
applications with DL.e), you will realise that we have created different entities. It turns out
that these three alternatives are not necessarily interchangeable.

In STEP 21 we created a new button entity in its default state (this became our first button),
and then cloned it (to give us our second button). In some situations this might be exactly
what we need – two separate entities (an "original" and its "copy") representing the default
state, that are initially identical in their properties and methods, but that may differ later on.

Alexander Caracatsanis 81

In STEP 21a we created a new button entity, and then cloned it twice – assigning each clone
to a corresponding button. Again, we ended up with two separate entities; but each is now a
"copy" of an original button entity in its default state.

In STEP 21b we created a new button entity, cloned it once, then assigned it twice. We still
had only one entity (the clone) – it's just that it has been used twice. Sometimes this will be
enough for our needs.

And this discussion will be enough for our needs!

EXCEPTION HANDLING

So far we've avoided dealing with errors that might have occurred during the execution of our
applications. For instance when we asked for user input, we didn't check that it was of the
correct type - we just trusted that it would be.

But in real-world programming we cannot make any such assumptions, so we will need to
anticipate run-time errors - known as exceptions (because they represent the exceptional
scenario; the exception to the rule) - and we will need a way of dealing with them logically and
systematically.

Some run-time errors are fatal - unrecoverable - and nothing can be done to rescue execution;
the program must stop. But sometimes we can prevent a situation becoming irreversible by
empowering our application to issue a warning, or by forcing the user to take corrective action.
There is a range of deliberate decisions we can make about what to do in such circumstances.
Let's consider them one at a time.

STEP 22: DO NOTHING - LET THE LANGUAGE DEAL WITH IT!

Consider the example of trying to divide by zero. We might decide to do nothing other than to
let the language deal with the problem in whatever way it can. We can picture the situation
like this:

For example:

-- DivideByZero.ex v1.0

include get.e

procedure main()
 sequence input
 integer numerator, denominator
 atom answer

 puts(1,"Enter numerator: ") input = get(0) -- enter the number 5
 numerator = input[2]

 puts(1,"\nEnter denominator: ") input = get(0) -- enter the number 0
 denominator = input[2]

code that generates
a runtime error.... program execution CRASH

Alexander Caracatsanis 82

 answer = numerator / denominator

 printf(1,"\nAnswer = %f", answer)
end procedure

main()

If we run this application (with the numbers suggested above) Eu will terminate it abruptly,
and we will see something like this:

attempt to divide by 0
—> see ex.err

We can make the display a little more appealing by doing this:

-- DivideByZero.ex v1.1

include get.e
include machine.e

crash_message("\nAttempt to divide by zero is not allowed.")

procedure main()
 sequence input
 integer numerator, denominator
 atom answer

 puts(1,"Enter numerator: ") input = get(0) -- enter the number 5
 numerator = input[2]
 puts(1,"\nEnter denominator: ") input = get(0) -- enter the number 0
 denominator = input[2]
 answer = numerator / denominator
 printf(1,"\nAnswer = %f", answer)
end procedure

main()

The output will be Attempt to divide by zero is not allowed. - but this is not really an
advance on what we did before.

STEP 22a: RETURN AN ERROR CODE.

Notice that I've passed up the opportunity to check for an input error: I haven't tested the
error-status value represented by the first element of the sequence named input, to verify
that the user didn't do something cheeky - eg enter zero.

Returning error codes from functions is an established method of dealing with errors, but it has
its limitations: there is only so much information that the error-code (usually an integer) can
contain; it can be hard to remember the meaning of each error-code (was it 1? -1? or 0?), and
how to tell the difference between the error and its alternative; and of course ultimately, the
language can't force the programmer to test the error-code.

STEP 22b: COMBINE ERROR-HANDLING CODE WITH THE NORMAL CASE.

As an alternative, we could test the input and inform the user about the error, like this:

Alexander Caracatsanis 83

For example:

-- DivideByZero.ex v1.2

include get.e

procedure main()
 sequence input
 integer numerator, denominator
 atom answer

 puts(1,"Enter numerator: ") input = get(0) -- enter the number 5
 numerator = input[2]

 puts(1,"\nEnter denominator: ") input = get(0)
 denominator = input[2]

 if denominator = 0 then
 puts(1,"\nError - denominator cannot be zero!")
 else
 answer = numerator / denominator
 printf(1,"\nAnswer = %f", answer)
 end if
end procedure

main()

This approach does the job of informing the user about the error, but since the error-testing
code is mixed with the "normal-execution" code, the program can become hard to read,
understand, and update – not here, but in real, complex applications.

STEP 22c: BUNDLE ERROR-HANDLING CODE INTO SEPARATE ROUTINES

Going one step further, we could make our application more readable by bundling the error-
handling code into a routine of its own - for instance:

To give an example:

-- DivideByZero.ex v1.3

include get.e

code that generates
a runtime error.... program execution

routine()
code to fix
the error....

program execution

code that generates
a runtime error.... program execution

code to fix
the error....

Alexander Caracatsanis 84

function nonzero_denominator(object d)
 -- error-handling code: we force user to enter non-zero denominator
 return nonzero_d
end function

procedure main()
 sequence input
 integer numerator, denominator, nonzero
 atom answer

 puts(1,"Enter numerator: ") input = get(0) -- enter the number 5
 numerator = input[2]

 puts(1,"\nEnter denominator: ") input = get(0)
 denominator = input[2]
 nonzero = nonzero_denominator(denominator)

 answer = numerator / nonzero

 printf(1,"\nAnswer = %f", answer)
end procedure

main()

We come to appreciate this manner of coding when we must do a number of error-checks - eg:

-- DivideByZero.ex v1.4

include get.e

function integer_input(object input)
 -- error-handling code: we force user to enter an integer
 return intgr_inpt
end function

function nonzero_denominator(object d)
 -- error-handling code: we force user to enter non-zero denominator
 return nonzero_d
end function

procedure main()
 sequence input
 integer numerator, denominator, int_input, nonzero
 atom answer

 puts(1,"Enter numerator: ") input = get(0) -- enter the number 5
 numerator = input[2]
 int_input = integer_input(numerator)

 puts(1,"\nEnter denominator: ") input = get(0)
 denominator = input[2]
 int_input = integer_input(denominator)
 nonzero = nonzero_denominator(int_input)

 answer = int_input / nonzero

Alexander Caracatsanis 85

 printf(1,"\nAnswer = %f", answer)
end procedure

main()

By choosing our identifiers carefully, we can make our application code clearer, more readable,
and more systematic. But this method has its limits too: it doesn't enforce any kind of system
by which to categorise or organise errors of different types. For example notice that both of
our error-handling routines are mathematical errors (as distinct from, say, file i/o errors or
string errors). In a large project we wouldn't be able to guarantee that the routines containing
error-handling code for different types of errors, were systematically and logically organised.

An OO exception-handling system is designed to address these limitations, and to provide a
system for dealing with a variety of errors. To understand how, we need to take a detour....

A DETOUR: AN INTRODUCTION TO INHERITANCE

Let's begin by remembering that a class is a complex programming element. We've described
it as a "model" of external objects, or as a "blueprint" from which entities may arise, or as a
"data structure" defining relationships between properties and methods; and we've seen how it
can "contain" (or incorporate) other classes within it.

But a class is also a way of classifying objects - of saying that certain entities belong to this or
that category by virtue of having certain characteristics in common. This quality of classes will
prove useful in our attempt to categorise our errors. Consider the following diagram:

Each box represents a class. If we take any one class and follow the lines radiating from it, we
trace a hierarchy. If we take class MathError, for example, we see that it has class AnyError
above it and class ZeroDivide below it. With respect to MathError we can say the following:
Ø AnyError is its superclass or parent class (in fact it's a base class for all errors)
Ø ZeroDivide is its subclass or child class
Ø MathError derives from (or extends) AnyError
Ø ZeroDivide derives from (or extends) MathError
Ø MathError inherits all the properties and methods of AnyError and adds some of its own
Ø ZeroDivide inherits all the properties & methods of MathError and adds some of its own

As it happens, we have been using inheritance already - as early as STEP 7, when we created
InertClass from Entity. Recall the diagram we used then:

AnyError

MathError StringError FileIOError

ZeroDivide NestedSequence FileNotOpen

Alexander Caracatsanis 86

This was a pictorial way of showing that InertClass derived all of the functionality of Entity
(ie three methods; no properties). Another way of representing the relationship is like this:

Every class we have defined so far has been a subclass of Entity, and the syntax that has
launched the process of class creation has been of the form:

[global] constant SubclassName = class(SubclassName, SuperclassName)
 -- where SuperclassName is Entity

If you read through AN ORIENTATION TO DL as well as STEP 1, 2, and 3, you'll be
reminded of another DL base class - Exception. It's a superclass that has no properties or
methods, and it's inherited by any error class that we write. It will help us to organise our class
hierarchy of run-time errors (exceptions), like this:

Another way of depicting it is as follows:

Exception

OtherErrors MathError OtherErrors

ZeroDivide

InertClass
new()
clone()
delete()

Entity
new()
clone()
delete()

NB: I have changed the direction
of the arrow to conform to the
convention that it go from the
subclass to the superclass

InertClass

Entity
new()
clone()
delete()

ZeroDivide

MathError

Exception

Alexander Caracatsanis 87

And the syntax for creating these classes is:

[global] constant MathError = exception(MathError, Exception)
[global] constant ZeroDivide = exception(ZeroDivide,MathError)

This syntax uses the DL routine exception() to enable us to define class MathError as a
subclass of base class Exception, and class ZeroDivide as a subclass of class MathError.
Our next task is to learn how to apply these concepts using DL.

DL's EXCEPTION HANDLING SYSTEM

The DL system for exception handling offers us a certain amount of predefined functionality by
which we can define, name, and systematically categorise exceptions that our application
might encounter, and then offers us explicit alternatives by which we might deal with them.

We can summarise its capabilities as follows:
1. It allows us to identify and name various exceptions, and to categorise them as subclasses

of Exception, or indeed as subclasses of one another. For example referring to the class
hierarchy in the section above, we can represent classes of exceptions as follows:

2. It offers a called method a way of raising an exception – "signalling" to the calling method

or program that a run-time error has been encountered. And correspondingly offers the
calling method or program a systematic approach for clearing ("processing") the error.
Until that's done, the exception will be pending – "waiting to be cleared". Eg:

3. DL will not allow us to have more than one exception pending at a time – there's no point

encountering new errors before we've dealt with the old ones! – so if a new exception is
raised before an old one has been cleared, our program will stop immediately. In addition,
while it's permissible to exit from a method with an exception pending, we can't enter a
new method (where a new error may be encountered) without first clearing the old error.
We can picture it as on the following page:

calling_method()
"OK, we'll deal with it here!"program execution program execution

called_method()
"We've struck an exception here!"

Exception MathError ZeroDivide

Alexander Caracatsanis 88

4. It allows us to choose how we will respond to our exceptions, according to the needs of our

application:
Ø Sometimes we will want our program to stop as soon as a non-recoverable exception is

encountered. We will use the procedure fatal_error() for that, in any program context,
as for example:

Ø Sometimes we won't need to clear an exception, and we won't care which one it is –
we'll only want to know whether or not there is one pending. We can use the function
success() for that, in any context other than class definition. (But note that if an
exception is pending, we won't be able to enter any new methods, or raise any more
exceptions, until it's been processed.) For example:

Ø Before we can deal with an exception, we have to identify it somehow. In any program
context other than class definition, we use the procedure throw() for this – it will set
the current pending exception to the value of the handle of an exception class.

Ø And before we go ahead and process an exception, we'll want to verify that this class is
the pending exception (or that it is a superclass of the pending exception). We use the
function catch() for that, in any program context other than class definition. And once
it has done its job, that exception class no longer has "pending" status.

calling_method()
success()? No – no new
methods; no new errors

program execution program execution

called_method()
"We've struck an exception here!"

calling_method()
fatal_error("Abort program") program execution

called_method()
"We've struck an exception here!"

CRASH

calling_method()
"We should deal with it here!"

called_method()
"We've struck an exception here!"

next_called_method()
"Never mind that exception!"

"Here's a new method."

Alexander Caracatsanis 89

Ø Even so, we may still need to be able to identify the exception that has most recently
been cleared. We can use the function caught(), in any program context other than
class definition, to return the handle of that exception.

Ø Sometimes we'll use catch() to identify the class (or superclass) of a pending
exception – perhaps to do some partial processing at that point – but we won't have
finished clearing the exception. We can use the combination throw(caught()) to
rethrow it – keep it pending – for handling by other procedures and functions. Note that
you still can't call a new method till the error has been fully cleared. For example:

5. It constitutes a system by which one part of our program (eg a called method) can "signal"

to another part of our program (eg the calling method, or the application itself) what is the
situation regarding errors, so that they can be handled in a systematic, logical manner.
This will result in applications that are easier to read, understand, and maintain.

We can now look at how to put these capabilities into practice:
1. First of all we decide what kind of run-time errors (exceptions) we intend to identify and

address, and determine whether they will be irreversible (fatal errors) or recoverable
2. In the file containing our class definition, we define recoverable exceptions as subclasses of

Exception (or one of its subclasses) by calling the DL routine exception(), which takes
two parameters – the name of the new exception, and the name of its superclass – and
returns a reference to the newly-created exception

3. At strategic points in the definition of our methods – where we want to test whether an
error has been encountered – we can do one of two things:
• for fatal errors: add the DL routine fatal_error(), which takes as argument a string

error message, which will be displayed in a console window if that error is encountered
• for non-fatal errors: add the DL routine throw(), which takes as argument the name

of an exception we had previously defined in step 2 above (actually, an expression,
whose value is the handle of the exception class we defined), and makes that class the
pending exception; we include any other code necessary to make the method work
correctly (eg adding an appropriate return value). At run-time the method in which an
exception is thrown will "signal" that an error has been encountered, but it won't
"know" what to do about it – that will be the job of catch().

4. At a corresponding point in our application file – where we want to do something about a
non-fatal error (ie one of our methods has called throw()) – we add the DL routine
catch(), which takes as argument the pending exception or its parent class (actually an

 calling_method()
 if catch() { some processing, throw(caught()) }

 if catch() call foo_1(){ processing, throw(caught()) }
if catch() call foo_2(){ more processing, throw(caught()) }

called_method()
throw()

calling_method()
catch()program execution program execution

called_method()
throw()

Alexander Caracatsanis 90

expression, whose value is the handle of an exception class that was thrown); and we add
the code necessary to handle that exception. In effect, catch() says to DL: "If there is an
error of this type, I'm taking care of it – you can forget about it!". On the other hand, we
won't have to do anything about a fatal error – it will be handled by an abrupt termination
of the application.

The procedure throw() takes (the handle of) an exception as its argument, and makes it the
current, pending exception, that will wait to be processed. If another pending exception
already exists, the program will terminate immediately – you can't keep more than one
exception waiting! The same thing will happen if you call a new method while you have
pending exceptions from other methods. The rule is that you may leave one or more methods
with an exception pending, but you may not enter a new method with an exception pending.

The function catch() works in partnership with the procedure throw(). It takes (the handle
of) an exception as its argument, and asks: "Is this exception class (or any class derived from
it) the current pending exception?". If it is, then it returns TRUE and strips that exception
class (or the class derived from it) of its "current pending" status. Otherwise it returns FALSE,
and makes no changes to the status quo – which could be to leave in existence another
pending exception (for some other invocation of catch() to deal with).

Note that a call to catch(Exception) will process any pending exception, since it's asking: "Is
this class, or any of its derived classes, the pending exception?" – "Yes!", since all exceptions
are subclasses of Exception. Note also that in DL catch() is not a statement (as it is in Java,
for instance) – it's a function that returns a boolean value, which needs to be processed – eg
by an if-else-[elsif] construct. And be aware that it doesn't cause what's called stack unwinding
– it doesn't change the execution path by passing the exception up the chain of called
functions until it finds one that can deal with the error.

Sometimes you need to know if an exception is pending, but don't want to clear it and don't
care what it is. You can check for an exception while leaving it pending, by calling success().
This is a function that takes no parameters, and which returns TRUE if there is no exception
pending, and FALSE if there is an exception pending.

Sometimes you want to catch an exception, and do your method's local cleanup, but rethrow
the exception to signal the error to the method that called yours. The routine caught() is a
function that takes no parameters and returns the last exception that was processed by
catch(). We need it because once catch() has been invoked, it will clear the pending
exception whereas there are situations in which you want to know what was the exact
exception, and do something, but not clear the exception.

I've discussed all this in one place under the one heading, so that you can refer to it from time
to time. Our next task is to make sense of it by studying some simple examples.

STEP 23: HANDLING FATAL ERRORS

Recall STEP 12, where we defined GreetingClass with a parameterised constructor to take a
string greeting as its argument. Let's modify the class definition, to check that the argument
really is a string and, if it's not, to issue a fatal error and terminate the application. Here is
what we could do:

-- GreetingClass.e v1.6

include diamondlite.e

-- check for type string
type string(object text)
 if atom(text) then return FALSE end if

Alexander Caracatsanis 91

 for i = 1 to length(text) do
 if not integer(text [i]) then return FALSE end if
 if text[i] < 32 or text[i] > 255 then return FALSE end if
 end for
 return TRUE
end type

global constant GreetingClass = class("GreetingClass", Entity)
 property("message", INSTANCE, NONE)

 function GreetingClass_new_1(object msg)
 entity newGreeting

 -- if the argument isn't a string, terminate immediately with an error message
 if not string(msg) then
 fatal_error("\nArgument must be a string!")
 end if

 newGreeting = call_method(super(), "new", NONE)
 set_property(newGreeting, "message", msg)
 return newGreeting
 end function
 method("new", 1, CLASS, routine_id("GreetingClass_new_1"))

 function GreetingClass_setMessage_1(object msg)
 -- if the argument isn't a string, terminate; otherwise set the property
 if not string(msg) then
 fatal_error("\nArgument must be a string!")
 else
 set_property(this(), "message", msg)
 end if
 return NIL
 end function
 method("setMessage", 1, INSTANCE, routine_id("GreetingClass_setMessage_1"))

 function GreetingClass_getMessage_0()
 return get_property(this(), "message")
 end function
 method("getMessage", 0, INSTANCE, routine_id("GreetingClass_getMessage_0"))
end_class()

And we could demonstrate how this might work with a modified version of GreetingDemo.ex:

-- GreetingDemo v1.7

include diamondlite.e
include GreetingClass.e

procedure main()
 entity myGreeting
 myGreeting = call_method(GreetingClass, "new", {12})
end procedure

main()

When we try to create a new entity by passing a number (ie 12) instead of a string, we get:

Alexander Caracatsanis 92

FATAL ERROR
Argument must be a string!
In GreetingClass class method new#1 called from main program

We see the error message we coded, and we are told that it has been issued from our class
method new(), which takes 1 parameter (hence #1), which was called by call_method()
during main program context.

STEP 23a: WHEN WE ONLY WANT TO KNOW IF THERE'S A PENDING EXCEPTION

Sometimes all we want to do is find out whether there's an exception pending at this moment
– if there is, we'll know not to call any new methods – but we don't intend to process any
pending exception, and we don't care which exception it is. We can use the function success()
to answer the question: "Have we been successful in avoiding any exceptions so far?". If
TRUE, we can proceed to call new methods. (Since we're looking at this from the point of view
of errors, rather than emphasising being error-free, we usually use this function in the
negative – ie if not success() then <do this> else <continue the program> end if.)

We'll illustrate this aspect of DL's exception-handling system by defining a class which will
allow us to do division (given a valid numerator, and a valid, non-zero denominator), and
display the answer. The program will crash if we enter an invalid character (eg @); if it finds
any other errors – such as a string instead of a number; or a zero denominator – it will tell us
that we've encountered some error somewhere in the program, and that we won't be able to
continue.

We can summarise our task like this:
• prompt and get user's numerator input
• if it's an invalid object (eg an ampersand sign - &)crash the program; otherwise...
• if it isn't a number, make BadInput the pending exception; otherwise...
• accept the input, and...
• prompt and get user's denominator input
• if it's an invalid object (eg a hash sign - #)crash the program; otherwise...
• if it isn't a number, make BadInput the pending exception; otherwise...
• accept the input, and...
• create a new entity, assigning the input values to their respective properties
• calculate (and display) the answer to the division
• if there is a pending exception prevent the program from continuing

One of our first tasks is to define our error classes. I've chosen to do this:
1. a fatal error will be triggered by entering an invalid Eu object
2. a BadInput subclass of Exception, for errors such as entering a string instead of a number
3. a MathError subclass of Exception, for any type of mathematical exception
4. a ZeroDivide subclass of MathError, for a zero denominator

We can display this schematically as follows:

BadInput

Exception

ZeroDivide

MathError

Exception

Alexander Caracatsanis 93

This represents hierarchies of exception classes. Each class ultimately derives functionality
from Exception, but adds something of its own (eg MathError) to be inherited by its
subclasses (eg ZeroDivide).

To make it all work, we'll define a class, Division.e: its constructor will be responsible for
creating an entity if all inputs are correct, and setting the entity's properties; it will have setter
methods (which will check the input); and getter methods for each of the properties and for
the answer to the division.

-- Division.e v1.0

include diamondlite.e
include get.e

without warning

-- define the exception classes
global constant BadInput = exception("BadInput", Exception)
global constant MathError = exception("MathError", Exception)
global constant ZeroDivide = exception("ZeroDivide", MathError)

-- begin defining the class Division
global constant Division = class("Division", Entity)
 property("numerator", INSTANCE, NIL) -- Register two properties,
 property("denominator", INSTANCE, NIL) -- with default values of 0.

 function Division_new_0()
 entity newDivision
 sequence input
 atom numerator, denominator

 puts(1, "\nEnter the numerator: ") input = get(0)

 if (input[1] = GET_FAIL) then -- If invalid input: fatal error
 fatal_error("\nYou entered an invalid Eu object.")
 newDivision = Null_Instance -- don't create an entity.
 elsif sequence(input[2]) then -- If input is a string
 throw(BadInput) -- make this the pending exception
 newDivision = Null_Instance -- don't create an entity.
 else -- Otherwise....
 numerator = input[2] -- accept the numerator.

 puts(1, "\nEnter the denominator: ") input = get(0)

 if (input[1] = GET_FAIL) then
 fatal_error("\nYou entered an invalid Eu object.")
 newDivision = Null_Instance
 elsif sequence(input[2]) then
 throw(BadInput)
 newDivision = Null_Instance
 elsif (input[2] = 0) then -- If denominator is 0 make
 throw(ZeroDivide) -- this the pending exception
 newDivision = Null_Instance -- don't create an entity.
 else -- Accept the denominator, create an entity, & set the properties.
 denominator = input[2]
 newDivision = call_method(super(), "new", NONE)
 set_property(newDivision, "numerator", numerator)

Alexander Caracatsanis 94

 set_property(newDivision, "denominator", denominator)
 end if
 end if

 return newDivision
 end function
 method("new", 0, CLASS, routine_id("Division_new_0"))

 function Division_setNumerator_1(object input) -- similar checks to constructor
 if (input[1] = GET_FAIL) then
 fatal_error("\nYou entered an invalid Eu object.")
 elsif sequence(input[2]) then
 throw(BadInput)
 else
 set_property(this(), "numerator", input[2])
 end if

 return NIL
 end function
 method("setNumerator", 1, INSTANCE, routine_id("Division_setNumerator_1"))

 function Division_setDenominator_1(object input) -- similar checks to constructor
 if (input[1] = GET_FAIL) then
 fatal_error("\nYou entered an invalid Eu object.")
 elsif sequence(input[2]) then
 throw(BadInput)
 elsif (input[2] = 0) then
 throw(ZeroDivide)
 else
 set_property(this(), "denominator", input[2])
 end if

 return NIL
 end function
 method("setDenominator",1,INSTANCE,routine_id("Division_setDenominator_1"))

 function Division_getNumerator_0()
 return get_property(this(), "numerator")
 end function
 method("getNumerator", 0, INSTANCE, routine_id("Division_getNumerator_0"))

 function Division_getDenominator_0()
 return get_property(this(), "denominator")
 end function
 method("getDenominator", 0, INSTANCE,
 routine_id("Division_getDenominator_0"))

 function Division_getAnswer_0()
 atom answer
 -- do the division, and return the quotient
 answer = get_property(this(), "numerator") /
 get_property(this(), "denominator")

 return answer
 end function
 method("getAnswer", 0, INSTANCE, routine_id("Division_getAnswer_0"))
end_class()

Alexander Caracatsanis 95

The corresponding application file, DivisionDemo.ex, will use the syntax not success() at
strategic points, to ascertain whether we can continue execution. If it finds a pending
exception, it will tell us that we can't go on. On its own, it won't be able to tell us which
exception we've encountered – only that there is one – and it won't be able to clear it, either.

-- DivisionDemo.ex v1.0

include Division.e

procedure main()
 entity myDivision
 sequence input

 myDivision = call_method(Division, "new", NONE)
 if not success() then -- Did we succeed in creating a new entity?
 puts(1, "\nThere's an exception somewhere in your program.")
 puts(1, "\nYou won't be able to call any new methods.")
 else -- Yes. Now get the answer, and get a new numerator.
 printf(1, "\nThe answer is %.2f",
 call_method(myDivision, "getAnswer", NONE))

 puts(1, "\nEnter the numerator: ") input = get(0)
 VOID = call_method(myDivision, "setNumerator", {input})
 if not success() then -- Was the numerator OK?
 puts(1, "\nThere's an exception somewhere in your program.")
 puts(1, "\nYou won't be able to call any new methods.")
 else -- Yes. Now get the denominator.
 puts(1, "\nEnter the denominator: ") input = get(0)
 VOID = call_method(myDivision, "setDenominator", {input})
 if not success() then -- Was it OK too?
 puts(1, "\nThere's an exception somewhere in your program.")
 puts(1, "\nYou won't be able to call any new methods.")
 else -- Yes. Now get the answer.
 printf(1, "\nThe answer is %.2f",
 call_method(myDivision, "getAnswer", NONE))
 end if
 end if
 end if
end procedure

main()

Familiarise yourself with the application, running it with different types of input.

STEP 23b: WHEN WE'LL CLEAR WHICHEVER EXCEPTION WE HAPPEN TO CATCH

Sometimes it isn't enough for us to become aware that there's an exception pending – we
want to clear it, so that we can get on with the rest of our program. It mightn't be critical for
us to know exactly which exception we've encountered – perhaps because we'll deal with it in
the same way, whatever error it is.

We can use the syntax catch(Exception) to answer the question: "Is this class, or any of its
subclasses, the pending exception?". Since Exception is at the heart of all exceptions, it will
catch any exception.

Alexander Caracatsanis 96

For example we might decide to define a class of error called BadString which is a subclass of
StringError, which in turn is a subclass of Exception. We could picture the classes like this:

In our class definition file we would call the DL routine exception(), to enable these classes to
inherit from the base class. When we attempt to create a new instance of our GreetingClass,
we would test whether the argument we pass in is a valid string. If it were not, we wouldn't
create a new instance, but we would call throw() to identify the particular error we had
encountered. Assuming that in this application we didn't care which particular error we process
– only that we deal with whatever error we encounter – we would call catch(Exception) to
indicate that fact. We c ould code it like this:

-- GreetingClass.e v1.7

include diamondlite.e

type string(object text)
 if atom(text) then return FALSE end if
 for i = 1 to length(text) do
 if not integer(text [i]) then return FALSE end if
 if text[i] < 32 or text[i] > 255 then return FALSE end if
 end for
 return TRUE
end type

global constant StringError = exception("StringError", Exception)
global constant BadString = exception("BadString", StringError)

global constant GreetingClass = class("GreetingClass", Entity)
 property("message", INSTANCE, NONE)

 function GreetingClass_new_1(object msg)
 entity newGreeting

 if not string(msg) then
 throw(BadString) -- the handle of the exception
 return Null_Instance -- don't create a new entity
 end if

 newGreeting = call_method(super(), "new", NONE)
 set_property(newGreeting, "message", msg)
 return newGreeting
 end function
 method("new", 1, CLASS, routine_id("GreetingClass_new_1"))

 function GreetingClass_setMessage_1(object msg)
 if not string(msg) then
 throw(BadString) -- the handle of the exception

BadString

StringError

Exception

Alexander Caracatsanis 97

 else -- otherwise, go ahead and set the property
 set_property(this(), "message", msg)
 end if
 return NIL
 end function
 method("setMessage", 1, INSTANCE, routine_id("GreetingClass_setMessage_1"))

 function GreetingClass_getMessage_0()
 return get_property(this(), "message")
 end function
 method("getMessage", 0, INSTANCE, routine_id("GreetingClass_getMessage_0"))
end_class()

We will now code our application in such a way that it clears any exception it encounters. As
an extra, however, and in order to give us an opportunity to use a couple of other DL routines,
we will ask our application to tell us the name of the class from which the error derived. We
can do this by using the functions caught() and class_name(). By using them together –
class_name(caught()) – we can answer the question: "What is the name of the class of the
exception that was last cleared by the function catch()?". Here is how we could do it:

-- AnyErrorDemo.ex v1.0

include GreetingClass.e

procedure main()
 entity myGreeting
 myGreeting = call_method(GreetingClass, "new", {12})
 if catch(Exception)then -- if this, or one of its subclasses, is the pending exception
 puts(1, "\nAn instance could not be created!")
 printf(1, "\nThe exception's class name is %s",
 {class_name(caught())})
 else
 printf(1, "\nmyGreeting's property is %s",
 {call_method(myGreeting, "getMessage", NONE)})
 end if
end procedure

main()

When you run this application, you'll get the following output:

An instance could not be created!
The exception's class name is BadString

STEP 23c: WHEN EACH EXCEPTION IS CLEARED IN ITS OWN PARTICULAR WAY

But what if it matters to us (and to the user), what kind of error the application encounters?
Imagine a situation in which a program may begin only if the user enters a particular word –
like a password. In real life: if the password is correct the program will commence; otherwise a
message would be displayed – perhaps Have you forgotten your password? Try again –
and the user would get another chance (say up to a total of three attempts, before being shut
out of the application altogether).

For teaching purposes, let's relax the requirements somewhat. Let's say that the password to
be entered is "BEGIN", and that the user has an unlimited number of attempts to enter it.

Alexander Caracatsanis 98

After each entry the application checks the input for errors, and displays a description of the
kind of error that it found. When the correct password is entered the program displays:

Valid Password – begin the program.

A point form algorithm to achieve these requirements might go as follows:
1. prompt the user to enter the password
2. get the user's input
3. perform a series of checks on the input:

Ø if there was no input (eg user just pressed the <Enter> key)
 display "No Input" and go back to #1
Ø otherwise if the input was invalid (eg entered something other than valid letters)
 display "Invalid Input" and go back to #1
Ø otherwise if the input wasn't the correct word (eg user entered "START")
 display "Incorrect Input" and go back to #1
Ø otherwise
 display "Correct Input" and move on

4. let the program begin

Let's think how we might code this functionality in non-OO Eu first. Here's a first draft:

-- SecurityDemo.ex v1.0

-- All the letters of the alphabet; they make up a valid password
constant VALID_CHARS =
 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"

constant FALSE = 0
constant TRUE = 1

-- A function to test whether a password is valid (but not necessarily correct!)
type valid_string(object x)
 if atom(x) then return FALSE end if -- If it isn't a sequence, then it's invalid!
 for i = 1 to length(x) do -- If any of its letters
 if not find(x[i], VALID_CHARS) then -- isn't a valid character, then
 return FALSE -- the password is invalid.
 end if
 end for
 return TRUE -- If it has passed the tests above, then it must be a valid password.
end type

procedure main()
 sequence pwd

 while 1 do
 puts(1, "\nEnter the password: ")
 pwd = gets(0) pwd = pwd[1..length(pwd)-1] -- remove '\n'

 if length(pwd) = 0 then
 puts(1, "\nNo Input")
 elsif not valid_string(pwd) then
 puts(1, "\nInvalid Input")
 elsif not equal(pwd, "BEGIN") then
 puts(1, "\nIncorrect Input")
 else
 puts(1, "\nCorrect Input")
 exit
 end if

Alexander Caracatsanis 99

 end while
 puts(1, "\nThe program can now begin...")
 -- other method calls and application processing would be placed here
end procedure

main()

Run the application a few times, entering different passwords and noting the erro r messages
until you enter the correct password, at which point the program will stop. Notice that the
error messages are not irrelevant – they matter to you, because (presumably!) you are paying
attention to them and correcting your mistakes.

Our task now is to create a class definition that will incorporate all this functionality. We'll
tackle the errors first. We can think of each of these errors as a type of PasswordError,
inheriting all its attributes and adding others particular to the specific error in question:

And in turn, we can think of PasswordError as a type of Exception, inheriting all its
attributes and adding any others that are particular to PasswordError itself. We can therefore
expect part of the code in our class file to contain the following statements:

-- in *.e

global constant PasswordError = exception("PasswordError", Exception)
global constant NoPassword = exception("NoPassword", PasswordError)
global constant InvalidPassword = exception("InvalidPassword", PasswordError)
global constant WrongPassword = exception("WrongPassword", PasswordError)

We can also expect that the class file will contain code signalling that it has encountered an
error. From what we have seen in STEP 23a, we should expect it to look something like this:

-- in *.e

if <we encounter this condition> then
 throw(NoPassword)
elsif <we encounter that condition> then
 throw(InvalidPassword)
elsif <we encounter another condition> then
 throw(WrongPassword)
else
 <we encounter no error condition>
end if

Correspondingly we should expect our application file to contain code to respond to error
conditions; and we can look at STEP 23b for a clue to the syntax:

PasswordError

NoPassword InvalidPassword WrongPassword

Alexander Caracatsanis 100

-- in *.ex

if catch(NoPassword) then
 <do this thing>
elsif catch(InvalidPassword) then
 <do that thing>
elsif catch(WrongPassword) then
 <do another thing>
else
 <do what should be done if no error was encountered>
end if

To help us put these ideas together, let us design a class whose constructor becomes
responsible for getting the user's input, checking it for one of the errors above, and bringing it
to the attention of the application so that it can deal with the problem. Only when there is no
error will the constructor create a new entity – otherwise it will create only a Null_Instance.
Here is one way of coding the class definition file:

-- SecureClass.e v1.0

-- create subclasses of PasswordError, whose parent class is Exception
global constant PasswordError = exception("PasswordError", Exception)
global constant NoPassword = exception("NoPassword", PasswordError)
global constant InvalidPassword = exception("InvalidPassword", PasswordError)
global constant WrongPassword = exception("WrongPassword", PasswordError)

constant VALID_CHARS =
 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"

type valid_string(object x)
 if atom(x) then return FALSE end if
 for i = 1 to length(x) do
 if not find(x[i], VALID_CHARS) then
 return FALSE
 end if
 end for
 return TRUE
end type

-- class definition for SecureClass
global constant Secure = class("Secure", Entity)
 property("password", INSTANCE, NONE)

 function Secure_new_0()
 entity newSecure
 sequence pwd

 -- we get the user's input
 puts(1, "\nEnter the password: ")
 pwd = gets(0) pwd = pwd[1..length(pwd)-1]

 -- and test it for errors; we create an entity only if there are no errors
 if length(pwd) = 0 then
 throw(NoPassword)
 newSecure = Null_Instance
 elsif not valid_string(pwd) then
 throw(InvalidPassword)

Alexander Caracatsanis 101

 newSecure = Null_Instance
 elsif not equal(pwd, "BEGIN") then
 throw(WrongPassword)
 newSecure = Null_Instance
 else
 newSecure = call_method(super(), "new", NONE)
 set_property(newSecure, "password", pwd)
 end if

 return newSecure
 end function
 method("new", 0, CLASS, routine_id("Secure_new_0"))
end_class()

The corresponding application file could then be as follows:

-- SecurityDemo.ex v1.1

include diamondlite.e
include SecureClass.e

procedure main()
 entity mySecure

 while 1 do
 -- call the constructor each time to get and test input
 -- if find an error, call constructor all over again
 -- stop calling when correct password is entered
 mySecure = call_method(Secure, "new", NONE)

 if catch(NoPassword) then
 puts(1, "\nNo Input")
 elsif catch(InvalidPassword) then
 puts(1, "\nInvalid Input")
 elsif catch(WrongPassword) then
 puts(1, "\nIncorrect Input")
 else
 puts(1, "\nCorrect Input")
 exit
 end if
 end while
 puts(1, "\nThe program can now begin...")
 -- other method calls and application processing would be placed here
end procedure

main()

Run the application several times, to confirm that you get the error messages that correspond
to your input.

STEP 23d: AN EXTENSION EXERCISE

We can introduce a slightly more realistic feel to the behaviour of our application, and at the
same time experiment with our code a little more. Let's say that we will give the user a
maximum of three attempts to enter the correct password – after that, the program will
automatically abort. We can preserve the basic structure of our code, making a couple of
modifications:

Alexander Caracatsanis 102

-- code outline in *.ex

for i = 1 to max_attempts do
 -- initial statements, eg a method call
 if <catch an exception> then
 <deal with it>
 elsif <catch another exception> then
 <deal with that too>
 else
 <no exception to process>
 exit -- the loop
 end if

 if i = max_attempts then
 return – from the procedure; end of program
 end if
end for
-- continue with rest of program

We can use this outline to modify SecurityDemo.ex as follows:

-- SecurityDemo.ex v1.2

include diamondlite.e
include SecureClass.e

constant MAX_ATTEMPTS = 3 -- give user up to 3 attempts

procedure main()
 entity mySecure

 for counter = 1 to MAX_ATTEMPTS do
 mySecure = call_method(Secure, "new", NONE)

 if catch(NoPassword) then
 puts(1, "\nNo Input")
 elsif catch(InvalidPassword) then
 puts(1, "\nInvalid Input")
 elsif catch(WrongPassword) then
 puts(1, "\nIncorrect Input")
 else
 puts(1, "\nCorrect Input")
 exit
 end if

 if counter = MAX_ATTEMPTS then
 puts(1, "\nLogin failure – abort program")
 return -- from the procedure; end the program
 end if
 end for
 puts(1, "\nThe program can now begin...")
 -- other method calls and application processing would be placed here
end procedure

main()

Alexander Caracatsanis 103

Run the application again, and confirm that it behaves as it did before.

STEP 23e: RETHROWING EXCEPTIONS

We can now take this opportunity to bring together some of the ideas we've already discussed
while we have a look at a very simple example of rethrowing exceptions.

Sometimes we catch an exception, but for one reason or another we don't want to clear it just
yet – perhaps the current method needs to do some local processing and still keep the
exception pending so that it can make its caller aware of it. The problem with using catch() on
its own, is that it will automatically clear the exception. In DL we can use throw(caught()) to
allow us to throw() (again) the last exception (ie caught()) that was processed by catch().

To illustrate how to do this, we will suppose that we need an application to get from the user a
non-zero, positive integer. Let's say that if the user enters something totally invalid – or for
that matter a string or a zero (0) – that the program crashes, or at least fails to create an
entity or proceed any further. But let's also say that the program tries to help the user a bit:
• if a negative integer is entered, the program replaces it with a (positive) absolute value,

and uses that value instead; eg -3 becomes 3
• if a floating point number is entered, the program does one of two things:

Ø if a negative float is entered, the program rounds it to the closest positive integer (1)
and uses that value instead; eg -3.2 becomes 1

Ø if a positive (non-zero) float is entered, the program rounds it up or down to the
nearest non-zero integer and uses that value instead; eg 0.2 becomes 1; 0.7 becomes
1; 1.3 becomes 1; 1.6 becomes 2

Let's say the class has a single property called "inputNum", and that the class constructor will
be responsible for getting and checking the user's input, and creating a new entity according to
the above conditions. The class will contain two methods – "setNumber" and "getNumber".

We can outline the definition for an InputCheck class as follows:

-- InputCheck.e v1.0

include diamondlite.e
include get.e

global constant Input = class("Input", Entity)
 property("inputNum", INSTANCE, NIL)

 function Input_new_0()
 entity newInput
 -- <code>
 return newInput
 end function
 method("new",0,CLASS,routine_id("Input_new_0"))

 function Input_setNumber_1(object in)
 -- <code>
 return NIL
 end function
 method("setNumber",1,INSTANCE,routine_id("Input_setNumber_1"))

 function Input_getNumber_0()
 return get_property(this(), "inputNum")
 end function

Alexander Caracatsanis 104

 method("getNumber",0,INSTANCE,routine_id("Input_getNumber_0"))

end_class()

Now let's consider a hierarchy of errors that our class might need to define. I've chosen to
create two broad classes of exception – BadInput, and BadNumber. BadInput has two
subclasses – InvalidInput (for rubbish input) and StringInput (for a string input in place of a
number) – and BadNumber has three subclasses: Zero (for input of 0); Float (for input of a
float); and NegativeInt (for input of a negative integer). They all have Exception as their
"ultimate" superclass.

We can now consider how to raise these exceptions. Below is an outline of an algorithm I've
chosen to implement:

if (user enters an invalid character) then
 <tell caller that an InvalidInput exception has been encountered>
 <don't create a new entity>
otherwise if (user enters a string) then
 <tell caller that a StringInput exception has been encountered>
 <don't create a new entity>
otherwise if (user enters a 0) then
 <tell caller that a Zero exception has been encountered>
 <don't create a new entity>
otherwise
 <create a new entity>
 <set its property to the value of the input>
 if (the input is not an integer) then
 <tell caller that a Float exception has been encountered>
 otherwise if (the input is a negative integer) then
 <tell caller that a NegativeInt exception has been encountered>
 end if
end if

I'll bypass discussing it here, and move on to present an outline of an algorithm to handle
these exceptions, using rethrowing:

if (encounter any kind of BadInput exception) then
 <warn user>
 (rethrow whichever exception has been encountered)
end if

if (it is an InvalidInput exception) then
 <fatal error: crash the program>
otherwise if (it is a StringInput exception) then
 <tell the user about it>
end if

Exception

BadInput BadNumber

InvalidInput StringInput Zero Float NegativeInt

Alexander Caracatsanis 105

if <encounter any kind of BadNumber exception> then
 <warn the user>
 (rethrow whichever exception has been encountered)
otherwise
 <tell the user that input was fine and needed no correction>
 <get value of the property>
end if

if (it is a ZeroException) then
 <tell the user that no entity was created>
otherwise if (it is a Float exception) then
 <tell the user>
 <get the value of the property>
 <if it's negative, round it up to 1>
 <otherwise round it up or down to the nearest integer larger than 1>
 <reset the property to the new value>
otherwise if (it is a NegativeInt exception) then
 <tell the user>
 <get the value of the property>
 <get its absolute value>
 <reset the property to the new value>
end if

The really important concept here is that we can throw an exception – eg by way of its
superclass – and then catch it somewhere else; but that instead of processing the exception
then and there, we do one or two things and rethrow the exception for clearing somewhere
else.

We can now look at the full class definition, comparing the code against the outlines above:

-- InputCheck.e v1.0

include diamondlite.e
include get.e

global constant BadInput = exception("BadInput", Exception)
global constant InvalidInput = exception("InvalidInput", BadInput)
global constant StringInput = exception("StringInput", BadInput)
global constant BadNumber = exception("BadNumber", Exception)
global constant Zero = exception("Zero", BadNumber)
global constant Float = exception("Float", BadNumber)
global constant NegativeInt = exception("NegativeInt", BadNumber)

global constant Input = class("Input", Entity)
 property("inputNum", INSTANCE, NIL)

 function Input_new_0()
 entity newInput
 sequence in

 puts(1,"\nEnter a positive, non-zero integer: ") in = get(0)

 if (in[1] = GET_FAIL) then
 throw(InvalidInput)
 newInput = Null_Instance
 elsif (sequence(in[2])) then
 throw(StringInput)

Alexander Caracatsanis 106

 newInput = Null_Instance
 elsif (in[2] = 0) then
 throw(Zero)
 newInput = Null_Instance
 else
 newInput = call_method(super(), "new", NONE)
 set_property(newInput, "inputNum", in[2])

 if not integer(in[2]) then
 throw(Float)
 elsif (in[2] < 0) then
 throw(NegativeInt)
 end if
 end if
 return newInput
 end function
 method("new", 0, CLASS, routine_id("Input_new_0"))

 function Input_setNumber_1(object in)
 set_property(this(), "inputNum", in)
 return NIL
 end function
 method("setNumber", 1, INSTANCE, routine_id("Input_setNumber_1"))

 function Input_getNumber_0()
 return get_property(this(), "inputNum")
 end function
 method("getNumber", 0, INSTANCE, routine_id("Input_getNumber_0"))
end_class()

And we can examine the application file, again comparing it against the outlines above:

-- RethrowDemo.ex v1.0

include InputCheck.e

procedure main()
 entity myEntity
 atom input

 myEntity = call_method(Input, "new", NONE)
 if catch(BadInput) then
 puts(1,"\nWarning: your input is incorrect!")
 throw(caught())
 end if

 if catch(InvalidInput) then
 fatal_error("You did not enter a valid Eu object. The program will close now.")
 return
 elsif catch(StringInput) then
 puts(1,"\nYou entered a string. An entity was not be created.")
 return
 end if

 if catch(BadNumber) then
 puts(1,"\nYou entered a number, but it was not quite right.")
 throw(caught())

Alexander Caracatsanis 107

 else
 printf(1,"\nYou entered correctly." &
 "\nAn entity was created." &
 "\nIts property was set at %d",
 call_method(myEntity, "getNumber", NONE))
 end if

 if catch(Zero) then
 puts(1,"\nYou entered zero. An entity was not created.")
 elsif catch(Float) then
 puts(1,"\nYou entered a floating point number.")
 input = call_method(myEntity, "getNumber", NONE)
 if (input < 0) then
 input = 1
 printf(1,"\nIt was a negative number." &
 "\nIts closest positive integer is %d", input)
 else
 input = floor(input)
 if (input = 0) then
 input += 1
 elsif (remainder(input,10) >= 5) then
 input += 1
 end if
 printf(1,"\nIts closest positive integer is %d", input)
 end if

 VOID = call_method(myEntity, "setNumber", {input})
 printf(1,"\nAn entity was created." &
 "\nIts property was set at %d",
 call_method(myEntity, "getNumber", NONE))
 elsif catch(NegativeInt) then
 puts(1,"\nYou entered a negative integer.")
 input = - (call_method(myEntity, "getNumber", NONE))
 printf(1,"\nIts absolute value is %d", input)
 VOID = call_method(myEntity, "setNumber", {input})
 printf(1,"\nAn entity was created." &
 "\nIts property was set at %d",
 call_method(myEntity, "getNumber", NONE))
 end if
end procedure

main()

STEP 24: A FULL CLASS DEFINITION, COMPLETE WITH EXCEPTIONS

We should now be able to write a fully functional class definition, complete with exceptions. I
couldn't do any better than to include this code by Michael Nelson. It's a reworking of Product
Class from STEP 16, renamed to IntMath. As an extension exercise, you might like to write
your own application to use this class. Note that it defines two broad exception classes –
TypeCheckFailure, and MathError – and that the latter class is a superclass for two other
classes: ZeroDivide, and Overflow. We can represent them as on the following page:

Alexander Caracatsanis 108

The class IntMath, has two instance properties, "first" and "second" (which are initially set to
0), and uses the automatic default constructor, destructor, and clone methods. It has methods
to set and get each property, and methods to carry out the arithmetic operations sum,
difference, product, quotient, and remainder. The setter methods test input, and throw a
TypeCheckFailure exception if they detect something other than an integer. The "calculator"
methods test the answers they derive, and throw an Overflow exception if they detect
something other than an integer. The Quotient method also tests the divisor, and throws a
ZeroDivide exception if it detects 0. Notice that the Quotient and the Remainder methods test
for two exceptions each.

-- Class: IntMath
-- input two integers, and calculate and display their IntMath

include diamondlite.e

global constant TypeCheckFailure = exception("TypeCheckFailure", Exception)
global constant MathError = exception("MathError", Exception)
global constant ZeroDivide = exception("ZeroDivide", MathError)
global constant Overflow = exception("Overflow", MathError)

global constant IntMath = class("IntMath", Entity)
 property("first", INSTANCE, 0)
 property("second" , INSTANCE, 0)

 function IntMath_setFirst_1(object n1)
 if integer(n1) then
 set_property(this(), "first", n1)
 else
 throw(TypeCheckFailure)
 end if

 return NIL
 end function
 method("setFirst", 1, INSTANCE, routine_id("IntMath_setFirst_1"))

 function IntMath_setSecond_1(object n2)
 if integer(n2) then
 set_property(this(), "second", n2)
 else
 throw(TypeCheckFailure)
 end if

 return NIL
 end function
 method("setSecnd", 1, INSTANCE, routine_id("IntMath_setSecond_1"))

TypeCheckFailure

Exception

ZeroDivide

MathError

Exception

Overflow

MathError

Exception

Alexander Caracatsanis 109

 function IntMath_getFirst_0()
 return get_property(this(), "first")
 end function
 method("getFirst", 0, INSTANCE, routine_id("IntMath_getFirst_0"))

 function IntMath_getSecond_0()
 return get_property(this(), "second")
 end function
 method("getSecond", 0, INSTANCE, routine_id("IntMath_getSecond_0"))

 function IntMath_Sum_0()
 atom sum

 sum = get_property(this(), "first") + get_property(this(), "second")
 if not integer(sum) then
 throw(Overflow)
 return 0
 end if

 return sum
 end function
 method("Sum", 0, INSTANCE, routine_id("IntMath_Sum_0"))

 function IntMath_Difference_0()
 atom diff

 diff = get_property(this(), "first") - get_property(this(), "second")
 if not integer(diff) then
 throw(Overflow)
 return 0
 end if

 return diff
 end function
 method("Difference", 0, INSTANCE, routine_id("IntMath_Difference_0"))

 function IntMath_Product_0()
 atom prod

 prod = get_property(this(), "first") * get_property(this(), "second")
 if not integer(prod) then
 throw(Overflow)
 return 0
 end if

 return prod
 end function
 method("Product", 0, INSTANCE, routine_id("IntMath_Product_0"))

 function IntMath_Quotient_0()
 integer second
 atom quot

 second = get_property(this(), "second")
 if second = 0 then
 throw(ZeroDivide)
 return 0

Alexander Caracatsanis 110

 end if

 quot = get_property(this(), "first") / second
 if quot<0 then
 quot = -floor(-quot)
 else
 quot = floor(quot)
 end if

 if not integer(quot) then
 throw(Overflow)
 return 0
 end if

 return quot
 end function
 method("Quotient", 0, INSTANCE, routine_id("IntMath_Quotient_0"))

 function IntMath_Remainder_0()
 integer second
 atom rem

 second = get_property(this(),"second")
 if second = 0 then
 throw(ZeroDivide)
 return 0
 end if

 rem = remainder(get_property(this(), "first"), second)
 if not integer(rem) then
 throw(Overflow)
 return 0
 end if

 return rem
 end function
 method("Remainder", 0, INSTANCE, routine_id("IntMath_Remainder_0"))
end_class()

In your application file, the code for calling the setter methods will need to look something like
this:

 VOID = call_method(className, methodName, {argument})
 if catch(TypeCheckFailure) then
 -- code to handle the error
 else
 -- code to continue with program
 end if

The code for calling the methods that do the calculations – except for the methods quotient()
and remainder() – will look something like this:

 VOID = call_method(className, methodName, NONE)
 if catch(Overflow) then
 -- code to handle the error
 else

Alexander Caracatsanis 111

 -- code to continue with program
 end if

The code for calling the last two methods could be a bit different, since there are two errors to
be tested. For instance you might decide to test for MathError, which will return TRUE whether
Overflow or ZeroDivide is encountered, and then rethrow the exception to handle it explicitly.
For instance:

 VOID = call_method(className, methodName, NONE)
 if catch(MathError) then
 -- do some local cleanup
 -- perhaps even stop execution
 throw(caught()) -- rethrow the error: either ZeroDivide or Overflow
 end if

 if catch(ZeroDivide) then
 -- code to handle this error
 elsif catch(Overflow) then
 -- code to handle this error
 else
 -- code to continue with program
 end if

This section has given us lots of opportunities to think about classes and the way they are
inherited. Indeed this is the topic of our final chapter.

INHERITANCE

Dealing with exceptions has given us an opportunity to discuss the concept of inheritance, and
the idea that we can structure our classes in a hierarchy based on the relationship between
their classes. In fact we've touched on inheritance almost from the beginning of this Guide. We
can now consolidate what we've learnt, and add one or two more topics that will finish off our
introductory learning.

At its heart, inheritance refers to a capability offered to us by the OO approach – the ability to
take what's already available in a fully-functional stand-alone class, and make that the "core"
of a new, more specialised, more extended class that has certain unique qualities of its own.
The "extended" class therefore is a form of the "core" class – usually with upgraded, additional
features. (Note that the "core" class doesn't lose any of its functionality – it remains fully
serviceable, and may even be the preferred class to use in some situations.) Because of this
relationship between the "core" and the "extended" class, it becomes possible for us to create
a well-structured, hierarchical category of classes that have a logical relationship to one
another.

Note that we have already met situations in which one class was incorporated into the design
of another (look at the section called A FIRST LOOK AT COMPOSITION), but that was
different: the two classes were fundamentally separate, and there was no "core" / "extension"
relationship between them – one class simply had the other class within it. Those classes could
not form a logically related category of entities.

Recall that the inherited class (from which another class inherits functionality) is known as a
superclass or parent class or base class, and that the inheriting class is known as a subclass or
child class or derived class. And recall that we can represent the relationship between them
schematically in various ways - eg:

Alexander Caracatsanis 112

In DL each class that we define may have only one superclass. Moreover a subclass is
potentially allowed access to all the properties and methods available to its corresponding
superclass – but the superclass doesn't know about any extra properties or methods available
in the subclass. Note that this access is not automatic, at least for properties (remember that
in DL all properties are private by default) – the superclass must have accessor methods
(which in DL are public by default) to allow such access. All the superclass' methods will be
public and therefore accessible. Sometimes that's just what we want. When we don't want
them to be accessible, we can use NULL_METHOD to do nothing and return NIL. (See
GenericClass.e in A RECAP AND A LOOK AHEAD... after STEP 17b.)

Now might be a good time to have another look at APPENDIX: DL's CLASS SYSTEM, to
remind yourself how the classes we write inherit from DL's predefined classes. Reading
through INTRODUCTORY CONCEPTS will remind you how entities are created and
referenced. And a read through AN INTRODUCTION TO INHERITANCE (in the chapter
called EXCEPTION HANDLING) will remind you about class hierarchies.

Armed with this background, we can now go about implementing inheritance in our own
normal classes.

STEP 25: A CHILD CLASS INHERITING FROM ITS PARENT CLASS

The simplest thing we can do is to create a child class that inherits from its parent class. We
have already done something similar several times before – eg in creating Inert Class from
Entity. (In fact this might be a good time to look through STEPs 7ff, to understand the
process from the point of view of inheritance.) We will now go one step further, to create a
Parent Class (that inherits from Entity), and a Child Class (that inherits from Parent). We
can picture our task as on the following page:

SuperClass

SubClass

SuperClass

SubClass

SubClass

SuperClass

Alexander Caracatsanis 113

Here is the minimal class definition that will mediate this functionality:

-- ParentClass v1.0

global constant Parent = class("Parent", Entity)
 -- other code can go here
end_class()

-- ChildClass v1.0

global constant Child = class("Child", Parent)
 -- other code can go here
end_class()

And here is an application file that will use the inherited automatic constructor and destructor
to create and then decommission an instance of Child:

-- ChildDemo.ex v1.0

include diamondlite.e -- or in our case: DL.e
include ParentClass.e
include ChildClass.e

procedure main()
 entity myChild
 myChild = call_method(Child, "new", NONE)
end procedure

main()

Run the application with DL.e, and confirm that we have created the class Parent (whose
handle is {4,0,M}), the class Child (whose handle is {5,0,M}), and the entity myChild (with
handle {5,2,M}). Notice that the superclass is created first, and then the subclass. Notice the
syntax that makes inheritance possible (and recall that we used a similar approach when we
defined our exception classes):

global constant Parent = class("Parent", Entity) -- Parent inherits from Entity

global constant Child = class("Child", Parent) -- Child inherits from Parent

Child

Parent

Entity
new()
clone()
delete()

Alexander Caracatsanis 114

Parent has inherited all the methods of Entity, and Child stands to inherit all the properties
and methods available to Parent. Note that we haven't created a new instance of Parent –
only of Child (viz myChild)

STEP 25a: A CHILD CLASS INHERITING ITS PARENT'S PROPERTY

The very next thing we can do is to add a property to Parent and code an accessor method
with which to get it:

-- ParentClass v1.1

global constant Parent = class("Parent", Entity)
 property("parentAge", INSTANCE, 100)

 function Parent_getAge_0()
 return get_property(this(), "parentAge")
 end function
 method("getAge", 0, INSTANCE, routine_id("Parent_getAge_0"))
end_class()

We can keep Child just as it is, and modify ChildDemo.ex to display the property's value:

-- ChildDemo.ex v1.1

include DL.e
include ParentClass.e
include ChildClass.e

procedure main()
 entity myChild

 myChild = call_method(Child, "new", NONE)
 printf(1, "\nEX: child's parent's age is %d",
 call_method(myChild, "getAge", NONE))
end procedure

main()

When we run this application we are be able to confirm that by calling getAge() on myChild,
we have been able to access the value of the property in Parent – ie, we have achieved the
purpose that would have been achieved by calling getAge() on an instance of Parent, without
explicitly creating that instance. Speaking loosely, it's as if we've been able to "get to"
something in Parent, "through" Child. (This is what inheritance permits us to do, that we
couldn't do using composition, which we studied earlier.) We can represent our current position
as on the following page:

Alexander Caracatsanis 115

STEP 25b: A METHOD IN CHILD CLASS OVERRIDING A METHOD IN PARENT CLASS

We can now go one step further. Assuming that Child inherits from Parent, how would we go
about coding a situation in which class Child had a property (eg childAge) similar to that of
Parent (ie parentAge), and we needed to access childAge by calling method getAge()? In
other words we are looking to override Parent.getAge() with Child.getAge() – ie:

The solution will involve overriding one method by another, and it will be achieved by coding
two methods with the same signature. Now might be a good time to read through the section
called OVERRIDING METHODS (after STEP's 7 and 8), to remind yourself about the basic
ideas.

In our present case we would keep ParentClass.e just as it is (ie v1.1), and modify
ChildClass.e as follows:

-- ChildClass v1.1

global constant Child = class("Child", Parent)
 property("childAge", INSTANCE, 50)

 function Child_getAge_0()
 return get_property(this(), "childAge")
 end function
 method("getAge", 0, INSTANCE, routine_id("Child_getAge_0"))
end_class()

 Child

childAge
getAge()

Parent
parentAge
getAge()

Entity

mmmyyyCCChhhiiilllddd

Child

Parent

parentAge
getAge()

Entity
new()
clone()
delete()

mmmyyyCCChhhiiilllddd

Alexander Caracatsanis 116

We would then alter the application file as follows:

-- ChildDemo.ex v1.2

include diamondlite.e -- in our case: DL.e
include ParentClass.e
include ChildClass.e

procedure main()
 entity myChild

 myChild = call_method(Child, "new", NONE)
 printf(1, "\nEX: child's age is %d",
 call_method(myChild, "getAge", NONE))
end procedure

main()

Confirm that ChildDemo.ex v1.1 and v1.2 are (essentially) identical – they just return a
different value because of overriding of the method getAge().

You might be wondering how we would access the values of both properties in the one
application. We already know how to create a new entity of each class separately (ie
myParent and myChild), and how to call myParent.getAge() and myChild.getAge()
independently – well, we would just do that! In other words:

-- ChildDemo.ex v1.3

include diamondlite.e -- in our case: DL.e
include ParentClass.e
include ChildClass.e

procedure main()
 entity myParent, myChild

 myParent = call_method(Parent, "new", NONE)
 myChild = call_method(Child, "new", NONE)

 printf(1, "\nEX: parent's age is %d",
 call_method(myParent, "getAge", NONE))
 printf(1, "\nEX: child's age is %d",
 call_method(myChild, "getAge", NONE))
end procedure

main()

Run the application to confirm that we have created two separate entities (they have different
handles), and that we can specify which getAge() method we want to use by specifying its
target. We can represent what we've done as on the following page:

Alexander Caracatsanis 117

STEP 25c: INHERITANCE INVOLVING PARAMETERISED CONSTRUCTORS

So far each of our classes has had a property whose value was hard-coded in the class
definition. We would like to have the option of creating entities in which we could set these
properties ourselves – either hard-coded within the application, or by way of user input. To
achieve this, we will need to use parameterised constructors. (Now might be a good time to
revise STEP 12, where we developed GreetingClass.)

First we would need to change Parent as follows:

-- ParentClass v1.2

global constant Parent = class("Parent", Entity)
 property("parentAge", INSTANCE, NIL)

 function Parent_new_1(integer p_age)
 entity newParent

 newParent = call_method(super(),"new",NONE)
 set_property(newParent, "parentAge", p_age)
 return newParent
 end function
 method("new", 1, CLASS, routine_id("Parent_new_1"))

 function Parent_getAge_0()
 return get_property(this(), "parentAge")
 end function
 method("getAge", 0, INSTANCE, routine_id("Parent_getAge_0"))
end_class()

And then we would need to change Child accordingly, like this:

-- ChildClass v1.2

global constant Child = class("Child", Parent)
 property("childAge", INSTANCE, NIL)

 function Child_new_2(integer p_age, integer c_age)
 entity newChild

 newChild = call_method(super(),"new",{p_age})

 Child

childAge
getAge()

Parent
parentAge
getAge()

Entity

mmmyyyCCChhhiiilllddd

mmmyyyPPPaaarrreeennnttt

Alexander Caracatsanis 118

 set_property(newChild, "childAge", c_age)
 return newChild
 end function
 method("new", 2, CLASS, routine_id("Child_new_2"))

 function Child_getAge_0()
 return get_property(this(), "childAge")
 end function
 method("getAge", 0, INSTANCE, routine_id("Child_getAge_0"))
end_class()

Notice the line newChild = call_method(super(),"new",{p_age}) It means the following:
"Call the method new() on the current entity's (ie Child) superclass (ie Parent), passing as
argument the (integer) value p_age, and when you've done all that return the reference to
the new entity (newChild)." In executing this statement, control will pass to the function
identified as Parent_new_1 (which takes one integer parameter), where the following will be
executed: newParent = call_method(super(),"new",NONE) This will mean the following:
"Call the method new() on the current entity's (ie Parent) superclass (ie Entity), passing no
argument, and when you've done all that return a reference to the new entity (newParent)."
In addition before returning from each constructor in turn, each function will see to it that the
value of the property is set to the value of the corresponding argument.

To see how this will work, let's modify the application file accordingly:

-- ChildDemo.ex v1.4

include diamondlite.e -- in our case: DL.e
include ParentClass.e
include ChildClass.e

procedure main()
 entity myParent, myChild

 myParent = call_method(Parent, "new", NONE)
 myChild = call_method(Child, "new", {100, 50})

 printf(1, "\nEX: parent's age is %d",
 call_method(myParent, "getAge", NONE))
 printf(1, "\nEX: child's age is %d",
 call_method(myChild, "getAge", NONE))
end procedure

main()

Run the application with DL.e, trace the execution of the program, and look at the handles to
the various entities. Notice that myParent = call_method(Parent, "new", NONE) calls the
automatic default constructor, passing no arguments to it, and therefore creating an entity
whose parentAge property is initially set at 0. When the next statement is executed – a call
to Child.new(), passing two arguments (the first [100] going to Parent's property, and the
second [50] going to Child's property as described previously) – the new entity will have
access to a new value for Parent's property.

But be careful: notice that a call to myParent.getAge() doesn't yield a result of 100 – it
returns 0, the default value. This reminds us that myParent and myChild are two separate
entities, even though the latter inherits from the same class as the former. So each entity has
a different value for parentAge – 0 for myParent. parentAge,

Alexander Caracatsanis 119

 and 100 for myChild. parentAge

What's more, we can't access that property via a call to myChild.getAge(), because this
method overrides the similarly-named method in myParent. In order for us to have access to
both properties from within an entity of the subclass, we will have to restructure the code in
the class definition.

One obvious thing we can do is to give the getter methods different names. For example we
can do this:

-- ParentClass v1.3

global constant Parent = class("Parent", Entity)
 property("parentAge", INSTANCE, NIL)

 function Parent_new_1(integer p_age)
 entity newParent

 newParent = call_method(super(),"new",NONE)
 set_property(newParent, "parentAge", p_age)
 return newParent
 end function
 method("new", 1, CLASS, routine_id("Parent_new_1"))

 -- change the name of the method to getParentAge()
 function Parent_getParentAge_0()
 return get_property(this(), "parentAge")
 end function
 method("getParentAge", 0, INSTANCE, routine_id("Parent_getParentAge_0"))
end_class()

-- ChildClass v1.3

global constant Child = class("Child", Parent)
 property("childAge", INSTANCE, NIL)

 function Child_new_2(integer p_age, integer c_age)
 entity newChild

 newChild = call_method(super(),"new",{p_age})
 set_property(newChild, "childAge", c_age)
 return newChild
 end function
 method("new", 2, CLASS, routine_id("Child_new_2"))

 -- change the name of the method to getChildAge()
 function Child_getChildAge_0()
 return get_property(this(), "childAge")
 end function
 method("getChildAge", 0, INSTANCE, routine_id("Child_getChildAge_0"))
end_class()

-- ChildDemo.ex v1.5

include diamondlite.e -- in our case: DL.e
include ParentClass.e

Alexander Caracatsanis 120

include ChildClass.e

procedure main()
 entity myParent, myChild

 myParent = call_method(Parent, "new", NONE)
 myChild = call_method(Child, "new", {100, 50})

 puts(1, "\nEx: In myParent:")
 printf(1, "\nEX: parent's age is %d",
 call_method(myParent, "getParentAge", NONE))
 puts(1, "\n\nEx: In myChild:")
 printf(1, "\nEX: parent's age is %d",
 call_method(myChild, "getParentAge", NONE))
 printf(1, "\nEX: child's age is %d",
 call_method(myChild, "getChildAge", NONE))
end procedure

main()

An alternative is to create another additional method, getAge#1 (ie getAge(parameter)),
and make it responsible for "choosing" the correct age. We would keep ParentClass v1.2, and
modify ChildClass v1.2 as follows:

-- ChildClass v1.4

global constant Child = class("Child", Parent)
 property("childAge", INSTANCE, NIL)

 function Child_new_2(integer p_age, integer c_age)
 entity newChild

 newChild = call_method(super(),"new",{p_age})
 set_property(newChild, "childAge", c_age)
 return newChild
 end function
 method("new", 2, CLASS, routine_id("Child_new_2"))

 function Child_getAge_0()
 return get_property(this(), "childAge")
 end function
 method("getAge", 0, INSTANCE, routine_id("Child_getAge_0"))

 function Child_getAge_1(object whichMethod)
 if equal(whichMethod, "self") then
 return call_method(this(), "getAge", NONE)
 elsif equal(whichMethod, "parent") then
 return call_method(super(), "getAge", NONE)
 else
 fatal_error("\nFatal Error: invalid parameter")
 end if
 end function
 method("getAge", 1, INSTANCE, routine_id("Child_getAge_1"))
end_class()

Any program or method that calls myChild.getAge() will now have an option:

Alexander Caracatsanis 121

1. if it does not pass an argument to the method, then the getAge#0 method will execute,
and the child's age will be returned

2. if it does pass an argument to the method, then the getAge#1 method will execute –
a. if the argument is "self", then this class' getAge#0 method will be called, just like

option 1 above
b. if the argument is "parent", then the superclass' (Parent) getAge#0 method will be

called instead

We can demonstrate how this can work by modifying ChildDemo.ex as follows:

-- ChildDemo.ex v1.6

include diamondlite.e -- in our case: DL.e
include ParentClass.e
include ChildClass.e

procedure main()
 entity myParent, myChild

 myParent = call_method(Parent, "new", NONE)
 myChild = call_method(Child, "new", {100, 50})

 puts(1, "\nEx: In myParent:")
 printf(1, "\nEX: parent's age is %d",
 call_method(myParent, "getAge", NONE))

 puts(1, "\n\nEx: In myChild:")

 -- delete this – it is inapplicable
 printf(1, "\nEX: parent's age is %d",
 call_method(myChild, "getParentAge", NONE))
 -- keep this, with a modification
 printf(1, "\nEX: child's age is %d",
 call_method(myChild, "getAge", NONE))

 puts(1, "\n\nEx: Alternatively, using getAge#1 in myChild:")
 printf(1, "\nEX: parent's age is %d",
 call_method(myChild, "getAge", {"parent"}))
 printf(1, "\nEX: child's age is %d",
 call_method(myChild, "getAge", {"self"}))

end procedure

main()

Run the program with diamondlite.e to satisfy yourself that it works; if you need to trace
through the program use DL.e instead.

STEP 25d: COMPLETING THE CLASSES – AN EXTENSION EXERCISE

You might like to take this opportunity to fill out these classes, as an extension exercise. By
this stage you won't need much explanation from me, so I'll just sketch out some suggestions.

1 Add setters to the class definitions:
 These would look something like this:

 function Class_setAge_1(object age)

Alexander Caracatsanis 122

 set_property(this(), <"propertyName">, age)
 return NIL
 end function
 method("setAge", 1, INSTANCE, routine_id("Class_setAge_1"))

2 Add exceptions to the class definitions:
 For example, you could create an exception class BadInput, and define it as follows:

 global constant BadInput = exception("BadInput", Exception)

 You could declare the parameter(s) as type object – eg: foo(object age)

 In the appropriate methods (ie the constructors and the setters), you could test the input:

 if not integer(age) then
 throw(BadInput)
 else
 -- go ahead and create the entity or set the property
 end if

3 Let the application get user input:
 For example let the user enter a value for each age, and let the entity test it as above.

4 Let the application deal with erroneous input:
 For example:

 myChild = call_method(<Class>, <"new">, <{argument(s)}>)
 if catch(BadInput) then
 -- deal with the error
 else
 -- continue with the application
 end if

POLYMORPHISM

Mention of overriding gives us an opportunity to say something about polymorphism since it is
overriding that makes polymorphism possible.

As an example of polymorphism, consider the steering wheels of cars: they all present a
standardised outward form, and they are all used in much the same way (you turn them; if
you turn them clockwise the vehicle turns to the right; etc) – irrespective of whether their
internal mechanism mediates manual steering, automatic steering, or rack-and-pinion
steering. Note that you, the driver, don't have to know these internal details in order to steer
each type of vehicle – once you know how to handle a steering wheel you can use the same
skill in any of those vehicles, and obtain the same result. The correct steering mechanism
comes into play on its own – in this case, it's determined by what's in the car.

So basically polymorphism refers to the concept and the practice of designing classes whose
instances have methods with a standardised outward form (the interface), and where those
methods may be implemented quite differently by different manifestations of the class: one
ultimate form (the interface) – many methods, each with its own implementation details. The
user of the class doesn't have to choose the correct implementation details – this is done
"automatically" by the translator or interpreter, thereby reducing alot of complexity.

Alexander Caracatsanis 123

Some languages (eg C++ and Java) have quite sophisticated support for polymorphism, and
so does Diamond; DL reduces much of the complexity surrounding the topic, by supporting a
very simple implementation of it.

We used it unknowingly in STEP 25a, where we were able to call myChild.getAge() and
access Parent.parentAge, just as if we had called myParent.getAge() itself. As far as DL is
concerned, if class A is the superclass of class B, then wherever it's permissible to use the
class itself (eg Parent) or an instance of it (eg myParent), we may use the subclass (eg
Child) or an instance of that (eg myChild) instead. Note that this capability doesn't
necessarily go both ways, since the superclass might not know much about its subclasses.

In STEP 25b we glimpsed another sense of polymorphism – one interface; many methods –
where Child 's interface included a method for getting an age, but it could do one of two
things: get parentAge, or get childAge. Provided the code was there, the interpreter would
automatically choose the correct getAge() method.

Even earlier – in STEP 23b – when we considered the function call catch(Exception), where
we asked the question: "Is this class, or any of its subclasses, the pending exception?", we
were dealing with yet another expression of polymorphism.

Actually, we can take the concept a little further using DL. Imagine coding a generic Shape
class, with properties such as length, width, height, radius etc, and the usual accessor
methods. We could also incorporate "generic" methods getArea() and getVolume() into the
class definition – we can think of them as part of the interface of the class. Then, when the
class is inherited by classes defining specific shapes (eg Triangle or Circle), they can contain
their own versions of getArea() and getVolume() that will override the interface ("generic")
methods. The interpreter will choose the particular method to be called when the time comes.

CLASS HIERARCHIES

We are now able to use the knowledge we've gained above, to go to the next step – starting
with a superclass, and inheriting it to define subclasses that have a logical, hierarchical
relationship to one another, based on shared characteristics. Actually we have already been
introduced to the idea – when we dealt with exceptions – but at that point we couldn't add
properties or methods to those classes (because exception classes are defined that way in DL).

Let's assume that we want to define a base class called Shape, that will contain properties and
methods that will allow us to calculate and display the area and volume of 2D and 3D shapes
– such as Rectangle, Square, Triangle, Pyramid, Ellipse, Circle, Box, Cube, Sphere,
Ellipsoid etc.

I will discuss how we might build up the various classes we need, what properties and methods
we might give them, and how the classes might be inherited. This discussion will be based on
ideas suggested by Michael Nelson, and will rely heavily on his code. My contribution will be in
the method of presenting the material: instead of supplying all the code myself, I will outline
an approach you might adopt and will leave it to you to fill in the details and make the classes
fully functional – think of it as an extension exercise.

STEP 26: DEFINE THE CLASS HIERARCHY

Let's begin with the base class Shape, which will inherit from Entity. It will need to have all
the properties – eg length, width, height, depth, major and minor radius – and methods with
which to calculate and display areas (for 2D shapes) and volumes (for 3D shapes). It will have
three subclasses – Triangle, Rectangle, and Ellipse. Square will be a subclass of
Rectangle, and Circle will be a subclass of Ellipse. So much for 2D shapes. The 3D shapes
will consist of Pyramid (from Triangle), Cube (from Square), Box (from Rectangle),

Alexander Caracatsanis 124

Sphere (from Circle), and Ellipsoid (from Ellipse). We can represent this arrangement as
follows:

STEP 26a: AN OVERVIEW OF THE CLASS DEFINITIONS

The arrangement depicted above suggests that our class definitions will have the following
general structure:

-- ShapeClass.e

global constant Shape = class("Shape", Entity)
 -- details of the class definition
end_class()

-- TriangleClass.e

global constant Triangle = class("Triangle", Shape)
 -- details of the class definition
end_class()

-- PyramidClass.e

global constant Pyramid = class("Pyramid", Triangle)
 -- details of the class definition
end_class()

-- RectangleClass.e

global constant Rectangle = class("Rectangle", Shape)
 -- details of the class definition
end_class()

-- BoxClass.e

global constant Box = class("Box", Rectangle)

Shape

Triangle Rectangle Ellipse

Pyramid Square Box Circle Ellipsoid

Cube Sphere

Alexander Caracatsanis 125

 -- details of the class definition
end_class()

-- SquareClass.e

global constant Square = class("Square", Rectangle)
 -- details of the class definition
end_class()

-- CubeClass.e

global constant Cube = class("Cube", Square)
 -- details of the class definition
end_class()

-- EllipseClass.e

global constant Ellipse = class("Ellipse", Shape)
 -- details of the class definition
end_class()

-- EllipsoidClass.e

global constant Ellipsoid = class("Ellipsoid", Ellipse)
 -- details of the class definition
end_class()

-- CircleClass.e

global constant Circle = class("Circle", Ellipse)
 -- details of the class definition
end_class()

-- SphereClass.e

global constant Sphere = class("Sphere", Circle)
 -- details of the class definition
end_class()

STEP 26b: DEFINE THE BASE CLASS – SHAPE

Instead of detailing every line of code for this task, I will only outline the necessary steps – by
now you will be quite capable of filling in the details yourself.

Ø The overall class definition will have the following components:

-- ShapeClass

global constant Shape = class("Shape", Entity)
 -- 1 register the properties
 -- 2 define a parameterised constructor
 -- 3 define a setter method for each property
 -- 4 define a getter method for each property
 -- 5 define a generic method to calculate each value – area and volume
 -- 6 define a function that will be shared by subsequent methods

Alexander Caracatsanis 126

 -- 7 define a method to display each property; it will use the shared function
 -- 8 define a method to display the area and the volume
end_class()

Ø Here are the properties we will probably need:

-- 1 register the properties
 property("length", INSTANCE, NIL)
 property("width", INSTANCE, NIL)
 property("height", INSTANCE, NIL)
 property("depth", INSTANCE, NIL)
 property("radius", INSTANCE, NIL)
 property("majorRadius", INSTANCE, NIL)
 property("minorRadius", INSTANCE, NIL)

Ø Here is a parameterised constructor (the major and minor radii are relevant to calculations

pertaining to ellipses):

-- 2 define a parameterised constructor
 function Shape_new_7(atom L, atom W, atom H, atom D, atom R,
 atom majR, atom minR)
 entity newShape
 newShape = call_method(super(), "new", NONE)
 set_property(newShape, "length", L)
 set_property(newShape, "width", W)
 set_property(newShape, "height", H)
 set_property(newShape, "depth", D)
 set_property(newShape, "radius", R)
 set_property(newShape, "majorRadius", majR)
 set_property(newShape, "minorRadius", minR)
 return newShape
 end function
 method("new",7,CLASS,routine_id("Shape_new_7"))

Ø Define a setter for each property – no surprises here (as an exercise, you might consider

checking the parameter to ensure it is and atom, and throwing an exception if it isn't):

-- 3 define a setter method for each property
 function Shape_<setProperty>_1(atom <param>)
 set_property(this(), <"propertyName">, <param>)
 return NIL
 end function
 method(<"setProperty">,1,INSTANCE,routine_id("Shape_<setProperty>_1"))

Ø And define a getter for each property – again, no surprises:

-- 4 define a getter method for each property
 function Shape_<getProperty>_0()
 return get_property(this(), <"propertyName">)
 end function
 method(<"getProperty">,0,INSTANCE,routine_id("Shape_<getProperty>_0"))

Ø Define "generic" methods for area and volume. In this class, they do nothing and return

NIL – but remember they will be overridden by the appropriate method according to the
particular class that's called:

Alexander Caracatsanis 127

-- 5 define "generic" or "polymorphic" methods to calculate area and volume
 function Shape_getArea_0()
 return NIL
 end function
 method("getArea",0,INSTANCE,routine_id("Shape_getArea_0"))

 function Shape_getVolume_0()
 return NIL
 end function
 method("getVolume",0,INSTANCE,routine_id("Shape_getVolume_0"))

Ø This is a function – not a method – that will be shared by various methods further along:

-- 6 define a function that will be shared by subsequent methods
 function Shape_show(sequence prprty)
 atom its_value
 sequence its_name
 its_name = lower(class_name(this()))
 its_value = get_property(this(), prprty)
 printf(1, "\nThe %s's %s is %.2f", {its_name, prprty, its_value})
 return NIL
 end function

Ø These methods will call the shared function, passing the name of the property, in order to

display the class name, the property name, and the property value:

-- 7 define a method to display each property; it will use the shared Shape_show() function
 function Shape_<showProperty>_0()
 return Shape_show(<"propertyName">)
 end function
 method(<"showProperty",0,INSTANCE,
 routine_id("Shape_<showProperty>_0"))

Ø And now for methods to display the (previously calculated) area and volume:

-- 8 define methods to show the area and volume of the particular shape

 function Shape_showArea()
 sequence its_name
 its_name = lower(class_name(this()))
 printf(1, "\nThe %s's area is %.2f",
 {its_name, call_method(this(), getArea, NONE)})
 return NIL
 end function
 method("showArea, 0, INSTANCE, routine_id("Shape_showArea"))

 function Shape_showVolume ()
 sequence its_name
 its_name = lower(class_name(this()))
 printf(1, "\nThe %s's volume is %.2f",
 {its_name, call_method(this(), getVolume, NONE)})
 return NIL
 end function
 method("showVolume, 0, INSTANCE, routine_id("Shape_showVolume"))

Alexander Caracatsanis 128

STEP 26c: DEFINE THE SUBCLASSES – eg RECTANGLE

I won't go through each and every subclass, but will discuss the issues that need to be
addressed in Rectangle (and its subclass Square), and you will be able to apply the same
concepts in writing the complete code for the other classes.

Ø The first thing to get clear is the syntax for defining one class as a subclass of another. We

discussed this earlier – use class("subclassName", superclassName) to return a reference
to the new class.

Ø The second step is to address the construction of the subclass. As it stands, our Shape

constructor takes 7 parameters. In constructing an instance of Rectangle, for example, we
will want to give values to only two of them – length and width. One approach might be to
code the constructor as follows:

-- RectangleClass.e

global constant Rectangle = class("Rectangle", Shape)
 function Rectangle_new_0()
 entity newRectangle
 -- get a value for length
 -- get a value for width
 newRectangle = call_method(super(), "new",
 {length, width, NIL, NIL, NIL, NIL, NIL})
 return newRectangle
 end function
 method("new", 0, CLASS, routine_id("Rectangle_new_0"))

 -- other method definitions
end_class()

When you then call this constructor in the application, like this....

procedure main()
 entity myRectangle
 myRectangle = call_method(Rectangle, "new", NONE)

 -- other method calls
end procedure

....Rectangle.new() will call its superclass' parameterised constructor

Shape.new(L, W, H, D, R, majR, minR)
and assign length and width to L and H respectively, and NIL to each of the other
parameters. In the case of the other classes inheriting from Shape, we can use similar syntax:

 newTriangle = call_method(super(), "new",
 {lenght, NIL, height, NIL, NIL, NIL, NIL})

 newEllipse = call_method(super(), "new",
 {NIL, NIL, NIL, NIL, NIL, majorRadius, minorRadius})

 newRectangle = call_method(super(), "new",
 {lenght, width, NIL, NIL, NIL, NIL, NIL})

Alexander Caracatsanis 129

Ø Now for classes inheriting from one of the above classes, eg Square (from Rectange), we
can code the constructor like this:

-- SquareClass.e

global constant Square = class("Square", Rectangle)
 function Square_new_0()
 entity newSquare
 -- get a value for length
 newSquare = call_method(super(), "new",
 {length, NIL, NIL, NIL, NIL, NIL, NIL})
 return newSquare
 end function
 method("new", 0, CLASS, routine_id("Square_new_0"))

 -- other method definitions
end_class()

And following the same pattern, we can expect the constructor for Box to contain a statement
such as this:

 newBox = call_method(super(), "new",
 {length, width, NIL, depth, NIL, NIL, NIL})

Ø Perhaps the next step should be to override the setters of properties that aren’t relevant to

the particular class in question. For example we’ll want to be sure that when we create an
object of Rectangle there will be no way of setting a value for the properties depth,
radius, majorRadius, minorRadius. We can do this as follows:

function Rectangle_<setProperty>_1(atom <param>)

 set_property(this(), <"propertyName">, <param>)
 return NIL
 end function
 method(<"setProperty">, 1, INSTANCE, NULL_CLASS)

Similarly the class Triangle will need to ensure that its caller cannot set values for width,
depth, or any of the radii. The class Square will need to ensure that length and width will
always have the same value – no matter which setter is used (setLength() or setWidth()).
And Ellipsoid will need to ensure that only the setters for the two radii are used – the others
are rendered inactive or overridden.

Ø Another important task will be to code the methods that will calculate the area (for 2D

shapes) and volume (for 3D shapes). For instance in the case of Rectangle, we will need
to code something like this to override Shape.getArea():

 function Rectangle_getArea_0()
 atom area
 area = get_property(this(), "length") *
 get_property(this(), "width")
 return area
 end function
 method("getArea", 0, INSTANCE, routine_id("Rectangle_getArea_0"))

Similarly to calculate the volume of a Box entity, we would need to code a method such as:

 function Box_getVolume_0()

Alexander Caracatsanis 130

 atom volume
 volume = get_property(this(), "length") *
 call_method(super(), "getArea", NONE)
 return volume
 end function
 method("getVolume", 0, INSTANCE, routine_id("Box_getVolume_0"))

In order to complete these class definitions fully, you will have to know the formulae for the
areas and volumes of the various shapes. The comments outlined above should be sufficient to
get you started – my aim has been to focus on a general approach to coding inherited classes,
rather than to emphasise arithmetic details.

STEP 26d: WRITE THE APPLICATION FILE

There are no surprises here – you will need to create new instances of each class that you
need, supplying the correct property values and extracting the corresponding areas or
volumes, by calling the appropriate methods to achieve the task. I'm sure that you've learnt
the basics so well that you can see how to continue from here yourself.

A FINAL CLASS JUST FOR FUN – SELFAWARE CLASS

I couldn't help including the following class definition – for your entertainment and as another
extension exe rcise. It was written by Michael Nelson in response to my question: "Can a class
be aware of itself?" The following code models a simplified form of self-awareness:

-- SelfAwareClass.e v1.0

include diamondlite.e

global constant SelfAware = class("SelfAware", Entity)
 property("me", INSTANCE, Null_Instance)
 property("myClass", INSTANCE, SelfAware)
 property("mySuperclass", INSTANCE, Entity)
 property("myMethods", INSTANCE, {"getMe#0", "getMyClass#0",
 "getMySuperclass#0", "getMyMethods#0", "getMyProperties#0"})
 property("myProperties", INSTANCE, {"me", "myClass", "mySuperclass",
 "myMethods", "myProperties"})

 function SelfAware_new_0()
 entity newSelfAware
 newSelfAware = call_method(super(), "new", NONE)
 set_property(newSelfAware, "me", newSelfAware)
 return newSelfAware
 end function
 method("new", 0, CLASS, routine_id("SelfAware_new_0"))

 function SelfAware_getMe_0()
 return get_property(this(), "me")
 end function
 method("getMe", 0, INSTANCE, routine_id("SelfAware_getMe_0"))

 function SelfAware_getMyClass_0()
 return get_property(this(), "myClass")
 end function
 method("getMyClass", 0, INSTANCE,
 routine_id("SelfAware_getMyClass_0"))

Alexander Caracatsanis 131

 function SelfAware_getMySuperclass_0 ()
 return get_property(this(), "mySuperclass")
 end function
 method("getMySuperclass", 0, INSTANCE,
 routine_id("SelfAware_getMySuperclass_0"))

 function SelfAware_getMyMethods_0 ()
 return get_property(this(), "myMethods")
 end function
 method("getMyMethods", 0, INSTANCE,
 routine_id("SelfAware_getMyMethods_0"))

 function SelfAware_getMyProperties_0 ()
 return get_property(this(), "myProperties")
 end function
 method("getMyProperties", 0, INSTANCE,
 routine_id("SelfAware_getMyProperties_0"))
end_class()

Alexander Caracatsanis 132

APPENDIX A: DL's CLASS SYSTEM

Null_Class

MyClass

Entity
new()
clone()
delete()

NNNuuulll lll___IIInnnssstttaaa nnnccceee MMMyyyOOObbbjjjeeecccttt

MyException

Exception

Alexander Caracatsanis 133

APPENDIX B: DL ROUTINES BY PROGRAM CONTEXT

ROUTINE MAIN

PROGRAM
CLASS
DEFINITION

CLASS
METHOD

INSTANCE
METHOD

call_method() * * *
catch() * * *
caught() * * *
class() *
class_entity() * * * *
class_name() * * * *
deleted_instance() * * * *
end_class() *
entity() * * * *
error_screen_width() * * * *
exception() *
extends() * * * *
fatal_error() * * * *
get_class() * * * *
get_property() * *
identifier() * * * *
instance_entity() * * * *
method() *
property() *
same_class() * * * *
set_property() * *
success() * * *
super() * *
this() * *
this_class() * *
throw() * * *

Alexander Caracatsanis 134

APPENDIX C: DL CONSTANTS

CONSTANT

MEANING

TRUE integer 1 used as a boolean
FALSE integer 0 used as a boolean
NIL integer 0 used as no meaningful data
NONE an empty sequence
INSTANCE indicates an instance property or method
CLASS indicates a class property or method
NULL_METHOD a do-nothing method used in place of routine_id(); returns NIL

APPENDIX D: DL VARIABLE

VARIABLE

MEANING

VOID to discard an unwanted or meaningless return value

Alexander Caracatsanis 135

APPENDIX E: DL ROUTINES THAT TEST FOR TYPES

ROUTINE MEANING
identifier(o) TRUE if o is a valid Eu identifier (string)
entity(o) TRUE if o is an entity
instance_entity(o) TRUE if o is an instance entity
class_entity(o) TRUE if o is a class entity
deleted_instance(o) TRUE if o is an instance entity that has been deleted

APPENDIX F: DL ROUTINES THAT RELATE TO CLASSES

ROUTINE MEANING
class() begin class definition; return handle of new class
end_class() end class definition
class_name() return name of an entity's class
get_class() return handle of an (instance) entity's class
this_class() return handle of currently executing (instance) method's class
same_class() TRUE if two entities belong to same class
extends() TRUE if two entities have same class OR...

first entity's class is a subclass of second entity's class

APPENDIX G: DL ROUTINES THAT RELATE TO PROPERTIES

ROUTINE MEANING
property() register an instance or class property and set its default value
set_property() assign a value to an instance or class property
get_property() return the value of an instance or class property

APPENDIX H: DL ROUTINES THAT RELATE TO METHODS

ROUTINE MEANING
method() register an instance or class method
call_method() call an instance or class method and return its value
this() return the handle to the target of an instance or class method
super() call the overridden superclass method of this target's instance

or class (overriding) method; return an integer constant

APPENDIX I: DL ROUTINES THAT RELATE TO ERROR HANDLING

ROUTINE MEANING
exception() return handle of new exception
throw() set the pending exception
catch() TRUE if an entity is the class or superclass of a pending

exception
caught() return the last exception processed by catch()
fatal_error() immediately terminate program with an error message
error_screen_width() set the width of the error screen
success() TRUE if no exception pending

Alexander Caracatsanis 136

APPENDIX J: DL FATAL ERROR MESSAGES

*** Invalid error message. ***
The error message you used in fatal_error() is not a valid character string

Not allowed.
The DL routine you called is not allowed in this program context

Invalid class name.
The name you have given to your class is invalid

Invalid method name.
The name you have given to your method is invalid

Invalid property name.
The name you have given to your property is invalid

Invalid exception name.
The name you have given to your exception is invalid

Invalid exception.
This is not a valid exception

Invalid superclass.
This is not a valid superclass of a class you have declared

Method MethodName has invalid entity type.
The identified method is not of the correct type (ie instance vs class)

Method MethodName has invalid parameter count.
The identified method has the wrong number of parameters

Property PropertyName has invalid entity type.
The identified property is not of the correct type (ie instance vs class)

Instance property PropertyName has already been defined.
The identified instance property has already been defined

Class property PropertyName has already been defined.
The identified class property has already been defined

Target is not an entity.
The target of your method call is not an entity

Target is a deleted instance.
The target of your method call is an instance that has already been deleted

ClassType class ClassName not allowed as target.
It is not permissible for the identified class, of this type, to be the target of your
method call

Class ClassName does not define instance | class property PropertyName.
The identified class does not define the instance or class property you have identified

Alexander Caracatsanis 137

Access to ClassName instance | class property PropertyName denied.
You cannot have access to the identified instance or class property of this class

Parameter list must be a sequence.
The parameter list you coded must be a sequence

Class ClassName does not define instance | class MethodName#N.
The identified class does not define the identified instance or class method that takes
N parameters

Superclass SuperclassName is not a normal class.
The identified superclass is not a normal class

Superclass SuperclassName is not an exception.
The identified superclass is not an exception

Attempt to override ClassName instance property PropertyName.
You have tried to override the identified instance property of class

Attempt to override Classname class property PropertyName.
You have tried to override the identified class property of class

instance | class method MethodName has invalid routine_id.
The identified instance or class method has an invalid routine_id() value

instance | class method MethodName has already been defined.
The identified instance or class method has already been defined

Class ClassName is not an exception.
The identifed class not an exception

Exception ExceptionName thrown.
The identified exception has already been thrown

With ClassName exception pending | caught
in MethodName | main program | class definition
called from call chain
An exception has been caught or is pending in the identified method, main program,
or class definition; the call chain is given if there is one

