
Euphoria v4.0 svn3379

Table of Contents
0.0.0.1 ?..1

Example 1:...1

1 Constants..1
1.0.0.1 ADD...115

1.0.0.2 ADDR_ADDRESS...115

2 Routines..115
2.0.0.1 abort...667

Parameters:..title

Subject and Routine Index..title

Euphoria v4.0 svn3379

i

1 Constants

1.0.0.1 ADD

include std/map.e
public enum ADD

1.0.0.2 ADDR_ADDRESS

include std/net/dns.e
public enum ADDR_ADDRESS

1.0.0.3 ADDR_FAMILY

include std/net/dns.e
public enum ADDR_FAMILY

1.0.0.4 ADDR_FLAGS

include std/net/dns.e
public enum ADDR_FLAGS

1.0.0.5 ADDR_PROTOCOL

include std/net/dns.e
public enum ADDR_PROTOCOL

1.0.0.6 ADDR_TYPE

include std/net/dns.e
public enum ADDR_TYPE

Euphoria v4.0 svn3379

1 Constants 1

1.0.0.7 ADD_APPEND

include std/sequence.e
public enum ADD_APPEND

1.0.0.8 ADD_PREPEND

include std/sequence.e
public enum ADD_PREPEND

1.0.0.9 ADD_SORT_DOWN

include std/sequence.e
public enum ADD_SORT_DOWN

1.0.0.10 ADD_SORT_UP

include std/sequence.e
public enum ADD_SORT_UP

1.0.0.11 ADLER32

include std/map.e
public enum ADLER32

1.0.0.12 AF_APPLETALK

include std/socket.e
public constant AF_APPLETALK

Appletalk

1.0.0.13 AF_BTH

include std/socket.e
public constant AF_BTH

Bluetooth

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 2

1.0.0.14 AF_INET

include std/socket.e
public constant AF_INET

IPv4 Internet protocols

1.0.0.15 AF_INET6

include std/socket.e
public constant AF_INET6

IPv6 Internet protocols

1.0.0.16 AF_UNIX

include std/socket.e
public constant AF_UNIX

Local communications

1.0.0.17 AF_UNSPEC

include std/socket.e
public constant AF_UNSPEC

Address family is unspecified

1.0.0.18 ANCHORED

public constant ANCHORED

Forces matches to be only from the first place it is asked to try to make a search. In C, this is called
PCRE_ANCHORED. This is passed to all routines including new.

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 3

1.0.0.19 ANY_UP

include std/mouse.e
public integer ANY_UP

1.0.0.20 APPEND

include std/map.e
public enum APPEND

1.0.0.21 ASCENDING

include std/sort.e
public constant ASCENDING

ascending sort order, always the default.

When a sequence is sorted in ASCENDING order, its first element is the smallest as per the sort order and its
last element is the largest

1.0.0.22 AT_EXPANSION

include std/cmdline.e
public enum AT_EXPANSION

Expand arguments that begin with '@' into the command line. (default) For example, @filename will expand
the contents of file named 'filename' as if the file's contents were passed in on the command line. Arguments
that come after the first extra will not be expanded when NO_VALIDATION_AFTER_FIRST_EXTRA is
specified.

1.0.0.23 AUTO_CALLOUT

public constant AUTO_CALLOUT

In C, this is called PCRE_AUTO_CALLOUT. To get the functionality of this flag in EUPHORIA, you can
use: find_replace_callback without passing this option. This is passed to new.

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 4

1.0.0.24 A_EXECUTE

include std/memconst.e
export integer A_EXECUTE

1.0.0.25 A_WRITE

include std/memconst.e
export integer A_WRITE

1.0.0.26 BAD_FILE

include std/eds.e
public enum BAD_FILE

bad file

1.0.0.27 BAD_RECNO

include std/eds.e
public enum BAD_RECNO

unknown key_location index was supplied.

1.0.0.28 BAD_SEEK

include std/eds.e
public enum BAD_SEEK

seek() failed.

1.0.0.29 BINARY_MODE

include std/io.e
public enum BINARY_MODE

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 5

1.0.0.30 BK_LEN

include std/sequence.e
public enum BK_LEN

Indicates that size parameter is maximum length of sub-sequence. See breakup

1.0.0.31 BK_PIECES

include std/sequence.e
public enum BK_PIECES

Indicates that size parameter is maximum number of sub-sequence. See breakup

1.0.0.32 BLACK

include std/graphcst.e
public constant BLACK

1.0.0.33 BLINKING

include std/graphcst.e
public constant BLINKING

Add to color to get blinking text

1.0.0.34 BLOCK_CURSOR

include std/console.e
public constant BLOCK_CURSOR

1.0.0.35 BLUE

include std/graphcst.e
public constant BLUE

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 6

1.0.0.36 BMP_INVALID_MODE

include std/graphcst.e
public enum BMP_INVALID_MODE

1.0.0.37 BMP_OPEN_FAILED

include std/graphcst.e
public enum BMP_OPEN_FAILED

1.0.0.38 BMP_SUCCESS

include std/graphcst.e
public enum BMP_SUCCESS

1.0.0.39 BMP_UNEXPECTED_EOF

include std/graphcst.e
public enum BMP_UNEXPECTED_EOF

1.0.0.40 BMP_UNSUPPORTED_FORMAT

include std/graphcst.e
public enum BMP_UNSUPPORTED_FORMAT

1.0.0.41 BORDER_SPACE

include std/memory.e
export constant BORDER_SPACE

1.0.0.42 BORDER_SPACE

include std/safe.e
export constant BORDER_SPACE

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 7

1.0.0.43 BRIGHT_BLUE

include std/graphcst.e
public constant BRIGHT_BLUE

1.0.0.44 BRIGHT_CYAN

include std/graphcst.e
public constant BRIGHT_CYAN

1.0.0.45 BRIGHT_GREEN

include std/graphcst.e
public constant BRIGHT_GREEN

1.0.0.46 BRIGHT_MAGENTA

include std/graphcst.e
public constant BRIGHT_MAGENTA

1.0.0.47 BRIGHT_RED

include std/graphcst.e
public constant BRIGHT_RED

1.0.0.48 BRIGHT_WHITE

include std/graphcst.e
public constant BRIGHT_WHITE

1.0.0.49 BROWN

include std/graphcst.e
public constant BROWN

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 8

1.0.0.50 BSR_ANYCRLF

public constant BSR_ANYCRLF

With this option only ASCII new line sequences are recognized as newlines. Other UNICODE newline
sequences (encoded as UTF8) are not recognized as an end of line marker. This is passed to all routines
including new.

1.0.0.51 BSR_UNICODE

public constant BSR_UNICODE

With this option any UNICODE new line sequence is recognized as a newline. The UNICODE will have to be
encoded as UTF8, however. This is passed to all routines including new.

1.0.0.52 BYTES_PER_CHAR

include std/graphcst.e
public constant BYTES_PER_CHAR

1.0.0.53 BYTES_PER_SECTOR

include std/filesys.e
public enum BYTES_PER_SECTOR

1.0.0.54 CASELESS

public constant CASELESS

This will make your regular expression matches case insensitive. With this flag for example, [a-z] is the same
as [A-Za-z]. This is passed to new.

1.0.0.55 CHILD

include std/pipeio.e
public enum CHILD

Set of pipes that are given to the child - should not be used by the parent

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 9

1.0.0.56 CMD_SWITCHES

include std/os.e
public constant CMD_SWITCHES

1.0.0.57 COMBINE_SORTED

include std/sequence.e
public enum COMBINE_SORTED

1.0.0.58 COMBINE_UNSORTED

include std/sequence.e
public enum COMBINE_UNSORTED

1.0.0.59 CONCAT

include std/map.e
public enum CONCAT

1.0.0.60 COUNT_DIRS

include std/filesys.e
public enum COUNT_DIRS

1.0.0.61 COUNT_FILES

include std/filesys.e
public enum COUNT_FILES

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 10

1.0.0.62 COUNT_SIZE

include std/filesys.e
public enum COUNT_SIZE

1.0.0.63 COUNT_TYPES

include std/filesys.e
public enum COUNT_TYPES

1.0.0.64 CS_FIRST

include std/types.e
public enum CS_FIRST

Predefined character sets:

1.0.0.65 CYAN

include std/graphcst.e
public constant CYAN

1.0.0.66 C_BOOL

include std/dll.e
public constant C_BOOL

bool 32-bits

1.0.0.67 C_BYTE

include std/dll.e
public constant C_BYTE

byte 8-bits

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 11

1.0.0.68 C_CHAR

include std/dll.e
public constant C_CHAR

char 8-bits

1.0.0.69 C_DOUBLE

include std/dll.e
public constant C_DOUBLE

double 64-bits

1.0.0.70 C_DWORD

include std/dll.e
public constant C_DWORD

dword 32-bits

1.0.0.71 C_DWORDLONG

include std/dll.e
public constant C_DWORDLONG

dwordlong 64-bits

These are used for arguments to and the return value from a Euphoria shared library file (.dll, .so or .dylib).

1.0.0.72 C_FLOAT

include std/dll.e
public constant C_FLOAT

float 32-bits

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 12

1.0.0.73 C_HANDLE

include std/dll.e
public constant C_HANDLE

handle 32-bits

1.0.0.74 C_HRESULT

include std/dll.e
public constant C_HRESULT

hresult 32-bits

1.0.0.75 C_HWND

include std/dll.e
public constant C_HWND

hwnd 32-bits

1.0.0.76 C_INT

include std/dll.e
public constant C_INT

int 32-bits

1.0.0.77 C_LONG

include std/dll.e
public constant C_LONG

long 32-bits

1.0.0.78 C_LPARAM

include std/dll.e
public constant C_LPARAM

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 13

lparam 32-bits

1.0.0.79 C_POINTER

include std/dll.e
public constant C_POINTER

any valid pointer 32-bits

1.0.0.80 C_SHORT

include std/dll.e
public constant C_SHORT

short 16-bits

1.0.0.81 C_SIZE_T

include std/dll.e
public constant C_SIZE_T

size_t 32-bits

1.0.0.82 C_UBYTE

include std/dll.e
public constant C_UBYTE

ubyte 8-bits

1.0.0.83 C_UCHAR

include std/dll.e
public constant C_UCHAR

unsigned char 8-bits

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 14

1.0.0.84 C_UINT

include std/dll.e
public constant C_UINT

unsigned int 32-bits

1.0.0.85 C_ULONG

include std/dll.e
public constant C_ULONG

unsigned long 32-bits

1.0.0.86 C_USHORT

include std/dll.e
public constant C_USHORT

unsigned short 16-bits

1.0.0.87 C_WORD

include std/dll.e
public constant C_WORD

word 16-bits

1.0.0.88 C_WPARAM

include std/dll.e
public constant C_WPARAM

wparam 32-bits

1.0.0.89 DB_EXISTS_ALREADY

include std/eds.e
public constant DB_EXISTS_ALREADY

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 15

The database could not be created, it already exists.

1.0.0.90 DB_FATAL_FAIL

include std/eds.e
public constant DB_FATAL_FAIL

A fatal error has occurred.

1.0.0.91 DB_LOCK_EXCLUSIVE

include std/eds.e
public enum DB_LOCK_EXCLUSIVE

Open the database with read and write access.

1.0.0.92 DB_LOCK_FAIL

include std/eds.e
public constant DB_LOCK_FAIL

A lock could not be gained on the database.

1.0.0.93 DB_LOCK_NO

include std/eds.e
public enum DB_LOCK_NO

Do not lock the file.

1.0.0.94 DB_LOCK_SHARED

include std/eds.e
public enum DB_LOCK_SHARED

Open the database with read-only access.

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 16

1.0.0.95 DB_OK

include std/eds.e
public constant DB_OK

Database is OK, not error has occurred.

1.0.0.96 DB_OPEN_FAIL

include std/eds.e
public constant DB_OPEN_FAIL

The database could not be opened.

1.0.0.97 DEFAULT

public constant DEFAULT

This is a value used for not setting any flags at all. This can be passed to all routines including new

1.0.0.98 DEGREES_TO_RADIANS

include std/mathcons.e
public constant DEGREES_TO_RADIANS

Conversion factor: Degrees to Radians = PI / 180

1.0.0.99 DEP_on

include std/machine.e
public procedure DEP_on(integer value)

1.0.0.100 DEP_really_works

include std/memconst.e
export integer DEP_really_works

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 17

1.0.0.101 DESCENDING

include std/sort.e
public constant DESCENDING

descending sort order, which is the reverse of ASCENDING.

1.0.0.102 DFA_RESTART

public constant DFA_RESTART

This is NOT used by any standard library routine.

1.0.0.103 DFA_SHORTEST

public constant DFA_SHORTEST

This is NOT used by any standard library routine.

1.0.0.104 DISPLAY_ASCII

include std/pretty.e
public enum DISPLAY_ASCII

1.0.0.105 DIVIDE

include std/map.e
public enum DIVIDE

1.0.0.106 DNS_QUERY_ACCEPT_TRUNCATED_RESPONSE

include std/net/dns.e
public constant DNS_QUERY_ACCEPT_TRUNCATED_RESPONSE

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 18

1.0.0.107 DNS_QUERY_BYPASS_CACHE

include std/net/dns.e
public constant DNS_QUERY_BYPASS_CACHE

1.0.0.108 DNS_QUERY_DONT_RESET_TTL_VALUES

include std/net/dns.e
public constant DNS_QUERY_DONT_RESET_TTL_VALUES

1.0.0.109 DNS_QUERY_NO_HOSTS_FILE

include std/net/dns.e
public constant DNS_QUERY_NO_HOSTS_FILE

1.0.0.110 DNS_QUERY_NO_LOCAL_NAME

include std/net/dns.e
public constant DNS_QUERY_NO_LOCAL_NAME

1.0.0.111 DNS_QUERY_NO_NETBT

include std/net/dns.e
public constant DNS_QUERY_NO_NETBT

1.0.0.112 DNS_QUERY_NO_RECURSION

include std/net/dns.e
public constant DNS_QUERY_NO_RECURSION

1.0.0.113 DNS_QUERY_NO_WIRE_QUERY

include std/net/dns.e
public constant DNS_QUERY_NO_WIRE_QUERY

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 19

1.0.0.114 DNS_QUERY_RESERVED

include std/net/dns.e
public constant DNS_QUERY_RESERVED

1.0.0.115 DNS_QUERY_RETURN_MESSAGE

include std/net/dns.e
public constant DNS_QUERY_RETURN_MESSAGE

1.0.0.116 DNS_QUERY_STANDARD

include std/net/dns.e
public constant DNS_QUERY_STANDARD

1.0.0.117 DNS_QUERY_TREAT_AS_FQDN

include std/net/dns.e
public constant DNS_QUERY_TREAT_AS_FQDN

1.0.0.118 DNS_QUERY_USE_TCP_ONLY

include std/net/dns.e
public constant DNS_QUERY_USE_TCP_ONLY

1.0.0.119 DNS_QUERY_WIRE_ONLY

include std/net/dns.e
public constant DNS_QUERY_WIRE_ONLY

1.0.0.120 DOLLAR_ENDONLY

public constant DOLLAR_ENDONLY

If this bit is set, a dollar sign metacharacter in the pattern matches only at the end of the subject string.
Without this option, a dollar sign also matches immediately before a newline at the end of the string (but not
before any other newlines). Thus you must include the newline character in the pattern before the dollar sign
if you want to match a line that contanis a newline character. The DOLLAR_ENDONLY option is ignored if

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 20

MULTILINE is set. There is no way to set this option within a pattern. This is passed to new.

1.0.0.121 DOS_TEXT

include std/io.e
public enum DOS_TEXT

1.0.0.122 DOTALL

public constant DOTALL

With this option the '.' character also matches a newline sequence. This is passed to new.

1.0.0.123 DUPNAMES

public constant DUPNAMES

Allow duplicate names for named subpatterns. Since there is no way to access named subpatterns this flag has
no effect. This is passed to new.

1.0.0.124 DUP_TABLE

include std/eds.e
public enum DUP_TABLE

this table already exists.

1.0.0.125 D_ALTNAME

include std/filesys.e
public enum D_ALTNAME

1.0.0.126 D_ATTRIBUTES

include std/filesys.e
public enum D_ATTRIBUTES

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 21

1.0.0.127 D_DAY

include std/filesys.e
public enum D_DAY

1.0.0.128 D_HOUR

include std/filesys.e
public enum D_HOUR

1.0.0.129 D_MILLISECOND

include std/filesys.e
public enum D_MILLISECOND

1.0.0.130 D_MINUTE

include std/filesys.e
public enum D_MINUTE

1.0.0.131 D_MONTH

include std/filesys.e
public enum D_MONTH

1.0.0.132 D_NAME

include std/filesys.e
public enum D_NAME

1.0.0.133 D_SECOND

include std/filesys.e
public enum D_SECOND

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 22

1.0.0.134 D_SIZE

include std/filesys.e
public enum D_SIZE

1.0.0.135 D_YEAR

include std/filesys.e
public enum D_YEAR

1.0.0.136 E

include std/mathcons.e
public constant E

Euler (e)The base of the natural logarithm.

1.0.0.137 EOF

include std/io.e
public constant EOF

End of file

1.0.0.138 EOL

public constant EOL

All platform's newline character: '\n'. When text lines are read the native platform's EOLSEP string is
replaced by a single character EOL.

1.0.0.139 EOLSEP

public constant EOLSEP

Current platform's newline string: "\n" on Unix, else "\r\n".

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 23

1.0.0.140 ERROR_BADCOUNT

include std/regex.e
public constant ERROR_BADCOUNT

1.0.0.141 ERROR_BADMAGIC

include std/regex.e
public constant ERROR_BADMAGIC

1.0.0.142 ERROR_BADNEWLINE

include std/regex.e
public constant ERROR_BADNEWLINE

1.0.0.143 ERROR_BADOPTION

include std/regex.e
public constant ERROR_BADOPTION

1.0.0.144 ERROR_BADPARTIAL

include std/regex.e
public constant ERROR_BADPARTIAL

1.0.0.145 ERROR_BADUTF8

include std/regex.e
public constant ERROR_BADUTF8

1.0.0.146 ERROR_BADUTF8_OFFSET

include std/regex.e
public constant ERROR_BADUTF8_OFFSET

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 24

1.0.0.147 ERROR_CALLOUT

include std/regex.e
public constant ERROR_CALLOUT

1.0.0.148 ERROR_DFA_RECURSE

include std/regex.e
public constant ERROR_DFA_RECURSE

1.0.0.149 ERROR_DFA_UCOND

include std/regex.e
public constant ERROR_DFA_UCOND

1.0.0.150 ERROR_DFA_UITEM

include std/regex.e
public constant ERROR_DFA_UITEM

1.0.0.151 ERROR_DFA_UMLIMIT

include std/regex.e
public constant ERROR_DFA_UMLIMIT

1.0.0.152 ERROR_DFA_WSSIZE

include std/regex.e
public constant ERROR_DFA_WSSIZE

1.0.0.153 ERROR_INTERNAL

include std/regex.e
public constant ERROR_INTERNAL

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 25

1.0.0.154 ERROR_MATCHLIMIT

include std/regex.e
public constant ERROR_MATCHLIMIT

1.0.0.155 ERROR_NOMATCH

include std/regex.e
public constant ERROR_NOMATCH

1.0.0.156 ERROR_NOMEMORY

include std/regex.e
public constant ERROR_NOMEMORY

1.0.0.157 ERROR_NOSUBSTRING

include std/regex.e
public constant ERROR_NOSUBSTRING

1.0.0.158 ERROR_NULL

include std/regex.e
public constant ERROR_NULL

1.0.0.159 ERROR_NULLWSLIMIT

include std/regex.e
public constant ERROR_NULLWSLIMIT

1.0.0.160 ERROR_PARTIAL

include std/regex.e
public constant ERROR_PARTIAL

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 26

1.0.0.161 ERROR_RECURSIONLIMIT

include std/regex.e
public constant ERROR_RECURSIONLIMIT

1.0.0.162 ERROR_UNKNOWN_NODE

include std/regex.e
public constant ERROR_UNKNOWN_NODE

1.0.0.163 ERROR_UNKNOWN_OPCODE

include std/regex.e
public constant ERROR_UNKNOWN_OPCODE

1.0.0.164 ERR_ACCESS

include std/socket.e
public constant ERR_ACCESS

Permission has been denied. This can happen when using a send_to call on a broadcast address without setting
the socket option SO_BROADCAST. Another, possibly more common, reason is you have tried to bind an
address that is already exclusively bound by another application.

May occur on a Unix Domain Socket when the socket directory or file could not be accessed due to security.

1.0.0.165 ERR_ADDRINUSE

include std/socket.e
public constant ERR_ADDRINUSE

Address is already in use.

1.0.0.166 ERR_ADDRNOTAVAIL

include std/socket.e
public constant ERR_ADDRNOTAVAIL

The specified address is not a valid local IP address on this computer.

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 27

1.0.0.167 ERR_AFNOSUPPORT

include std/socket.e
public constant ERR_AFNOSUPPORT

Address family not supported by the protocol family.

1.0.0.168 ERR_AGAIN

include std/socket.e
public constant ERR_AGAIN

Kernel resources to complete the request are temporarly unavailable.

1.0.0.169 ERR_ALREADY

include std/socket.e
public constant ERR_ALREADY

Operation is already in progress.

1.0.0.170 ERR_CLOSE_CHAR

include tokenize.e
public enum ERR_CLOSE_CHAR

1.0.0.171 ERR_CONNABORTED

include std/socket.e
public constant ERR_CONNABORTED

Software has caused a connection to be aborted.

1.0.0.172 ERR_CONNREFUSED

include std/socket.e
public constant ERR_CONNREFUSED

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 28

Connection was refused.

1.0.0.173 ERR_CONNRESET

include std/socket.e
public constant ERR_CONNRESET

An incomming connection was supplied however it was terminated by the remote peer.

1.0.0.174 ERR_DECIMAL

include tokenize.e
public enum ERR_DECIMAL

1.0.0.175 ERR_DESTADDRREQ

include std/socket.e
public constant ERR_DESTADDRREQ

Destination address required.

1.0.0.176 ERR_EOF

include tokenize.e
public enum ERR_EOF

1.0.0.177 ERR_EOF_STRING

include tokenize.e
public enum ERR_EOF_STRING

1.0.0.178 ERR_EOL_CHAR

include tokenize.e
public enum ERR_EOL_CHAR

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 29

1.0.0.179 ERR_EOL_STRING

include tokenize.e
public enum ERR_EOL_STRING

1.0.0.180 ERR_ESCAPE

include tokenize.e
public enum ERR_ESCAPE

1.0.0.181 ERR_FAULT

include std/socket.e
public constant ERR_FAULT

Address creation has failed internally.

1.0.0.182 ERR_HEX

include tokenize.e
public enum ERR_HEX

1.0.0.183 ERR_HEX_STRING

include tokenize.e
public enum ERR_HEX_STRING

1.0.0.184 ERR_HOSTUNREACH

include std/socket.e
public constant ERR_HOSTUNREACH

No route to the host specified could be found.

1.0.0.185 ERR_INPROGRESS

include std/socket.e
public constant ERR_INPROGRESS

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 30

A blocking call is inprogress.

1.0.0.186 ERR_INTR

include std/socket.e
public constant ERR_INTR

A blocking call was cancelled or interrupted.

1.0.0.187 ERR_INVAL

include std/socket.e
public constant ERR_INVAL

An invalid sequence of command calls were made, for instance trying to accept before an actual listen
was called.

1.0.0.188 ERR_IO

include std/socket.e
public constant ERR_IO

An I/O error occurred while making the directory entry or allocating the inode. (Unix Domain Socket).

1.0.0.189 ERR_ISCONN

include std/socket.e
public constant ERR_ISCONN

Socket is already connected.

1.0.0.190 ERR_ISDIR

include std/socket.e
public constant ERR_ISDIR

An empty pathname was specified. (Unix Domain Socket).

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 31

1.0.0.191 ERR_LOOP

include std/socket.e
public constant ERR_LOOP

Too many symbolic links were encountered. (Unix Domain Socket).

1.0.0.192 ERR_MFILE

include std/socket.e
public constant ERR_MFILE

The queue is not empty upon routine call.

1.0.0.193 ERR_MSGSIZE

include std/socket.e
public constant ERR_MSGSIZE

Message is too long for buffer size. This would indicate an internal error to Euphoria as Euphoria sets a
dynamic buffer size.

1.0.0.194 ERR_NAMETOOLONG

include std/socket.e
public constant ERR_NAMETOOLONG

Component of the path name exceeded 255 characters or the entire path exceeded 1023 characters. (Unix
Domain Socket).

1.0.0.195 ERR_NETDOWN

include std/socket.e
public constant ERR_NETDOWN

The network subsystem is down or has failed

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 32

1.0.0.196 ERR_NETRESET

include std/socket.e
public constant ERR_NETRESET

Network has dropped it's connection on reset.

1.0.0.197 ERR_NETUNREACH

include std/socket.e
public constant ERR_NETUNREACH

Network is unreachable.

1.0.0.198 ERR_NFILE

include std/socket.e
public constant ERR_NFILE

Not a file. (Unix Domain Sockets).

1.0.0.199 ERR_NOBUFS

include std/socket.e
public constant ERR_NOBUFS

No buffer space is available.

1.0.0.200 ERR_NOENT

include std/socket.e
public constant ERR_NOENT

Named socket does not exist. (Unix Domain Socket).

1.0.0.201 ERR_NOTCONN

include std/socket.e
public constant ERR_NOTCONN

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 33

Socket is not connected.

1.0.0.202 ERR_NOTDIR

include std/socket.e
public constant ERR_NOTDIR

Component of the path prefix is not a directory. (Unix Domain Socket).

1.0.0.203 ERR_NOTINITIALISED

include std/socket.e
public constant ERR_NOTINITIALISED

Socket system is not initialized (Windows only)

1.0.0.204 ERR_NOTSOCK

include std/socket.e
public constant ERR_NOTSOCK

The descriptor is not a socket.

1.0.0.205 ERR_OPEN

include tokenize.e
public enum ERR_OPEN

1.0.0.206 ERR_OPNOTSUPP

include std/socket.e
public constant ERR_OPNOTSUPP

Operation is not supported on this type of socket.

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 34

1.0.0.207 ERR_PROTONOSUPPORT

include std/socket.e
public constant ERR_PROTONOSUPPORT

Protocol not supported.

1.0.0.208 ERR_PROTOTYPE

include std/socket.e
public constant ERR_PROTOTYPE

Protocol is the wrong type for the socket.

1.0.0.209 ERR_ROFS

include std/socket.e
public constant ERR_ROFS

The name would reside on a read-only file system. (Unix Domain Socket).

1.0.0.210 ERR_SHUTDOWN

include std/socket.e
public constant ERR_SHUTDOWN

The socket has been shutdown. Possibly a send/receive call after a shutdown took place.

1.0.0.211 ERR_SOCKTNOSUPPORT

include std/socket.e
public constant ERR_SOCKTNOSUPPORT

Socket type is not supported.

1.0.0.212 ERR_TIMEDOUT

include std/socket.e
public constant ERR_TIMEDOUT

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 35

Connection has timed out.

1.0.0.213 ERR_UNKNOWN

include tokenize.e
public enum ERR_UNKNOWN

1.0.0.214 ERR_WOULDBLOCK

include std/socket.e
public constant ERR_WOULDBLOCK

The operation would block on a socket marked as non-blocking.

These values are passed as the family and sock_type parameters of the create function.

1.0.0.215 ET_ERROR

include tokenize.e
public constant ET_ERROR

1.0.0.216 ET_ERR_COLUMN

include tokenize.e
public constant ET_ERR_COLUMN

1.0.0.217 ET_ERR_LINE

include tokenize.e
public constant ET_ERR_LINE

1.0.0.218 ET_TOKENS

include tokenize.e
public constant ET_TOKENS

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 36

1.0.0.219 EULER_GAMMA

include std/mathcons.e
public constant EULER_GAMMA

Gamma (Euler Gamma)

1.0.0.220 EXTENDED

public constant EXTENDED

Whitespace and characters beginning with a hash mark to the end of the line in the pattern will be ignored
when searching except when the whitespace or hash is escaped or in a character class. This is passed to new.

1.0.0.221 EXTRA

public constant EXTRA

When an alphanumeric follows a backslash(\) has no special meaning an error is generated. This is passed to
new.

1.0.0.222 EXT_COUNT

include std/filesys.e
public enum EXT_COUNT

1.0.0.223 EXT_NAME

include std/filesys.e
public enum EXT_NAME

1.0.0.224 EXT_SIZE

include std/filesys.e
public enum EXT_SIZE

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 37

1.0.0.225 E_ATOM

include std/dll.e
public constant E_ATOM

atom

1.0.0.226 E_INTEGER

include std/dll.e
public constant E_INTEGER

integer

1.0.0.227 E_OBJECT

include std/dll.e
public constant E_OBJECT

object

1.0.0.228 E_SEQUENCE

include std/dll.e
public constant E_SEQUENCE

sequence

1.0.0.229 FALSE

include std/types.e
public constant FALSE

Boolean FALSE value

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 38

1.0.0.230 FIFO

include std/stack.e
public constant FIFO

Stack types

FIFO: like people standing in line: first item in is first item out•
FILO: like for a stack of plates : first item in is last item out•

1.0.0.231 FILETYPE_DIRECTORY

include std/filesys.e
public enum FILETYPE_DIRECTORY

1.0.0.232 FILETYPE_FILE

include std/filesys.e
public enum FILETYPE_FILE

1.0.0.233 FILETYPE_NOT_FOUND

include std/filesys.e
public enum FILETYPE_NOT_FOUND

1.0.0.234 FILETYPE_UNDEFINED

include std/filesys.e
public enum FILETYPE_UNDEFINED

1.0.0.235 FIRSTLINE

public constant FIRSTLINE

If PCRE_FIRSTLINE is set, the match must happen before or at the first newline in the subject (though it
may continue over the newline). This is passed to new.

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 39

1.0.0.236 FLETCHER32

include std/map.e
public enum FLETCHER32

1.0.0.237 FP_FORMAT

include std/pretty.e
public enum FP_FORMAT

1.0.0.238 FREEBSD

include std/os.e
public enum FREEBSD

These constants are returned by the platform function.

WIN32 -- Host operating system is Windows•
LINUX -- Host operating system is Linux•
FREEBSD -- Host operating system is FreeBSD•
OSX -- Host operating system is Mac OS X•
SUNOS -- Host operating system is Sun's OpenSolaris•
OPENBSD -- Host operating system is OpenBSD•
NETBSD -- Host operating system is NetBSD•

Note:

Via the platform call, there is no way to determine if you are on Linux or FreeBSD. This was done to provide
a generic UNIX return value for platform.

In most situations you are better off to test the host platform by using the ifdef statement. It is both more
precise and faster.

1.0.0.239 FREE_BYTES

include std/filesys.e
public enum FREE_BYTES

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 40

1.0.0.240 FREE_RID

include std/memconst.e
export integer FREE_RID public enum A_READ

1.0.0.241 GET_EOF

include std/get.e
public constant GET_EOF

1.0.0.242 GET_FAIL

include std/get.e
public constant GET_FAIL

1.0.0.243 GET_LONG_ANSWER

include std/get.e
public constant GET_LONG_ANSWER

1.0.0.244 GET_NOTHING

include std/get.e
public constant GET_NOTHING

1.0.0.245 GET_SHORT_ANSWER

include std/get.e
public constant GET_SHORT_ANSWER

1.0.0.246 GET_SUCCESS

include std/get.e
public constant GET_SUCCESS

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 41

1.0.0.247 GRAY

include std/graphcst.e
public constant GRAY

1.0.0.248 GREEN

include std/graphcst.e
public constant GREEN

1.0.0.249 GetLastError_rid

include std/memconst.e
export atom GetLastError_rid

1.0.0.250 GetSystemInfo_rid

include std/memconst.e
export atom GetSystemInfo_rid

1.0.0.251 HALFPI

include std/mathcons.e
public constant HALFPI

Half of PI

1.0.0.252 HALFSQRT2

include std/mathcons.e
public constant HALFSQRT2

sqrt(2)/ 2

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 42

1.0.0.253 HALF_BLOCK_CURSOR

include std/console.e
public constant HALF_BLOCK_CURSOR

1.0.0.254 HAS_CASE

include std/cmdline.e
public constant HAS_CASE

This option switch is case sensitive. See cmd_parse

1.0.0.255 HAS_PARAMETER

include std/cmdline.e
public constant HAS_PARAMETER

This option switch does have a parameter. See cmd_parse

1.0.0.256 HELP

include std/cmdline.e
public constant HELP

This option switch triggers the 'help' display. See cmd_parse

1.0.0.257 HELP_RID

include std/cmdline.e
public enum HELP_RID

Additional help routine id. See cmd_parse

1.0.0.258 HOST_ALIASES

include std/net/dns.e
public enum HOST_ALIASES

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 43

1.0.0.259 HOST_IPS

include std/net/dns.e
public enum HOST_IPS

1.0.0.260 HOST_OFFICIAL_NAME

include std/net/dns.e
public enum HOST_OFFICIAL_NAME

1.0.0.261 HOST_TYPE

include std/net/dns.e
public enum HOST_TYPE

1.0.0.262 HSIEH32

include std/map.e
public enum HSIEH32

1.0.0.263 HTTP_HEADER_ACCEPT

include std/net/http.e
public constant HTTP_HEADER_ACCEPT

1.0.0.264 HTTP_HEADER_ACCEPTCHARSET

include std/net/http.e
public constant HTTP_HEADER_ACCEPTCHARSET

1.0.0.265 HTTP_HEADER_ACCEPTENCODING

include std/net/http.e
public constant HTTP_HEADER_ACCEPTENCODING

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 44

1.0.0.266 HTTP_HEADER_ACCEPTLANGUAGE

include std/net/http.e
public constant HTTP_HEADER_ACCEPTLANGUAGE

1.0.0.267 HTTP_HEADER_ACCEPTRANGES

include std/net/http.e
public constant HTTP_HEADER_ACCEPTRANGES

1.0.0.268 HTTP_HEADER_AUTHORIZATION

include std/net/http.e
public constant HTTP_HEADER_AUTHORIZATION

1.0.0.269 HTTP_HEADER_CACHECONTROL

include std/net/http.e
public constant HTTP_HEADER_CACHECONTROL

1.0.0.270 HTTP_HEADER_CONNECTION

include std/net/http.e
public constant HTTP_HEADER_CONNECTION

1.0.0.271 HTTP_HEADER_CONTENTLENGTH

include std/net/http.e
public constant HTTP_HEADER_CONTENTLENGTH

1.0.0.272 HTTP_HEADER_CONTENTTYPE

include std/net/http.e
public constant HTTP_HEADER_CONTENTTYPE

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 45

1.0.0.273 HTTP_HEADER_DATE

include std/net/http.e
public constant HTTP_HEADER_DATE

1.0.0.274 HTTP_HEADER_FROM

include std/net/http.e
public constant HTTP_HEADER_FROM

1.0.0.275 HTTP_HEADER_GET

include std/net/http.e
public constant HTTP_HEADER_GET

1.0.0.276 HTTP_HEADER_HOST

include std/net/http.e
public constant HTTP_HEADER_HOST

1.0.0.277 HTTP_HEADER_HTTPVERSION

include std/net/http.e
public constant HTTP_HEADER_HTTPVERSION

1.0.0.278 HTTP_HEADER_IFMODIFIEDSINCE

include std/net/http.e
public constant HTTP_HEADER_IFMODIFIEDSINCE

1.0.0.279 HTTP_HEADER_KEEPALIVE

include std/net/http.e
public constant HTTP_HEADER_KEEPALIVE

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 46

1.0.0.280 HTTP_HEADER_POST

include std/net/http.e
public constant HTTP_HEADER_POST

1.0.0.281 HTTP_HEADER_POSTDATA

include std/net/http.e
public constant HTTP_HEADER_POSTDATA

1.0.0.282 HTTP_HEADER_REFERER

include std/net/http.e
public constant HTTP_HEADER_REFERER

1.0.0.283 HTTP_HEADER_USERAGENT

include std/net/http.e
public constant HTTP_HEADER_USERAGENT

1.0.0.284 IDABORT

include std/win32/msgbox.e
public constant IDABORT

Abort button was selected.

1.0.0.285 IDCANCEL

include std/win32/msgbox.e
public constant IDCANCEL

Cancel button was selected.

1.0.0.286 IDIGNORE

include std/win32/msgbox.e
public constant IDIGNORE

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 47

Ignore button was selected.

1.0.0.287 IDNO

include std/win32/msgbox.e
public constant IDNO

No button was selected.

1.0.0.288 IDOK

include std/win32/msgbox.e
public constant IDOK

OK button was selected.

1.0.0.289 IDRETRY

include std/win32/msgbox.e
public constant IDRETRY

Retry button was selected.

1.0.0.290 IDYES

include std/win32/msgbox.e
public constant IDYES

Yes button was selected.

1.0.0.291 INDENT

include std/pretty.e
public enum INDENT

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 48

1.0.0.292 INSERT_FAILED

include std/eds.e
public enum INSERT_FAILED

couldn't insert a new record.

1.0.0.293 INT_FORMAT

include std/pretty.e
public enum INT_FORMAT

1.0.0.294 INVALID_ROUTINE_ID

include std/types.e
public constant INVALID_ROUTINE_ID

value returned from routine_id() when the routine doesm't exist or is out of scope. this is typically seen as -1
in legacy code.

1.0.0.295 INVLN10

include std/mathcons.e
public constant INVLN10

1 / ln(10)

1.0.0.296 INVLN2

include std/mathcons.e
public constant INVLN2

1 / (ln(2))

1.0.0.297 INVSQ2PI

include std/mathcons.e
public constant INVSQ2PI

1 / (sqrt(2PI))

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 49

1.0.0.298 LAST_ERROR_CODE

include std/eds.e
public enum LAST_ERROR_CODE

last error code

1.0.0.299 LEAVE

include std/map.e
public enum LEAVE

1.0.0.300 LEFT_DOWN

include std/mouse.e
public integer LEFT_DOWN

1.0.0.301 LEFT_UP

include std/mouse.e
public integer LEFT_UP

1.0.0.302 LINE_BREAKS

include std/pretty.e
public enum LINE_BREAKS

1.0.0.303 LINUX

include std/os.e
public enum LINUX

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 50

1.0.0.304 LN10

include std/mathcons.e
public constant LN10

ln(10) :: 10 = power(E, LN10)

1.0.0.305 LN2

include std/mathcons.e
public constant LN2

ln(2) :: 2 = power(E, LN2)

1.0.0.306 LOCK_EXCLUSIVE

include std/io.e
public enum LOCK_EXCLUSIVE

1.0.0.307 LOCK_SHARED

include std/io.e
public enum LOCK_SHARED

1.0.0.308 MAGENTA

include std/graphcst.e
public constant MAGENTA

1.0.0.309 MANDATORY

include std/cmdline.e
public constant MANDATORY

This option switch must be supplied on command line. See cmd_parse

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 51

1.0.0.310 MAP_ANONYMOUS

include std/unix/mmap.e
public constant MAP_ANONYMOUS

1.0.0.311 MAP_FILE

include std/unix/mmap.e
public constant MAP_FILE

1.0.0.312 MAP_FIXED

include std/unix/mmap.e
public constant MAP_FIXED

1.0.0.313 MAP_PRIVATE

include std/unix/mmap.e
public constant MAP_PRIVATE

1.0.0.314 MAP_SHARED

include std/unix/mmap.e
public constant MAP_SHARED

1.0.0.315 MAP_TYPE

include std/unix/mmap.e
public constant MAP_TYPE

1.0.0.316 MAX_ASCII

include std/pretty.e
public enum MAX_ASCII

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 52

1.0.0.317 MAX_LINES

include std/pretty.e
public enum MAX_LINES

1.0.0.318 MB_ABORTRETRYIGNORE

include std/win32/msgbox.e
public constant MB_ABORTRETRYIGNORE

Abort, Retry, Ignore

1.0.0.319 MB_APPLMODAL

include std/win32/msgbox.e
public constant MB_APPLMODAL

User must respond before doing something else

1.0.0.320 MB_DEFAULT_DESKTOP_ONLY

include std/win32/msgbox.e
public constant MB_DEFAULT_DESKTOP_ONLY

1.0.0.321 MB_DEFBUTTON1

include std/win32/msgbox.e
public constant MB_DEFBUTTON1

First button is default button

1.0.0.322 MB_DEFBUTTON2

include std/win32/msgbox.e
public constant MB_DEFBUTTON2

Second button is default button

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 53

1.0.0.323 MB_DEFBUTTON3

include std/win32/msgbox.e
public constant MB_DEFBUTTON3

Third button is default button

1.0.0.324 MB_DEFBUTTON4

include std/win32/msgbox.e
public constant MB_DEFBUTTON4

Fourth button is default button

1.0.0.325 MB_HELP

include std/win32/msgbox.e
public constant MB_HELP

Windows 95: Help button generates help event

1.0.0.326 MB_ICONASTERISK

include std/win32/msgbox.e
public constant MB_ICONASTERISK

1.0.0.327 MB_ICONERROR

include std/win32/msgbox.e
public constant MB_ICONERROR

1.0.0.328 MB_ICONEXCLAMATION

include std/win32/msgbox.e
public constant MB_ICONEXCLAMATION

Exclamation-point appears in the box

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 54

1.0.0.329 MB_ICONHAND

include std/win32/msgbox.e
public constant MB_ICONHAND

A hand appears

1.0.0.330 MB_ICONINFORMATION

include std/win32/msgbox.e
public constant MB_ICONINFORMATION

Lowercase letter i in a circle appears

1.0.0.331 MB_ICONQUESTION

include std/win32/msgbox.e
public constant MB_ICONQUESTION

A question-mark icon appears

1.0.0.332 MB_ICONSTOP

include std/win32/msgbox.e
public constant MB_ICONSTOP

1.0.0.333 MB_ICONWARNING

include std/win32/msgbox.e
public constant MB_ICONWARNING

1.0.0.334 MB_OK

include std/win32/msgbox.e
public constant MB_OK

Message box contains one push button: OK

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 55

1.0.0.335 MB_OKCANCEL

include std/win32/msgbox.e
public constant MB_OKCANCEL

Message box contains OK and Cancel

1.0.0.336 MB_RETRYCANCEL

include std/win32/msgbox.e
public constant MB_RETRYCANCEL

Message box contains Retry and Cancel

1.0.0.337 MB_RIGHT

include std/win32/msgbox.e
public constant MB_RIGHT

Windows 95: The text is right-justified

1.0.0.338 MB_RTLREADING

include std/win32/msgbox.e
public constant MB_RTLREADING

Windows 95: For Hebrew and Arabic systems

1.0.0.339 MB_SERVICE_NOTIFICATION

include std/win32/msgbox.e
public constant MB_SERVICE_NOTIFICATION

Windows NT: The caller is a service

1.0.0.340 MB_SETFOREGROUND

include std/win32/msgbox.e
public constant MB_SETFOREGROUND

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 56

Message box becomes the foreground window

1.0.0.341 MB_SYSTEMMODAL

include std/win32/msgbox.e
public constant MB_SYSTEMMODAL

All applications suspended until user responds

1.0.0.342 MB_TASKMODAL

include std/win32/msgbox.e
public constant MB_TASKMODAL

Similar to MB_APPLMODAL

1.0.0.343 MB_YESNO

include std/win32/msgbox.e
public constant MB_YESNO

Message box contains Yes and No

1.0.0.344 MB_YESNOCANCEL

include std/win32/msgbox.e
public constant MB_YESNOCANCEL

Message box contains Yes, No, and Cancel

possible values returned by MessageBox(). 0 means failure

1.0.0.345 MD5

include std/map.e
public enum MD5

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 57

1.0.0.346 MEM_COMMIT

include std/memconst.e
export constant MEM_COMMIT

1.0.0.347 MEM_RELEASE

include std/memconst.e
export constant MEM_RELEASE

1.0.0.348 MEM_RESERVE

include std/memconst.e
export constant MEM_RESERVE

1.0.0.349 MEM_RESET

include std/memconst.e
export constant MEM_RESET

1.0.0.350 MIDDLE_DOWN

include std/mouse.e
public integer MIDDLE_DOWN

1.0.0.351 MIDDLE_UP

include std/mouse.e
public integer MIDDLE_UP

1.0.0.352 MINF

include std/mathcons.e
public constant MINF

Negative Infinity

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 58

1.0.0.353 MIN_ASCII

include std/pretty.e
public enum MIN_ASCII

1.0.0.354 MISSING_END

include std/eds.e
public enum MISSING_END

Missing 0 terminator

1.0.0.355 MOVE

include std/mouse.e
public integer MOVE

1.0.0.356 MSG_CONFIRM

include std/socket.e
public constant MSG_CONFIRM

Tell the link layer that forward progress happened: you got a successful reply from the other side. If the link
layer doesn't get this it will regularly reprobe the neighbor (e.g., via a unicast ARP). Only valid on
SOCK_DGRAM and SOCK_RAW sockets and currently only implemented for IPv4 and IPv6.

1.0.0.357 MSG_CTRUNC

include std/socket.e
public constant MSG_CTRUNC

indicates that some control data were discarded due to lack of space in the buffer for ancillary data.

1.0.0.358 MSG_DONTROUTE

include std/socket.e
public constant MSG_DONTROUTE

Don't use a gateway to send out the packet, only send to hosts on directly connected networks. This is usually
used only by diagnostic or routing programs. This is only defined for protocol families that route; packet

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 59

sockets don't.

1.0.0.359 MSG_DONTWAIT

include std/socket.e
public constant MSG_DONTWAIT

Enables non-blocking operation; if the operation would block, EAGAIN or EWOULDBLOCK is returned.

1.0.0.360 MSG_EOR

include std/socket.e
public constant MSG_EOR

Terminates a record (when this notion is supported, as for sockets of type SOCK_SEQPACKET).

1.0.0.361 MSG_ERRQUEUE

include std/socket.e
public constant MSG_ERRQUEUE

indicates that no data was received but an extended error from the socket error queue.

1.0.0.362 MSG_FIN

include std/socket.e
public constant MSG_FIN

1.0.0.363 MSG_MORE

include std/socket.e
public constant MSG_MORE

The caller has more data to send. This flag is used with TCP sockets to obtain the same effect as the
TCP_CORK socket option, with the difference that this flag can be set on a per-call basis.

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 60

1.0.0.364 MSG_NOSIGNAL

include std/socket.e
public constant MSG_NOSIGNAL

Requests not to send SIGPIPE on errors on stream oriented sockets when the other end breaks the connection.
The EPIPE error is still returned.

1.0.0.365 MSG_OOB

include std/socket.e
public constant MSG_OOB

Sends out-of-band data on sockets that support this notion (e.g., of type SOCK_STREAM); the underlying
protocol must also support out-of-band data.

1.0.0.366 MSG_PEEK

include std/socket.e
public constant MSG_PEEK

This flag causes the receive operation to return data from the beginning of the receive queue without
removing that data from the queue. Thus, a subsequent receive call will return the same data.

1.0.0.367 MSG_PROXY

include std/socket.e
public constant MSG_PROXY

1.0.0.368 MSG_RST

include std/socket.e
public constant MSG_RST

1.0.0.369 MSG_SYN

include std/socket.e
public constant MSG_SYN

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 61

1.0.0.370 MSG_TRUNC

include std/socket.e
public constant MSG_TRUNC

indicates that the trailing portion of a datagram was discarded because the datagram was larger than the buffer
supplied.

1.0.0.371 MSG_TRYHARD

include std/socket.e
public constant MSG_TRYHARD

1.0.0.372 MSG_WAITALL

include std/socket.e
public constant MSG_WAITALL

This flag requests that the operation block until the full request is satisfied. However, the call may still return
less data than requested if a signal is caught, an error or disconnect occurs, or the next data to be received is of
a different type than that returned.

1.0.0.373 MULTILINE

public constant MULTILINE

When MULTILINE it is set, the "start of line" and "end of line" constructs match immediately following or
immediately before internal newlines in the subject string, respectively, as well as at the very start and end.
This is passed to new.

1.0.0.374 MULTIPLE

include std/cmdline.e
public constant MULTIPLE

This option switch may occur multiple times on a command line. See cmd_parse

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 62

1.0.0.375 MULTIPLY

include std/map.e
public enum MULTIPLY

1.0.0.376 M_ALLOC

include std/memconst.e
export constant M_ALLOC

1.0.0.377 M_FREE

include std/memconst.e
export constant M_FREE

1.0.0.378 NESTED_ALL

include std/search.e
public constant NESTED_ALL

1.0.0.379 NESTED_ANY

include std/search.e
public constant NESTED_ANY

1.0.0.380 NESTED_BACKWARD

include std/search.e
public constant NESTED_BACKWARD

1.0.0.381 NESTED_INDEX

include std/search.e
public constant NESTED_INDEX

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 63

1.0.0.382 NETBSD

include std/os.e
public enum NETBSD

1.0.0.383 NEWLINE_ANY

public constant NEWLINE_ANY

Sets ANY newline sequence as the NEWLINE sequence including those from UNICODE when UTF8 is also
set. The string will have to be encoded as UTF8, however. The NEWLINE sequence will match $ when
MULTILINE is set. This is passed to all routines including new.

1.0.0.384 NEWLINE_ANYCRLF

public constant NEWLINE_ANYCRLF

Sets ANY newline sequence from ASCII. The NEWLINE sequence will match $ when MULTILINE is set.
This is passed to all routines including new.

1.0.0.385 NEWLINE_CR

public constant NEWLINE_CR

Sets CR as the NEWLINE sequence. The NEWLINE sequence will match $ when MULTILINE is set. This is
passed to all routines including new.

1.0.0.386 NEWLINE_CRLF

public constant NEWLINE_CRLF

Sets CRLF as the NEWLINE sequence The NEWLINE sequence will match $ when MULTILINE is set. This
is passed to all routines including new.

1.0.0.387 NEWLINE_LF

public constant NEWLINE_LF

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 64

Sets LF as the NEWLINE sequence. The NEWLINE sequence will match $ when MULTILINE is set. This is
passed to all routines including new.

1.0.0.388 NORMAL_ORDER

include std/sort.e
public constant NORMAL_ORDER

The normal sort order used by the custom comparison routine.

1.0.0.389 NOTBOL

public constant NOTBOL

This indicates that beginning of the passed string does NOT start at the Beginning Of a Line (NOTBOL), so a
carrot symbol (^) in the original pattern will not match the beginning of the string. This is used by routines
other than new.

1.0.0.390 NOTEMPTY

public constant NOTEMPTY

Here matches of empty strings will not be allowed. In C, this is PCRE_NOTEMPTY. The pattern: `A*a*` will
match "AAAA", "aaaa", and "Aaaa" but not "". This is used by routines other than new.

1.0.0.391 NOTEOL

public constant NOTEOL

This indicates that end of the passed string does NOT end at the End Of a Line (NOTEOL), so a dollar sign
($) in the original pattern will not match the end of the string. This is used by routines other than new.

1.0.0.392 NO_AT_EXPANSION

include std/cmdline.e
public enum NO_AT_EXPANSION

Do not expand arguments that begin with '@' into the command line. Normally @filename will expand the
file names contents as if the file's contents were passed in on the command line. This option supresses this

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 65

behavior.

1.0.0.393 NO_AUTO_CAPTURE

public constant NO_AUTO_CAPTURE

Disables capturing subpatterns except when the subpatterns are named. This is passed to new.

1.0.0.394 NO_CASE

include std/cmdline.e
public constant NO_CASE

This option switch is not case sensitive. See cmd_parse

1.0.0.395 NO_CURSOR

include std/console.e
public constant NO_CURSOR

1.0.0.396 NO_DATABASE

include std/eds.e
public enum NO_DATABASE

current_db is not set

1.0.0.397 NO_HELP

include std/cmdline.e
public constant NO_HELP

1.0.0.398 NO_PARAMETER

include std/cmdline.e
public constant NO_PARAMETER

This option switch does not have a parameter. See cmd_parse

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 66

1.0.0.399 NO_ROUTINE_ID

include std/types.e
public constant NO_ROUTINE_ID

to be used as a flag for no routine_id() supplied.

1.0.0.400 NO_TABLE

include std/eds.e
public enum NO_TABLE

no table was found.

1.0.0.401 NO_UTF8_CHECK

public constant NO_UTF8_CHECK

Turn off checking for the validity of your UTF string. Use this with caution. An invalid utf8 string with this
option could crash your program. Only use this if you know the string is a valid utf8 string. See
unicode:validate. This is passed to all routines including new.

1.0.0.402 NO_VALIDATION

include std/cmdline.e
public enum NO_VALIDATION

Do not cause an error for an invalid parameter. See cmd_parse

1.0.0.403 NO_VALIDATION_AFTER_FIRST_EXTRA

include std/cmdline.e
public enum NO_VALIDATION_AFTER_FIRST_EXTRA

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 67

Do not cause an error for an invalid parameter after the first extra item has been found. This can be helpful for
processes such as the Interpreter itself that must deal with command line parameters that it is not meant to
handle. At expansions after the first extra are also disabled.

For instance:

eui -D TEST greet.ex -name John -greeting Bye -D TEST is meant for eui, but -name and
-greeting options are meant for greet.ex. See cmd_parse

eui @euopts.txt greet.ex @hotmail.com here 'hotmail.com' is not expanded into the command
line but 'euopts.txt' is.

1.0.0.404 NS_C_ANY

include std/net/dns.e
public constant NS_C_ANY

1.0.0.405 NS_C_IN

include std/net/dns.e
public constant NS_C_IN

1.0.0.406 NS_KT_DH

include std/net/dns.e
public constant NS_KT_DH

1.0.0.407 NS_KT_DSA

include std/net/dns.e
public constant NS_KT_DSA

1.0.0.408 NS_KT_PRIVATE

include std/net/dns.e
public constant NS_KT_PRIVATE

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 68

1.0.0.409 NS_KT_RSA

include std/net/dns.e
public constant NS_KT_RSA

1.0.0.410 NS_T_A

include std/net/dns.e
public constant NS_T_A

1.0.0.411 NS_T_A6

include std/net/dns.e
public constant NS_T_A6

1.0.0.412 NS_T_AAAA

include std/net/dns.e
public constant NS_T_AAAA

1.0.0.413 NS_T_ANY

include std/net/dns.e
public constant NS_T_ANY

1.0.0.414 NS_T_MX

include std/net/dns.e
public constant NS_T_MX

1.0.0.415 NS_T_NS

include std/net/dns.e
public constant NS_T_NS

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 69

1.0.0.416 NS_T_PTR

include std/net/dns.e
public constant NS_T_PTR

1.0.0.417 NULL

include std/dll.e
public constant NULL

C's NULL pointer

1.0.0.418 NULLDEVICE

public constant NULLDEVICE

Current platform's null device path: /dev/null on Unix, else NUL:.

1.0.0.419 NUMBER_OF_FREE_CLUSTERS

include std/filesys.e
public enum NUMBER_OF_FREE_CLUSTERS

1.0.0.420 NUM_ENTRIES

include std/map.e
public enum NUM_ENTRIES

Retrieves characteristics of a map.

Parameters:

the_map_p : the map being queried1.

Returns:

A sequence, of 7 integers:

NUM_ENTRIES -- number of entries•

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 70

NUM_IN_USE -- number of buckets in use•
NUM_BUCKETS -- number of buckets•
LARGEST_BUCKET -- size of largest bucket•
SMALLEST_BUCKET -- size of smallest bucket•
AVERAGE_BUCKET -- average size for a bucket•
STDEV_BUCKET -- standard deviation for the bucket length series•

Example 1:

sequence s = statistics(mymap)
printf(1, "The average size of the buckets is %d", s[AVERAGE_BUCKET])

1.0.0.421 OBJ_ATOM

include std/types.e
public constant OBJ_ATOM

Object is atom

1.0.0.422 OBJ_INTEGER

include std/types.e
public constant OBJ_INTEGER

Object is integer

1.0.0.423 OBJ_SEQUENCE

include std/types.e
public constant OBJ_SEQUENCE

Object is sequence

1.0.0.424 OBJ_UNASSIGNED

include std/types.e
public constant OBJ_UNASSIGNED

Object not assigned

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 71

1.0.0.425 OK

include std/socket.e
public constant OK

No error occurred.

1.0.0.426 ONCE

include std/cmdline.e
public constant ONCE

This option switch must only occur once on the command line. See cmd_parse

1.0.0.427 OPENBSD

include std/os.e
public enum OPENBSD

1.0.0.428 OPTIONAL

include std/cmdline.e
public constant OPTIONAL

This option switch does not have to be on command line. See cmd_parse

1.0.0.429 OPT_CNT

include std/cmdline.e
public enum OPT_CNT

The number of times that the routine has been called by cmd_parse for this option. See cmd_parse

1.0.0.430 OPT_IDX

include std/cmdline.e
public enum OPT_IDX

An index into the opts list. See cmd_parse

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 72

1.0.0.431 OPT_REV

include std/cmdline.e
public enum OPT_REV

The value 1 if the command line indicates that this option is to remove any earlier occurrences of it. See
cmd_parse

1.0.0.432 OPT_VAL

include std/cmdline.e
public enum OPT_VAL

The option's value as found on the command line. See cmd_parse

1.0.0.433 OSX

include std/os.e
public enum OSX

1.0.0.434 PAGE_EXECUTE

include std/memconst.e
public constant PAGE_EXECUTE

You may run the data in this page

1.0.0.435 PAGE_EXECUTE_READ

include std/memconst.e
public constant PAGE_EXECUTE_READ

You may read or run the data

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 73

1.0.0.436 PAGE_EXECUTE_READWRITE

include std/memconst.e
public constant PAGE_EXECUTE_READWRITE

You may run, read or write in this page

1.0.0.437 PAGE_EXECUTE_WRITECOPY

include std/memconst.e
public constant PAGE_EXECUTE_WRITECOPY

You may run or write in this page

1.0.0.438 PAGE_NOACCESS

include std/memconst.e
public constant PAGE_NOACCESS

You have no access to this page

1.0.0.439 PAGE_NONE

include std/memconst.e
public constant PAGE_NONE

You have no access to this page An alias to PAGE_NOACCESS

1.0.0.440 PAGE_READ

include std/memconst.e
public constant PAGE_READ

You may only read to this page An alias to PAGE_READONLY

1.0.0.441 PAGE_READONLY

include std/memconst.e
public constant PAGE_READONLY

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 74

You may only read data in this page

1.0.0.442 PAGE_READWRITE

include std/memconst.e
public constant PAGE_READWRITE

You may read or write in this page.

1.0.0.443 PAGE_READ_EXECUTE

include std/memconst.e
public constant PAGE_READ_EXECUTE

You may read or run the data An alias to PAGE_EXECUTE_READ

1.0.0.444 PAGE_READ_WRITE

include std/memconst.e
public constant PAGE_READ_WRITE

You may read or write to this page An alias to PAGE_READWRITE

1.0.0.445 PAGE_READ_WRITE_EXECUTE

include std/memconst.e
public constant PAGE_READ_WRITE_EXECUTE

You may run, read or write in this page An alias to PAGE_EXECUTE_READWRITE

1.0.0.446 PAGE_SIZE

include std/machine.e
public constant PAGE_SIZE

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 75

1.0.0.447 PAGE_WRITECOPY

include std/memconst.e
public constant PAGE_WRITECOPY

You may write to this page.

1.0.0.448 PAGE_WRITE_COPY

include std/memconst.e
public constant PAGE_WRITE_COPY

You may write to this page. Data will copied for use with other processes when you first write to it.

1.0.0.449 PAGE_WRITE_EXECUTE_COPY

include std/memconst.e
public constant PAGE_WRITE_EXECUTE_COPY

You may run or write to this page. Data will copied for use with other processes when you first write to it.

1.0.0.450 PARENT

include std/pipeio.e
public enum PARENT

Set of pipes that are for the use of the parent

1.0.0.451 PARTIAL

public constant PARTIAL

This option has no effect with these routines. Refer to the C documentation for what it does in C. In C, this
constant is called PCRE_PARTIAL. This is used by routines other than new.

1.0.0.452 PATHSEP

public constant PATHSEP

Current platform's path separator character: : on Unix, else ;.

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 76

1.0.0.453 PATH_BASENAME

include std/filesys.e
public enum PATH_BASENAME

1.0.0.454 PATH_DIR

include std/filesys.e
public enum PATH_DIR

1.0.0.455 PATH_DRIVEID

include std/filesys.e
public enum PATH_DRIVEID

1.0.0.456 PATH_FILEEXT

include std/filesys.e
public enum PATH_FILEEXT

1.0.0.457 PATH_FILENAME

include std/filesys.e
public enum PATH_FILENAME

1.0.0.458 PAUSE_MSG

include std/cmdline.e
public enum PAUSE_MSG

Supply a message to display and pause just prior to abort() being called.

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 77

1.0.0.459 PHI

include std/mathcons.e
public constant PHI

phi => Golden Ratio = (1 + sqrt(5)) / 2

1.0.0.460 PI

include std/mathcons.e
public constant PI

PI is the ratio of a circle's circumference to it's diameter.

PI = C / D :: C = PI * D :: C = PI * 2 * R(radius)

1.0.0.461 PID

include std/pipeio.e
public enum PID

Process ID

1.0.0.462 PINF

include std/mathcons.e
public constant PINF

Positive Infinity

1.0.0.463 PISQR

include std/mathcons.e
public constant PISQR

PI ^ 2

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 78

1.0.0.464 PRETTY_DEFAULT

include std/pretty.e
public constant PRETTY_DEFAULT

1.0.0.465 PROT_EXEC

include std/unix/mmap.e
public constant PROT_EXEC

1.0.0.466 PROT_NONE

include std/unix/mmap.e
public constant PROT_NONE

1.0.0.467 PROT_READ

include std/unix/mmap.e
public constant PROT_READ

1.0.0.468 PROT_WRITE

include std/unix/mmap.e
public constant PROT_WRITE

1.0.0.469 PUT

include std/map.e
public enum PUT

1.0.0.470 QUARTPI

include std/mathcons.e
public constant QUARTPI

Quarter of PI

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 79

1.0.0.471 RADIANS_TO_DEGREES

include std/mathcons.e
public constant RADIANS_TO_DEGREES

Conversion factor: Radians to Degrees = 180 / PI

1.0.0.472 RD_INPLACE

include std/sequence.e
public enum RD_INPLACE

These are used with the remove_dups() function.

RD_INPLACE removes items while preserving the original order of the unique items.♦
RD_PRESORTED assumes that the elements in source_data are already sorted. If they
are not already sorted, this option merely removed adjacent duplicate elements.

♦

RD_SORT will return the unique elements in ascending sorted order.♦

•

1.0.0.473 RED

include std/graphcst.e
public constant RED

1.0.0.474 REVERSE_ORDER

include std/sort.e
public constant REVERSE_ORDER

Reverses the sense of the order returned by a custom comparison routine.

1.0.0.475 RIGHT_DOWN

include std/mouse.e
public integer RIGHT_DOWN

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 80

1.0.0.476 RIGHT_UP

include std/mouse.e
public integer RIGHT_UP

1.0.0.477 ROTATE_LEFT

include std/sequence.e
public constant ROTATE_LEFT

1.0.0.478 ROTATE_RIGHT

include std/sequence.e
public constant ROTATE_RIGHT

1.0.0.479 SCREEN

include std/io.e
public constant SCREEN

Screen (Standard Out)

1.0.0.480 SD_BOTH

include std/socket.e
public constant SD_BOTH

Shutdown both send and receive operations.

Pass to the optname parameter of the functions get_option and set_option.

These options are highly OS specific and are normally not needed for most socket communication. They are
provided here for your convenience. If you should need to set socket options, please refer to your OS
reference material.

There may be other values that your OS defines and some defined here are not supported on all operating
systems.

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 81

1.0.0.481 SD_RECEIVE

include std/socket.e
public constant SD_RECEIVE

Shutdown the receive operations.

1.0.0.482 SD_SEND

include std/socket.e
public constant SD_SEND

Shutdown the send operations.

1.0.0.483 SECTORS_PER_CLUSTER

include std/filesys.e
public enum SECTORS_PER_CLUSTER

1.0.0.484 SELECT_IS_ERROR

include std/socket.e
public enum SELECT_IS_ERROR

Boolean (1/0) value indicating the error state.

Pass one of the following to the method parameter of shutdown.

1.0.0.485 SELECT_IS_READABLE

include std/socket.e
public enum SELECT_IS_READABLE

Boolean (1/0) value indicating the readability.

1.0.0.486 SELECT_IS_WRITABLE

include std/socket.e
public enum SELECT_IS_WRITABLE

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 82

Boolean (1/0) value indicating the writeability.

1.0.0.487 SELECT_SOCKET

include std/socket.e
public enum SELECT_SOCKET

The socket

1.0.0.488 SEQ_NOALT

include std/sequence.e
public constant SEQ_NOALT

Indicates that remove_subseq() must not replace removed sub-sequences with an alternative value.

1.0.0.489 SHA256

include std/map.e
public enum SHA256

1.0.0.490 SHARED_LIB_EXT

public constant SHARED_LIB_EXT

Current platform's shared library extension. For instance it can be dll, so or dylib depending on the
platform.

1.0.0.491 SHOW_ONLY_OPTIONS

include std/cmdline.e
public enum SHOW_ONLY_OPTIONS

Only display the option list in show_help. Do not display other information such as program name, options,
etc... See cmd_parse

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 83

1.0.0.492 SIDE_NONE

include std/sets.e
public enum SIDE_NONE

The following constants denote orientation of distributivity or unitarity:

SIDE_NONE -- no units, or no distributivity•
SIDE_LEFT -- property is requested or verified on the left side•
SIDE_RIGHT -- property is requested or verified on the right side•
SIDE_BOTH -- property is requested or verified on both sides.•

1.0.0.493 SLASH

public constant SLASH

Current platform's path separator character

Comments:

When on Windows, '\\'. When on Unix, '/'.

1.0.0.494 SLASHES

public constant SLASHES

Current platform's possible path separators. This is slightly different in that on Windows the path separators
variable contains \\ as well as : and / as newer Windows versions support / as a path separator. On Unix
systems, it only contains /.

1.0.0.495 SMALLMAP

include std/map.e
public constant SMALLMAP

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 84

1.0.0.496 SM_TEXT

include std/map.e
public enum SM_TEXT

Saves a map to a file.

Parameters:

m : a map.1.
file_name_p : Either a sequence, the name of the file to save to, or an open file handle as returned
by open().

2.

type : an integer. SM_TEXT for a human-readable format (default), SM_RAW for a smaller and
faster format, but not human-readable.

3.

Returns:

An integer, the number of keys saved to the file, or -1 if the save failed.

Comments:

If file_name_p is an already opened file handle, this routine will write to that file and not close it.
Otherwise, the named file will be created and closed by this routine.

The SM_TEXT type saves the map keys and values in a text format which can be read and edited by standard
text editor. Each entry in the map is saved as a KEY/VALUE pair in the form

key = value

Note that if the 'key' value is a normal string value, it can be enclosed in double quotes. If it is not thus quoted,
the first character of the key determines its Euphoria value type. A dash or digit implies an atom, an left-brace
implies a sequence, an alphabetic character implies a text string that extends to the next equal '=' symbol, and
anything else is ignored.

Note that if a line contains a double-dash, then all text from the double-dash to the end of the line will be
ignored. This is so you can optionally add comments to the saved map. Also, any blank lines are ignored too.

All text after the '=' symbol is assumed to be the map item's value data.

The SM_RAW type saves the map in an efficient manner. It is generally smaller than the text format and is
faster to process, but it is not human readable and standard text editors can not be used to edit it. In this
format, the file will

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 85

contain three serialized sequences:

Header sequence: {integer:format version, string: date and time of save (YYMMDDhhmmss),
sequence: euphoria version {major, minor, revision, patch}}

1.

Keys. A list of all the keys2.
Values. A list of the corresponding values for the keys.3.

Example 1:

map AppOptions
 if save_map(AppOptions, "c:\myapp\options.txt") = -1
 Error("Failed to save application options")
 end if
 if save_map(AppOptions, "c:\myapp\options.dat", SM_RAW) = -1
 Error("Failed to save application options")
 end if

See Also:

load_map

1.0.0.497 SND_ASTERISK

include std/win32/sounds.e
public constant SND_ASTERISK

1.0.0.498 SND_DEFAULT

include std/win32/sounds.e
public constant SND_DEFAULT

1.0.0.499 SND_EXCLAMATION

include std/win32/sounds.e
public constant SND_EXCLAMATION

1.0.0.500 SND_QUESTION

include std/win32/sounds.e
public constant SND_QUESTION

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 86

1.0.0.501 SND_STOP

include std/win32/sounds.e
public constant SND_STOP

1.0.0.502 SOCKET_SOCKADDR_IN

include std/socket.e
export enum SOCKET_SOCKADDR_IN

Accessor index for the sockaddr_in pointer of a socket type

1.0.0.503 SOCKET_SOCKET

include std/socket.e
export enum SOCKET_SOCKET

Accessor index for socket handle of a socket type

1.0.0.504 SOCK_DGRAM

include std/socket.e
public constant SOCK_DGRAM

Supports datagrams (connectionless, unreliable messages of a fixed maximum length).

1.0.0.505 SOCK_RAW

include std/socket.e
public constant SOCK_RAW

Provides raw network protocol access.

1.0.0.506 SOCK_RDM

include std/socket.e
public constant SOCK_RDM

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 87

Provides a reliable datagram layer that does not guarantee ordering.

1.0.0.507 SOCK_SEQPACKET

include std/socket.e
public constant SOCK_SEQPACKET

Obsolete and should not be used in new programs

Use with the result of select.

1.0.0.508 SOCK_STREAM

include std/socket.e
public constant SOCK_STREAM

Provides sequenced, reliable, two-way, connection-based byte streams. An out-of-band data transmission
mechanism may be supported.

1.0.0.509 SOL_SOCKET

include std/socket.e
public constant SOL_SOCKET

1.0.0.510 SO_ACCEPTCONN

include std/socket.e
public constant SO_ACCEPTCONN

1.0.0.511 SO_BINDTODEVICE

include std/socket.e
public constant SO_BINDTODEVICE

Pass to the flags parameter of send and receive

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 88

1.0.0.512 SO_BROADCAST

include std/socket.e
public constant SO_BROADCAST

1.0.0.513 SO_CONNDATA

include std/socket.e
public constant SO_CONNDATA

1.0.0.514 SO_CONNDATALEN

include std/socket.e
public constant SO_CONNDATALEN

1.0.0.515 SO_CONNOPT

include std/socket.e
public constant SO_CONNOPT

1.0.0.516 SO_CONNOPTLEN

include std/socket.e
public constant SO_CONNOPTLEN

1.0.0.517 SO_DEBUG

include std/socket.e
public constant SO_DEBUG

1.0.0.518 SO_DISCDATA

include std/socket.e
public constant SO_DISCDATA

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 89

1.0.0.519 SO_DISCDATALEN

include std/socket.e
public constant SO_DISCDATALEN

1.0.0.520 SO_DISCOPT

include std/socket.e
public constant SO_DISCOPT

1.0.0.521 SO_DISCOPTLEN

include std/socket.e
public constant SO_DISCOPTLEN

1.0.0.522 SO_DONTLINGER

include std/socket.e
public constant SO_DONTLINGER

1.0.0.523 SO_DONTROUTE

include std/socket.e
public constant SO_DONTROUTE

1.0.0.524 SO_ERROR

include std/socket.e
public constant SO_ERROR

1.0.0.525 SO_KEEPALIVE

include std/socket.e
public constant SO_KEEPALIVE

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 90

1.0.0.526 SO_LINGER

include std/socket.e
public constant SO_LINGER

1.0.0.527 SO_MAXDG

include std/socket.e
public constant SO_MAXDG

1.0.0.528 SO_MAXPATHDG

include std/socket.e
public constant SO_MAXPATHDG

1.0.0.529 SO_OOBINLINE

include std/socket.e
public constant SO_OOBINLINE

1.0.0.530 SO_OPENTYPE

include std/socket.e
public constant SO_OPENTYPE

1.0.0.531 SO_PASSCRED

include std/socket.e
public constant SO_PASSCRED

1.0.0.532 SO_PEERCRED

include std/socket.e
public constant SO_PEERCRED

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 91

1.0.0.533 SO_RCVBUF

include std/socket.e
public constant SO_RCVBUF

1.0.0.534 SO_RCVLOWAT

include std/socket.e
public constant SO_RCVLOWAT

1.0.0.535 SO_RCVTIMEO

include std/socket.e
public constant SO_RCVTIMEO

1.0.0.536 SO_REUSEADDR

include std/socket.e
public constant SO_REUSEADDR

1.0.0.537 SO_REUSEPORT

include std/socket.e
public constant SO_REUSEPORT

1.0.0.538 SO_SECURITY_AUTHENTICATION

include std/socket.e
public constant SO_SECURITY_AUTHENTICATION

1.0.0.539 SO_SECURITY_ENCRYPTION_NETWORK

include std/socket.e
public constant SO_SECURITY_ENCRYPTION_NETWORK

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 92

1.0.0.540 SO_SECURITY_ENCRYPTION_TRANSPORT

include std/socket.e
public constant SO_SECURITY_ENCRYPTION_TRANSPORT

1.0.0.541 SO_SNDBUF

include std/socket.e
public constant SO_SNDBUF

1.0.0.542 SO_SNDLOWAT

include std/socket.e
public constant SO_SNDLOWAT

1.0.0.543 SO_SNDTIMEO

include std/socket.e
public constant SO_SNDTIMEO

1.0.0.544 SO_SYNCHRONOUS_ALTERT

include std/socket.e
public constant SO_SYNCHRONOUS_ALTERT

1.0.0.545 SO_SYNCHRONOUS_NONALERT

include std/socket.e
public constant SO_SYNCHRONOUS_NONALERT

1.0.0.546 SO_TYPE

include std/socket.e
public constant SO_TYPE

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 93

1.0.0.547 SO_USELOOPBACK

include std/socket.e
public constant SO_USELOOPBACK

1.0.0.548 SQRT2

include std/mathcons.e
public constant SQRT2

sqrt(2)

1.0.0.549 SQRT3

include std/mathcons.e
public constant SQRT3

Square root of 3

1.0.0.550 SQRT5

include std/mathcons.e
public constant SQRT5

sqrt(5)

1.0.0.551 SQRTE

include std/mathcons.e
public constant SQRTE

sqrt(e)

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 94

1.0.0.552 START_COLUMN

include std/pretty.e
public enum START_COLUMN

1.0.0.553 STDERR

include std/io.e
public constant STDERR

Standard Error

1.0.0.554 STDERR

include std/pipeio.e
public enum STDERR

Child processes standard error

1.0.0.555 STDFLTR_ALPHA

public constant STDFLTR_ALPHA

Predefined routine_id for use with filter().

Comments:

Used to filter out non-alphabetic characters from a string.

Example:

-- Collect only the alphabetic characters from 'text'
 result = filter(text, STDFLTR_ALPHA)

1.0.0.556 STDIN

include std/io.e
public constant STDIN

Standard Input

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 95

1.0.0.557 STDIN

include std/pipeio.e
public enum STDIN

Child processes standard input

1.0.0.558 STDOUT

include std/io.e
public constant STDOUT

Standard Output

1.0.0.559 STDOUT

include std/pipeio.e
public enum STDOUT

Child processes standard output

1.0.0.560 STRING_OFFSETS

public constant STRING_OFFSETS

This is used by matches and all_matches.

1.0.0.561 ST_ALLNUM

include std/stats.e
public enum ST_ALLNUM

The supplied data consists of only atoms.

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 96

1.0.0.562 ST_FULLPOP

include std/stats.e
public enum ST_FULLPOP

The supplied data is the entire population.

1.0.0.563 ST_IGNSTR

include std/stats.e
public enum ST_IGNSTR

Any sub-sequences (eg. strings) in the supplied data are ignored.

1.0.0.564 ST_SAMPLE

include std/stats.e
public enum ST_SAMPLE

The supplied data is only a random sample of the population.

1.0.0.565 ST_ZEROSTR

include std/stats.e
public enum ST_ZEROSTR

Any sub-sequences (eg. strings) in the supplied data are assumed to have the value zero.

1.0.0.566 SUBTRACT

include std/map.e
public enum SUBTRACT

1.0.0.567 SUNOS

include std/os.e
public enum SUNOS

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 97

1.0.0.568 SyntaxColor

include syncolor.e
public function SyntaxColor(sequence pline)

1.0.0.569 TDATA

include tokenize.e
public enum TDATA

1.0.0.570 TEST_QUIET

include std/unittest.e
public enum TEST_QUIET

1.0.0.571 TEST_SHOW_ALL

include std/unittest.e
public enum TEST_SHOW_ALL

1.0.0.572 TEST_SHOW_FAILED_ONLY

include std/unittest.e
public enum TEST_SHOW_FAILED_ONLY

1.0.0.573 TEXT_MODE

include std/io.e
public enum TEXT_MODE

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 98

1.0.0.574 TFORM

include tokenize.e
public enum TFORM

1.0.0.575 TF_ATOM

include tokenize.e
public constant TF_ATOM

1.0.0.576 TF_HEX

include tokenize.e
public constant TF_HEX

1.0.0.577 TF_INT

include tokenize.e
public constant TF_INT

1.0.0.578 THICK_UNDERLINE_CURSOR

include std/console.e
public constant THICK_UNDERLINE_CURSOR

1.0.0.579 TLNUM

include tokenize.e
public enum TLNUM

1.0.0.580 TLPOS

include tokenize.e
public enum TLPOS

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 99

1.0.0.581 TOTAL_BYTES

include std/filesys.e
public enum TOTAL_BYTES

1.0.0.582 TOTAL_NUMBER_OF_CLUSTERS

include std/filesys.e
public enum TOTAL_NUMBER_OF_CLUSTERS

1.0.0.583 TRUE

include std/types.e
public constant TRUE

Boolean TRUE value

1.0.0.584 TTYPE

include tokenize.e
public enum TTYPE

1.0.0.585 TWOPI

include std/mathcons.e
public constant TWOPI

Two times PI

1.0.0.586 T_BLANK

include tokenize.e
public constant T_BLANK

1.0.0.587 T_CHAR

include tokenize.e
public constant T_CHAR

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 100

quoted character

1.0.0.588 T_COLON

include tokenize.e
public constant T_COLON

1.0.0.589 T_COMMA

include tokenize.e
public constant T_COMMA

1.0.0.590 T_COMMENT

include tokenize.e
public constant T_COMMENT

1.0.0.591 T_CONCAT

include tokenize.e
public constant T_CONCAT

1.0.0.592 T_CONCATEQ

include tokenize.e
public constant T_CONCATEQ

1.0.0.593 T_DELIMITER

include tokenize.e
public constant T_DELIMITER

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 101

1.0.0.594 T_DIVIDE

include tokenize.e
public constant T_DIVIDE

1.0.0.595 T_DIVIDEEQ

include tokenize.e
public constant T_DIVIDEEQ

1.0.0.596 T_DOLLAR

include tokenize.e
public constant T_DOLLAR

1.0.0.597 T_DOUBLE_OPS

include tokenize.e
public constant T_DOUBLE_OPS

1.0.0.598 T_EOF

include tokenize.e
public constant T_EOF

1.0.0.599 T_EQ

include tokenize.e
public constant T_EQ

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 102

1.0.0.600 T_GT

include tokenize.e
public constant T_GT

1.0.0.601 T_GTEQ

include tokenize.e
public constant T_GTEQ

1.0.0.602 T_IDENTIFIER

include tokenize.e
public constant T_IDENTIFIER

1.0.0.603 T_KEYWORD

include tokenize.e
public constant T_KEYWORD

1.0.0.604 T_LBRACE

include tokenize.e
public constant T_LBRACE

1.0.0.605 T_LBRACKET

include tokenize.e
public constant T_LBRACKET

1.0.0.606 T_LPAREN

include tokenize.e
public constant T_LPAREN

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 103

1.0.0.607 T_LT

include tokenize.e
public constant T_LT

1.0.0.608 T_LTEQ

include tokenize.e
public constant T_LTEQ

1.0.0.609 T_MINUS

include tokenize.e
public constant T_MINUS

1.0.0.610 T_MINUSEQ

include tokenize.e
public constant T_MINUSEQ

1.0.0.611 T_MULTIPLY

include tokenize.e
public constant T_MULTIPLY

1.0.0.612 T_MULTIPLYEQ

include tokenize.e
public constant T_MULTIPLYEQ

1.0.0.613 T_NOT

include tokenize.e
public constant T_NOT

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 104

1.0.0.614 T_NOTEQ

include tokenize.e
public constant T_NOTEQ

1.0.0.615 T_NULL

include tokenize.e
public constant T_NULL

1.0.0.616 T_NUMBER

include tokenize.e
public constant T_NUMBER

1.0.0.617 T_PERIOD

include tokenize.e
public constant T_PERIOD

1.0.0.618 T_PLUS

include tokenize.e
public constant T_PLUS

1.0.0.619 T_PLUSEQ

include tokenize.e
public constant T_PLUSEQ

1.0.0.620 T_QPRINT

include tokenize.e
public constant T_QPRINT

quick print (? x)

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 105

1.0.0.621 T_RBRACE

include tokenize.e
public constant T_RBRACE

1.0.0.622 T_RBRACKET

include tokenize.e
public constant T_RBRACKET

1.0.0.623 T_RPAREN

include tokenize.e
public constant T_RPAREN

1.0.0.624 T_SHBANG

include tokenize.e
public constant T_SHBANG

1.0.0.625 T_SINGLE_OPS

include tokenize.e
public constant T_SINGLE_OPS

1.0.0.626 T_SLICE

include tokenize.e
public constant T_SLICE

1.0.0.627 T_STRING

include tokenize.e
public constant T_STRING

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 106

string

1.0.0.628 UNDERLINE_CURSOR

include std/console.e
public constant UNDERLINE_CURSOR

1.0.0.629 UNGREEDY

public constant UNGREEDY

This modifier sets the pattern such that quantifiers are not greedy by default, but become greedy if followed
by a question mark.

This is passed to new.

1.0.0.630 UNIX_TEXT

include std/io.e
public enum UNIX_TEXT

1.0.0.631 URL_ENTIRE

include std/net/common.e
public constant URL_ENTIRE

1.0.0.632 URL_HOSTNAME

include std/net/url.e
public enum URL_HOSTNAME

1.0.0.633 URL_HTTP_DOMAIN

include std/net/common.e
public constant URL_HTTP_DOMAIN

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 107

1.0.0.634 URL_HTTP_PATH

include std/net/common.e
public constant URL_HTTP_PATH

1.0.0.635 URL_HTTP_QUERY

include std/net/common.e
public constant URL_HTTP_QUERY

1.0.0.636 URL_MAIL_ADDRESS

include std/net/common.e
public constant URL_MAIL_ADDRESS

1.0.0.637 URL_MAIL_DOMAIN

include std/net/common.e
public constant URL_MAIL_DOMAIN

1.0.0.638 URL_MAIL_QUERY

include std/net/common.e
public constant URL_MAIL_QUERY

1.0.0.639 URL_MAIL_USER

include std/net/common.e
public constant URL_MAIL_USER

1.0.0.640 URL_PASSWORD

include std/net/url.e
public enum URL_PASSWORD

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 108

1.0.0.641 URL_PATH

include std/net/url.e
public enum URL_PATH

1.0.0.642 URL_PORT

include std/net/url.e
public enum URL_PORT

1.0.0.643 URL_PROTOCOL

include std/net/common.e
public constant URL_PROTOCOL

1.0.0.644 URL_PROTOCOL

include std/net/url.e
public enum URL_PROTOCOL

1.0.0.645 URL_QUERY_STRING

include std/net/url.e
public enum URL_QUERY_STRING

1.0.0.646 URL_USER

include std/net/url.e
public enum URL_USER

1.0.0.647 USED_BYTES

include std/filesys.e
public enum USED_BYTES

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 109

1.0.0.648 UTF8

public constant UTF8

Makes strings passed in to be interpreted as a UTF8 encoded string. This is passed to new.

1.0.0.649 VALIDATE_ALL

include std/cmdline.e
public enum VALIDATE_ALL

Validate all parameters (default). See cmd_parse

1.0.0.650 VC_COLOR

include std/graphcst.e
public enum VC_COLOR

1.0.0.651 VC_COLUMNS

include std/graphcst.e
public enum VC_COLUMNS

1.0.0.652 VC_LINES

include std/graphcst.e
public enum VC_LINES

1.0.0.653 VC_MODE

include std/graphcst.e
public enum VC_MODE

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 110

1.0.0.654 VC_NCOLORS

include std/graphcst.e
public enum VC_NCOLORS

1.0.0.655 VC_PAGES

include std/graphcst.e
public enum VC_PAGES

1.0.0.656 VC_SCRNCOLS

include std/graphcst.e
public enum VC_SCRNCOLS

1.0.0.657 Colors

1.0.0.658 VC_SCRNLINES

include std/graphcst.e
public enum VC_SCRNLINES

1.0.0.659 VC_XPIXELS

include std/graphcst.e
public enum VC_XPIXELS

1.0.0.660 VC_YPIXELS

include std/graphcst.e
public enum VC_YPIXELS

1.0.0.661 VirtualAlloc_rid

include std/memconst.e
export atom VirtualAlloc_rid

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 111

1.0.0.662 VirtualFree_rid

include std/memory.e
export atom VirtualFree_rid

1.0.0.663 VirtualFree_rid

include std/safe.e
export atom VirtualFree_rid

1.0.0.664 VirtualLock_rid

include std/memconst.e
export atom VirtualLock_rid

1.0.0.665 VirtualProtect_rid

include std/memconst.e
export atom VirtualProtect_rid

1.0.0.666 VirtualUnlock_rid

include std/memconst.e
export atom VirtualUnlock_rid

1.0.0.667 WHITE

include std/graphcst.e
public constant WHITE

1.0.0.668 WIN32

include std/os.e
public enum WIN32

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 112

1.0.0.669 WRAP

include std/pretty.e
public enum WRAP

1.0.0.670 W_BAD_PATH

include std/filesys.e
public constant W_BAD_PATH

Bad path error code. See walk_dir

1.0.0.671 YEAR

include std/datetime.e
public enum YEAR

Accessors

YEAR•
MONTH•
DAY•
HOUR•
MINUTE•
SECOND•

1.0.0.672 YEARS

include std/datetime.e
public enum YEARS

Intervals

YEARS•
MONTHS•
WEEKS•
DAYS•
HOURS•
MINUTES•
SECONDS•
DATE•

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 113

1.0.0.673 YELLOW

include std/graphcst.e
public constant YELLOW

Euphoria v4.0 svn3379

1.0.0.2 ADDR_ADDRESS 114

2 Routines

2.0.0.1 abort

<built-in> procedure abort(atom error)

Abort execution of the program.

Parameters:

error : an integer, the exit code to return.1.

Comments:

error is expected to lie in the 0..255 range. 0 is usually interpreted as the sign of a successful completion.

Other values can indicate various kinds of errors. Windows batch (.bat) programs can read this value using the
errorlevel feature. Non integer values are rounded down. A Euphoria program can read this value using
system_exec().

abort() is useful when a program is many levels deep in subroutine calls, and execution must end
immediately, perhaps due to a severe error that has been detected.

If you don't use abort(), the interpreter will normally return an exit status code of 0. If your program fails
with a Euphoria-detected compile-time or run-time error then a code of 1 is returned.

Example 1:

if x = 0 then

 abort(1)
else
 z = y / x
end if

See Also:

crash_message, system_exec

Euphoria v4.0 svn3379

2 Routines 115

2.0.0.2 abs

include std/math.e
public function abs(object a)

Returns the absolute value of numbers.

Parameters:

value : an object, each atom is processed, no matter how deeply nested.1.

Returns:

An object, the same shape as value. When value is an atom, the result is the same if not less than zero,
and the opposite value otherwise.

Comments:

This function may be applied to an atom or to all elements of a sequence

Example 1:

x = abs({10.5, -12, 3})
-- x is {10.5, 12, 3}

i = abs(-4)
-- i is 4

See Also:

sign

2.0.0.3 absolute_path

include std/filesys.e
public function absolute_path(sequence filename)

Determine if the supplied string is an absolute path or a relative path.

Parameters:

filename : a sequence, the name of the file path1.

Euphoria v4.0 svn3379

Parameters: 116

Returns:

An integer, 0 if filename is a relative path or 1 otherwise.

Comment:

A relative path is one which is relative to the current directory and an absolute path is one that doesn't need to
know the current directory to find the file.

Example 1:

? absolute_path("") -- returns 0
? absolute_path("/usr/bin/abc") -- returns 1
? absolute_path("\\temp\\somefile.doc") -- returns 1
? absolute_path("../abc") -- returns 0
? absolute_path("local/abc.txt") -- returns 0
? absolute_path("abc.txt") -- returns 0
? absolute_path("c:..\\abc") -- returns 0
-- The next two examples return 0 on Unix platforms and 1 on Microsoft platforms
? absolute_path("c:\\windows\\system32\\abc")
? absolute_path("c:/windows/system32/abc")

2.0.0.4 accept

include std/socket.e
public function accept(socket sock)

Produces a new socket for an incoming connection.

Parameters:

sock: the server socket1.

Returns:

An atom, on error
A sequence, {socket client, sequence client_ip_address} on success.

Comments:

Using this function allows communication to occur on a "side channel" while the main server socket remains
available for new connections.

accept() must be called after bind() and listen().

Euphoria v4.0 svn3379

Parameters: 117

2.0.0.5 add

include std/datetime.e
public function add(datetime dt, object qty, integer interval)

Add a number of intervals to a datetime.

Parameters:

dt : the base datetime1.
qty : the number of intervals to add. It should be positive.2.
interval : which kind of interval to add.3.

Returns:

A sequence, more precisely a datetime representing the new moment in time.

Comments:

Please see Constants for Date/Time for a reference of valid intervals.

Do not confuse the item access constants such as YEAR, MONTH, DAY, etc... with the interval constants
YEARS, MONTHS, DAYS, etc...

When adding MONTHS, it is a calendar based addition. For instance, a date of 5/2/2008 with 5 MONTHS
added will become 10/2/2008. MONTHS does not compute the number of days per each month and the
average number of days per month.

When adding YEARS, leap year is taken into account. Adding 4 YEARS to a date may result in a different
day of month number due to leap year.

Example 1:

d2 = add(d1, 35, SECONDS) -- add 35 seconds to d1
d2 = add(d1, 7, WEEKS) -- add 7 weeks to d1
d2 = add(d1, 19, YEARS) -- add 19 years to d1

See Also:

subtract, diff

Euphoria v4.0 svn3379

Parameters: 118

2.0.0.6 add_item

include std/sequence.e
public function add_item(object needle, sequence haystack, integer pOrder = 1)

Adds an item to the sequence if its not already there. If it already exists in the list, the list is returned
unchanged.

Parameters:

needle : object to add.1.
haystack : sequence to add it to.2.
order : an integer; determines how the needle affects the haystack. It can be added to the front
(prepended), to the back (appended), or sorted after adding. The default is to prepend it.

3.

Returns:

A sequence, which is haystack with needle added to it.

Comments:

An error occurs if an invalid order argument is supplied.

The following enum is provided for specifying order:

ADD_PREPEND -- prepend needle to haystack. This is the default option.•
ADD_APPEND -- append needle to haystack.•
ADD_SORT_UP -- sort haystack in ascending order after inserting needle•
ADD_SORT_DOWN -- sort haystack in descending order after inserting needle•

Example 1:

s = add_item(1, {3,4,2}, ADD_PREPEND) -- prepend
-- s is {1,3,4,2}

Example 2:

s = add_item(1, {3,4,2}, ADD_APPEND) -- append
-- s is {3,4,2,1}

Euphoria v4.0 svn3379

Parameters: 119

Example 3:

s = add_item(1, {3,4,2}, ADD_SORT_UP) -- ascending
-- s is {1,2,3,4}

Example 4:

s = add_item(1, {3,4,2}, ADD_SORT_DOWN) -- descending
-- s is {4,3,2,1}

Example 5:

s = add_item(1, {3,1,4,2})
-- s is {3,1,4,2} -- Item was already in list so no change.

2.0.0.7 add_to

include std/sets.e
public function add_to(object x, set S)

Add an object to a set.

Parameters:

x : the object to add1.
S : the set to augment2.

Returns:

A set, which is a copy of S, with the addition of x if it was not there already.

Example 1:

set s0 = {1,3,5,7}
 s0=add_to(2,s) -- s0 is now {1,2,3,5,7}

See Also:

remove_from, belongs_to, union

Euphoria v4.0 svn3379

Parameters: 120

2.0.0.8 all_copyrights

include info.e
public function all_copyrights()

Get all copyrights associated with this version of Euphoria.

Returns:

A sequence, of product names and copyright messages.

{
 { ProductName, CopyrightMessage },
 { ProductName, CopyrightMessage },
 ...
}

2.0.0.9 all_left_units

include std/sets.e
public function all_left_units(operation f)

Finds all left units for an operation.

Parameters:

f : the operation to test.1.

Returns:

A possibly empty sequence, listing all x such that f(x,.) is the identity map.

Example 1:

operation f = {{{1,2,3},{1,2,3},{3,1,2}},{3,3,3}}
 sequence s = all_left_units(f)
 s is now {1,2}.

Euphoria v4.0 svn3379

Parameters: 121

See Also:

all_right_units, is_unit, has_unit

2.0.0.10 all_matches

include std/regex.e
public function all_matches(regex re, string haystack, integer from = 1, option_spec options = DEFAULT)

Get the text of all matches

Parameters:

re : a regex for a subject to be matched against1.
haystack : a string in which to searched2.
from : an integer setting the starting position to begin searching from. Defaults to 13.
options : options, defaults to DEFAULT. See Match Time Option Constants. options can be any
match time option or a sequence of valid options or it can be a value that comes from using or_bits on
any two valid option values.

4.

Returns:

Returns ERROR_NOMATCH if there are no matches, or a sequence of sequences of strings if there is at
least one match. In each member sequence of the returned sequence, the first string is the entire match and
subsequent items being each of the captured groups. The size of the sequence is the number of groups in the
expression plus one (for the entire match). In other words, each member of the return value will be of the
same structure of that is returned by matches.

If options contains the bit STRING_OFFSETS, then the result is different. In each member sequence,
instead of each member being a string each member is itself a sequence containing the matched text, the
starting index in haystack and the ending index in haystack.

Example 1:

include std/regex.e as re
constant re_name = re:new("([A-Z][a-z]+) ([A-Z][a-z]+)")

object matches = re:match_all(re_name, "John Doe and Jane Doe")
-- matches is:
-- {
-- { -- first match
-- "John Doe", -- full match data
-- "John", -- first group
-- "Doe" -- second group
-- },
-- { -- second match
-- "Jane Doe", -- full match data

Euphoria v4.0 svn3379

Parameters: 122

-- "Jane", -- first group
-- "Doe" -- second group
-- }
-- }

matches = re:match_all(re_name, "John Doe and Jane Doe", re:STRING_OFFSETS)
-- matches is:
-- {
-- { -- first match
-- { "John Doe", 1, 8 }, -- full match data
-- { "John", 1, 4 }, -- first group
-- { "Doe", 6, 8 } -- second group
-- },
-- { -- second match
-- { "Jane Doe", 14, 21 }, -- full match data
-- { "Jane", 14, 17 }, -- first group
-- { "Doe", 19, 21 } -- second group
-- }
-- }

See Also:

matches

2.0.0.11 all_right_units

include std/sets.e
public function all_right_units(operation f)

Finds all right units for an operation.

Parameters:

f : the operation to test.1.

Returns:

A possibly empty sequence, of all y such that f(.,y) is the identity map..

Example 1:

operation f = {{{1,2,3},{1,2,3},{3,1,2}},{3,3,3}}
 sequence s = all_right_units(f)
 s is now empty.

Euphoria v4.0 svn3379

Parameters: 123

See Also:

all_left_units, is_unit, has_unit

2.0.0.12 allocate

include std/machine.e
public function allocate(positive_int n, boolean cleanup = 0)

Allocate a contiguous block of data memory.

Parameters:

n : a positive integer, the size of the requested block.1.
cleanup : an integer, if non-zero, then the returned pointer will be automatically freed when its
reference count drops to zero, or when passed as a parameter to delete.

2.

Return:

An atom, the address of the allocated memory or 0 if the memory can't be allocated.

Comments:

Since allocate_string() allocates memory, you are responsible to free() the block when done with it if
cleanup is zero. If cleanup is non-zero, then the memory can be freed by calling delete, or when the
pointer's reference count drops to zero. When you are finished using the block, you should pass the address of
the block to free() if cleanup is zero. If cleanup is non-zero, then the memory can be freed by calling
delete, or when the pointer's reference count drops to zero. This will free the block and make the memory
available for other purposes. When your program terminates, the operating system will reclaim all memory for
use with other programs. An address returned by this function shouldn't be passed to call(). For that
purpose you may use allocate_code() instead.

The address returned will be at least 4-byte aligned.

Example 1:

buffer = allocate(100)
for i = 0 to 99 do
 poke(buffer+i, 0)
end for

Euphoria v4.0 svn3379

Parameters: 124

See Also:

free, peek, poke, mem_set, allocate_code

2.0.0.13 allocate_code

include std/machine.e
public function allocate_code(object data, valid_wordsize wordsize = 1)

Allocates and copies data into executable memory.

Parameters:

a_sequence_of_machine_code : is the machine code to be put into memory to be later called
with call()

1.

the word length : of the said code. You can specify your code as 1-byte, 2-byte or 4-byte chunks
if you wish. If your machine code is byte code specify 1. The default is 1.

2.

Return Value:

An address, The function returns the address in memory of the code, that can be safely executed whether
DEP is enabled or not or 0 if it fails. On the other hand, if you try to execute a code address returned by
allocate() with DEP enabled the program will receive a machine exception.

Comments:

Use this for the machine code you want to run in memory. The copying is done for you and when the routine
returns the memory may not be readable or writeable but it is guaranteed to be executable. If you want to also
write to this memory after the machine code has been copied you should use allocate_protect() instead and
you should read about having memory executable and writeable at the same time is a bad idea. You mustn't
use free() on memory returned from this function. You may instead use free_code() but since you will
probably need the code throughout the life of your program's process this normally is not necessary. If you
want to put only data in the memory to be read and written use allocate.

See Also:

allocate, free_code, allocate_protect

2.0.0.14 allocate_data

include std/machine.e
public function allocate_data(positive_int n, boolean cleanup = 0)

Euphoria v4.0 svn3379

Parameters: 125

Allocate n bytes of memory and return the address. Free the memory using free() below.

2.0.0.15 allocate_pointer_array

include std/machine.e
public function allocate_pointer_array(sequence pointers, boolean cleanup = 0)

Allocate a NULL terminated pointer array.

Parameters:

pointers : a sequence of pointers to add to the pointer array.1.
cleanup : an integer, if non-zero, then the returned pointer will be automatically freed when its
reference count drops to zero, or when passed as a parameter to delete

2.

Comments:

This function adds the NULL terminator.

Example 1:

atom pa = allocate_pointer_array({ allocate_string("1"), allocate_string("2") })

See Also:

allocate_string_pointer_array, free_pointer_array

2.0.0.16 allocate_protect

include std/machine.e
public function allocate_protect(object data, valid_wordsize wordsize = 1, valid_memory_protection_constant protection)

Allocates and copies data into memory and gives it protection using Standard Library Memory Protection
Constants or Microsoft Windows Memory Protection Constants. The user may only pass in one of these
constants. If you only wish to execute a sequence as machine code use allocate_code(). If you only
want to read and write data into memory use allocate().

See MSDN: Microsoft's Memory Protection Constants

Euphoria v4.0 svn3379

Parameters: 126

http://msdn.microsoft.com/en-us/library/aa366786(VS.85).aspx

Parameters:

data : is the machine code to be put into memory.1.
wordsize : is the size each element of data will take in memory. Are they 1-byte, 2-bytes or 4-bytes
long? Specify here. The default is 1.

2.

protection : is the particular Windows protection.3.

Returns:

An address, The function returns the address to the required memory or 0 if it fails. This function is
guaranteed to return memory on the 4 byte boundary. It also guarantees that the memory returned with at least
the protection given (but you may get more).

If you want to call allocate_protect(data, PAGE_READWRITE), you can use allocate instead.
It is more efficient and simpler.

If you want to call allocate_protect(data, PAGE_EXECUTE), you can use allocate_code()
instead. It is simpler.

You mustn't use free() on memory returned from this function, instead use free_code().

2.0.0.17 allocate_string

include std/machine.e
public function allocate_string(sequence s, boolean cleanup = 0)

Allocate a C-style null-terminated string in memory

Parameters:

s : a sequence, the string to store in RAM.1.
cleanup : an integer, if non-zero, then the returned pointer will be automatically freed when its
reference count drops to zero, or when passed as a parameter to delete.

2.

Returns:

An atom, the address of the memory block where the string was stored, or 0 on failure.

Comments:

Only the 8 lowest bits of each atom in s is stored. Use allocate_wstring() for storing double byte
encoded strings.

Euphoria v4.0 svn3379

Parameters: 127

There is no allocate_string_low() function. However, you could easily craft one by adapting the code for
allocate_string.

Since allocate_string() allocates memory, you are responsible to free() the block when done with it if
cleanup is zero. If cleanup is non-zero, then the memory can be freed by calling delete, or when the
pointer's reference count drops to zero.

Example 1:

atom title

title = allocate_string("The Wizard of Oz")

See Also:

allocate, allocate_wstring

2.0.0.18 allocate_string_pointer_array

include std/machine.e
public function allocate_string_pointer_array(object string_list, boolean cleanup = 0)

Allocate a C-style null-terminated array of strings in memory

Parameters:

string_list : sequence of strings to store in RAM.1.
cleanup : an integer, if non-zero, then the returned pointer will be automatically freed when its
reference count drops to zero, or when passed as a parameter to delete

2.

Returns:

An atom, the address of the memory block where the string pointer array was stored.

Example 1:

atom p = allocate_string_pointer_array({ "One", "Two", "Three" })
-- Same as C: char *p = { "One", "Two", "Three", NULL };

See Also:

free_pointer_array

Euphoria v4.0 svn3379

Parameters: 128

During the development of your application, you can define the word SAFE to cause machine.e to use
alternative memory functions. These functions are slower but help in the debugging stages. In general, SAFE
mode should not be enabled during production phases but only for development phases.

To define the word SAFE run your application with the -D SAFE command line option, or add to the top of
your main file with define SAFE.

Data Execute mode makes data that will be returned from allocate() executable. On some systems
allocate() will return memory that is not executable unless this mode has been enabled. When writing software
you should use allocate_code() or allocate_protect() to get memory for execution. This is more efficient and
more secure than using Data Execute mode. However, since on many systems executing memory
returned from allocate() will work much software will be written 4.0 and yet use allocate() for executable
memory instead of the afore mentioned routines. Therefore, you may use this switch when you find that your
are getting Data Execute Exceptions running some software. SAFE mode will help you discover what
memory should be changed to what access level. Data Execute mode will only work when the
EUPHORIA program uses std/machine.e not machine.e.

2.0.0.19 allocate_wstring

include std/machine.e
public function allocate_wstring(sequence s, boolean cleanup = 0)

Create a C-style null-terminated wchar_t string in memory

Parameters:

s : a unicode (utf16) string1.

Returns:

An atom, the address of the allocated string, or 0 on failure.

See Also:

allocate_string

2.0.0.20 allocations

include std/safe.e
public function allocations()

Euphoria v4.0 svn3379

Parameters: 129

2.0.0.21 allow_break

include std/console.e
public procedure allow_break(boolean b)

Set behavior of CTRL+C/CTRL+Break

Parameters:

b : a boolean, TRUE (!= 0) to enable the trapping of Ctrl-C/Ctrl-Break, FALSE (0) to disable it.1.

Comments:

When b is 1 (true), CTRL+C and CTRL+Break can terminate your program when it tries to read input from
the keyboard. When i is 0 (false) your program will not be terminated by CTRL+C or CTRL+Break.

Initially your program can be terminated at any point where it tries to read from the keyboard.

You can find out if the user has pressed Control-C or Control-Break by calling check_break().

Example 1:

allow_break(0) -- don't let the user kill the program!

See Also:

check_break

2.0.0.22 amalgamated_sum

include std/sets.e
public function amalgamated_sum(set first, set second, set base, map base_to_1, map base_to_2)

Returns all pairs in a product that come from applying two maps to the same element in a base set.

Parameters:

first : one of the sets to involved in the sum1.
second : the other set2.

Euphoria v4.0 svn3379

Parameters: 130

base : the base set3.
base_to_1 : the map from base to first4.
base_to_2 : the map from base to second5.

Returns:

A set, of pairs obtained by applying f01Xf02 to s0.

Example 1:

set s0,s1,s2
 s0={1,2,3} s1={5,7,9,11} s2={13,17,19}
 map f01,f02
 f01={2,4,1,3,4} f02={2,2,1,3,3}
 set s = amalgamated_product(s1,s2,s0,f01,f02)
 -- s is now {{7,17},{11,17},{5,13}}.

See Also:

product, product_map, fiber_product

2.0.0.23 ampm

include std/datetime.e
public sequence ampm

AM/PM

2.0.0.24 and_bits

<built-in> function and_bits(object a, object b)

Perform the logical AND operation on corresponding bits in two objects. A bit in the result will be 1 only if
the corresponding bits in both arguments are 1.

Parameters:

a : one of the objects involved1.
b : the second object2.

Euphoria v4.0 svn3379

Parameters: 131

Returns:

An object, whose shape depends on the shape of both arguments. Each atom in this object is obtained by
logical AND between atoms on both objects.

Comments:

The arguments to this function may be atoms or sequences. The rules for operations on sequences apply. The
atoms in the arguments must be representable as 32-bit numbers, either signed or unsigned.

If you intend to manipulate full 32-bit values, you should declare your variables as atom, rather than integer.
Euphoria's integer type is limited to 31-bits.

Results are treated as signed numbers. They will be negative when the highest-order bit is 1.

To understand the binary representation of a number you should display it in hexadecimal notation. Use the
%x format of printf(). Using int_to_bits() is an even more direct approach.

Example 1:

a = and_bits(#0F0F0000, #12345678)
-- a is #02040000

Example 2:

a = and_bits(#FF, {#123456, #876543, #2211})
-- a is {#56, #43, #11}

Example 3:

a = and_bits(#FFFFFFFF, #FFFFFFFF)
-- a is -1
-- Note that #FFFFFFFF is a positive number,
-- but the result of a bitwise logical operation is interpreted
-- as a signed 32-bit number, so it's negative.

See Also:

or_bits, xor_bits, not_bits, int_to_bits

2.0.0.25 any_key

include std/console.e
public procedure any_key(sequence prompt = "Press Any Key to continue...", integer con = 1)

Euphoria v4.0 svn3379

Parameters: 132

Display a prompt to the user and wait for any key.

Parameters:

prompt : Prompt to display, defaults to "Press Any Key to continue..."1.
con : Either 1 (stdout), or 2 (stderr). Defaults to 1.2.

Comments:

This wraps wait_key by giving a clue that the user should press a key, and perhaps do some other things as
well.

Example 1:

any_key() -- "Press Any Key to continue..."

Example 2:

any_key("Press Any Key to quit")

See Also:

wait_key

2.0.0.26 append

<built-in> function append(sequence target, object x)

Adds an object as the last element of a sequence.

Parameters:

source : the sequence to add to1.
x : the object to add2.

Returns:

A sequence, whose first elements are those of target and whose last element is x.

Euphoria v4.0 svn3379

Parameters: 133

Comments:

The length of the resulting sequence will be length(target) + 1, no matter what x is.

If x is an atom this is equivalent to result = target & x. If x is a sequence it is not equivalent.

The extra storage is allocated automatically and very efficiently with Euphoria's dynamic storage allocation.
The case where target itself is append()ed to (as in Example 1 below) is highly optimized.

Example 1:

sequence x

 x = {}
 for i = 1 to 10 do
 x = append(x, i)
 end for
 -- x is now {1,2,3,4,5,6,7,8,9,10}

Example 2:

sequence x, y, z

x = {"fred", "barney"}
y = append(x, "wilma")
-- y is now {"fred", "barney", "wilma"}

z = append(append(y, "betty"), {"bam", "bam"})
-- z is now {"fred", "barney", "wilma", "betty", {"bam", "bam"}}

See Also:

prepend, &

2.0.0.27 append_lines

include std/io.e
public function append_lines(sequence file, sequence lines)

Append a sequence of lines to a file.

Parameters:

file : an object, either a file path or the handle to an open file.1.
lines : the sequence of lines to write2.

Euphoria v4.0 svn3379

Parameters: 134

Returns:

An integer, 1 on success, -1 on failure.

Errors:

If puts() cannot write some line of text, a runtime error will occur.

Comments:

file is opened, written to and then closed.

Example 1:

if append_lines("data.txt", {"This is important data", "Goodbye"}) != -1 then
 puts(STDERR, "Failed to append data\n")
end if

See Also:

write_lines, puts

2.0.0.28 apply

include std/sequence.e
public function apply(sequence source, integer rid, object userdata = {})

Apply a function to every element of a sequence returning a new sequence of the same size.

Parameters:

source : the sequence to map•
rid : the routine_id of function to use as converter•
userdata : an object passed to each invocation of rid. If omitted, {} is used.•

Returns:

A sequence, the length of source. Each element there is the corresponding element in source mapped
using the routine referred to by rid.

Euphoria v4.0 svn3379

Parameters: 135

Comments:

The supplied routine must take two parameters. The type of the first parameter must be compatible with all
the elements in source. The second parameter is an object containing userdata.

Example 1:

function greeter(object o, object d)
 return o[1] & ", " & o[2] & d
end function

s = apply({{"Hello", "John"}, {"Goodbye", "John"}}, routine_id("greeter"), "!")
-- s is {"Hello, John!", "Goodbye, John!"}

See Also:

filter

2.0.0.29 approx

include std/math.e
public function approx(object p, object q, atom epsilon = 0.005)

Compares two (sets of) numbers based on approximate equality.

Parameters:

p : an object, one of the sets to consider1.
q : an object, the other set.2.
epsilon : an atom used to define the amount of inequality allowed. This must be a positive value.
Default is 0.005

3.

Returns:

An integer,

1 when p > (q + epsilon) : P is definitely greater than q.•
-1 when p < (q - epsilon) : P is definitely less than q.•
0 when p >= (q - epsilon) and p <= (q + epsilon) : p and q are approximately equal.•

Comments:

This can be used to see if two numbers are near enough to each other.

Euphoria v4.0 svn3379

Parameters: 136

Also, because of the way floating point numbers are stored, it not always possible express every real number
exactly, especially after a series of arithmetic operations. You can use approx() to see if two floating point
numbers are almost the same value.

If p and q are both sequences, they must be the same length as each other.

If p or q is a sequence, but the other is not, then the result is a sequence of results whose length is the same as
the sequence argument.

Example 1:

? approx(10, 33.33 * 30.01 / 100) --> 0 because 10 and 10.002333 are within 0.005 of each other
? approx(10, 10.001) -> 0 because 10 and 10.001 are within 0.005 of each other
? approx(10, {10.001,9.999, 9.98, 10.04}) --> {0,0,1,-1}
? approx({10.001,9.999, 9.98, 10.04}, 10) --> {0,0,-1,1}
? approx({10.001,{9.999, 10.01}, 9.98, 10.04}, {10.01,9.99, 9.8, 10.4}) --> {-1,{1,1},1,-1}
? approx(23,32, 10) -> 0 because 23 and 32 are within 10 of each other.

2.0.0.30 arccos

include std/math.e
public function arccos(trig_range x)

Return an angle given its cosine.

Parameters:

value : an object, each atom in which will be acted upon.1.

Returns:

An object, the same shape as value. When value is an atom, the result is an atom, an angle whose cosine
is value.

Errors:

If any atom in value is not in the -1..1 range, it cannot be the cosine of a real number, and an error occurs.

Comments:

A value between 0 and PI radians will be returned.

This function may be applied to an atom or to all elements of a sequence.

Euphoria v4.0 svn3379

Parameters: 137

arccos() is not as fast as arctan().

Example 1:

s = arccos({-1,0,1})
-- s is {3.141592654, 1.570796327, 0}

See Also:

cos, PI, arctan

2.0.0.31 arccosh

include std/math.e
public function arccosh(not_below_1 a)

Computes the reverse hyperbolic cosine of an object.

Parameters:

x : the object to process.1.

Returns:

An object, the same shape as x, each atom of which was acted upon.

Errors:

Since cosh only takes values not below 1, an argument below 1 causes an error.

Comments:

The hyperbolic cosine grows like the logarithm function.

Example 1:

? arccosh(1) -- prints out 0

Euphoria v4.0 svn3379

Parameters: 138

See Also:

arccos, arcsinh, cosh

2.0.0.32 arcsin

include std/math.e
public function arcsin(trig_range x)

Return an angle given its sine.

Parameters:

value : an object, each atom in which will be acted upon.1.

Returns:

An object, the same shape as value. When value is an atom, the result is an atom, an angle whose sine is
value.

Errors:

If any atom in value is not in the -1..1 range, it cannot be the sine of a real number, and an error occurs.

Comments:

A value between -PI/2 and +PI/2 (radians) inclusive will be returned.

This function may be applied to an atom or to all elements of a sequence.

arcsin() is not as fast as arctan().

Example 1:

s = arcsin({-1,0,1})
s is {-1.570796327, 0, 1.570796327}

See Also:

arccos, arccos, sin

Euphoria v4.0 svn3379

Parameters: 139

2.0.0.33 arcsinh

include std/math.e
public function arcsinh(object a)

Computes the reverse hyperbolic sine of an object.

Parameters:

x : the object to process.1.

Returns:

An object, the same shape as x, each atom of which was acted upon.

Comments:

The hyperbolic sine grows like the logarithm function.

Example 1:

? arcsinh(1) -- prints out 0,4812118250596034

See Also:

arccosh, arcsin, sinh

2.0.0.34 arctan

<built-in> function arctan(object tangent)

Return an angle with given tangent.

Parameters:

tangent : an object, each atom of which will be converted, no matter how deeply nested.1.

Returns:

An object, of the same shape as tangent. For each atom in flatten(tangent), the angle with smallest
magnitude that has this atom as tangent is computed.

Euphoria v4.0 svn3379

Parameters: 140

Comments:

All atoms in the returned value lie between -PI/2 and PI/2, exclusive.

This function may be applied to an atom or to all elements of a sequence (of sequence (...)).

arctan() is faster than arcsin() or arccos().

Example 1:

s = arctan({1,2,3})
-- s is {0.785398, 1.10715, 1.24905}

See Also:

arcsin, arccos, tan, flatten

2.0.0.35 arctanh

include std/math.e
public function arctanh(abs_below_1 a)

Computes the reverse hyperbolic tangent of an object.

Parameters:

x : the object to process.1.

Returns:

An object, the same shape as x, each atom of which was acted upon.

Errors:

Since tanh only takes values between -1 and +1 excluded, an out of range argument causes an error.

Comments:

The hyperbolic cosine grows like the logarithm function.

Euphoria v4.0 svn3379

Parameters: 141

Example 1:

? arctanh(1/2) -- prints out 0,5493061443340548456976

See Also:

arccos, arcsinh, cosh

2.0.0.36 ascii_string

include std/types.e
public type ascii_string(object x)

Returns:

TRUE if argument is a sequence that only contains zero or more ASCII characters.

Comment:

An ASCII 'character' is defined as a integer in the range [0 to 127].

Example 1:

ascii_string(-1) -- FALSE (not a sequence)
ascii_string("abc") -- TRUE (all single ASCII characters)
ascii_string({1, 2, "abc"}) -- FALSE (contains a sequence)
ascii_string({1, 2, 9.7}) -- FALSE (contains a non-integer)
ascii_string({1, 2, 'a'}) -- TRUE
ascii_string({1, -2, 'a'}) -- FALSE (contains a negative integer)
ascii_string({}) -- TRUE

2.0.0.37 assert

include std/unittest.e
public procedure assert(object name, object outcome)

Records whether a test passes. If it fails, the program also fails.

Euphoria v4.0 svn3379

Parameters: 142

Parameters:

name : a string, the name of the test1.
outcome : an object, some actual value that should not be zero.2.

Comments:

This is identical to test_true() except that if the test fails, the program will also be forced to fail at this
point.

See Also:

test_equal, test_not_equal, test_false, test_pass, test_fail

2.0.0.38 at

include std/stack.e
public function at(stack sk, integer idx = 1)

Fetch a value from the stack without removing it from the stack.

Parameters:

sk : the stack being queried1.
idx : an integer, the place to inspect. The default is 1 (top item).2.

Returns:

An object, the idx-th item of the stack.

Errors:

If the supplied value of idx does not correspond to an existing element, an error occurs.

Comments:

For FIFO stacks (queues), the top item is the oldest item in the stack.•
For FILO stacks, the top item is the newest item in the stack.•

idx can be less than 1, in which case it refers relative to the end item. Thus, 0 stands for the end element.

Euphoria v4.0 svn3379

Parameters: 143

Example 1:

stack sk = new(FILO)
push(sk,5)
push(sk,"abc")
push(sk,2.3)
? at(sk,0) -- 5
? at(sk,-1) -- "abc"
? at(sk,1) -- 2.3
? at(sk,2) -- "abc"

Example 2:

stack sk = new(FIFO)
push(sk,5)
push(sk,"abc")
push(sk,2.3)
? at(sk,0) -- 2.3
? at(sk,-1) -- "abc"
? at(sk,1) -- 5
? at(sk,2) -- "abc"

See Also:

size, top, peek_top, peek_end

2.0.0.39 atan2

include std/math.e
public function atan2(atom y, atom x)

Calculate the arctangent of a ratio.

Parameters:

y : an atom, the numerator of the ratio1.
x : an atom, the denominator of the ratio2.

Returns:

An atom, which is equal to arctan(y/x), except that it can handle zero denominator and is more accurate.

Euphoria v4.0 svn3379

Parameters: 144

Example 1:

a = atan2(10.5, 3.1)
-- a is 1.283713958

See Also:

arctan

2.0.0.40 atom

<built-in> function atom(object x)

Tests the supplied argument x to see if it is an atom or not.

Returns:

An integer.
1 if x is an atom.♦
0 if x is not an atom.♦

1.

Example 1:

? atom(1) --> 1
? atom(1.1) --> 1
? atom("1") --> 0

See Also:

sequence(), object(), integer()

2.0.0.41 atom_to_float32

include std/convert.e
public function atom_to_float32(atom a)

Convert an atom to a sequence of 4 bytes in IEEE 32-bit format

Parameters:

a : the atom to convert:1.

Euphoria v4.0 svn3379

Parameters: 145

Returns:

A sequence, of 4 bytes, which can be poked in memory to represent a.

Comments:

Euphoria atoms can have values which are 64-bit IEEE floating-point numbers, so you may lose precision
when you convert to 32-bits (16 significant digits versus 7). The range of exponents is much larger in 64-bit
format (10 to the 308, versus 10 to the 38), so some atoms may be too large or too small to represent in 32-bit
format. In this case you will get one of the special 32-bit values: inf or -inf (infinity or -infinity). To avoid
this, you can use atom_to_float64().

Integer values will also be converted to 32-bit floating-point format.

On modern computers, computations on 64 bit floats are no slower than on 32 bit floats. Internally, the PC
stores them in 80 bit registers anyway. Euphoria does not support these so called long doubles. Not all C
compilers do.

Example 1:

fn = open("numbers.dat", "wb")
puts(fn, atom_to_float32(157.82)) -- write 4 bytes to a file

See Also:

float32_to_atom, int_to_bytes, atom_to_float64

2.0.0.42 atom_to_float64

include std/convert.e
public function atom_to_float64(atom a)

Convert an atom to a sequence of 8 bytes in IEEE 64-bit format

Parameters:

a : the atom to convert:1.

Returns:

A sequence, of 8 bytes, which can be poked in memory to represent a.

Euphoria v4.0 svn3379

Parameters: 146

Comments:

All Euphoria atoms have values which can be represented as 64-bit IEEE floating-point numbers, so you can
convert any atom to 64-bit format without losing any precision.

Integer values will also be converted to 64-bit floating-point format.

Example:

fn = open("numbers.dat", "wb")
puts(fn, atom_to_float64(157.82)) -- write 8 bytes to a file

See Also:

float64_to_atom, int_to_bytes, atom_to_float32

2.0.0.43 attr_to_colors

include std/console.e
public function attr_to_colors(integer attr_code)

Converts an attribute code to its foreground and background color components.

Parameters:

attr_code : integer, an attribute code.1.

Returns:

A sequence of two elements - {fgcolor, bgcolor}

Example 1:

? attr_to_colors(92) --> {12, 5}

See Also:

get_screen_char, colors_to_attr

Euphoria v4.0 svn3379

Parameters: 147

2.0.0.44 avedev

include std/stats.e
public function avedev(sequence data_set, object subseq_opt = ST_ALLNUM, integer population_type = ST_SAMPLE)

Returns the average of the absolute deviations of data points from their mean.

Parameters:

data_set : a list of 1 or more numbers for which you want the mean of the absolute deviations.1.
subseq_opt : an object. When this is ST_ALLNUM (the default) it means that data_set is
assumed to contain no sub-sequences otherwise this gives instructions about how to treat
sub-sequences. See comments for details.

2.

population_type : an integer. ST_SAMPLE (the default) assumes that data_set is a random
sample of the total population. ST_FULLPOP means that data_set is the entire population.

3.

Returns:

An atom , the deviation from the mean.
An empty sequence, means that there is no meaningful data to calculate from.

Comments:

avedev() is a measure of the variability in a data set. Its statistical properties are less well behaved than those
of the standard deviation, which is why it is used less.

The numbers in data_set can either be the entire population of values or just a random subset. You indicate
which in the population_type parameter. By default data_set represents a sample and not the entire
population. When using this function with sample data, the result is an estimated deviation.

If the data can contain sub-sequences, such as strings, you need to let the the function know about this
otherwise it assumes every value in data_set is an number. If that is not the case then the function will
crash. So it is important that if it can possibly contain sub-sequences that you tell this function what to do with
them. Your choices are to ignore them or assume they have the value zero. To ignore them, use ST_IGNSTR
as the subseq_opt parameter value otherwise use ST_ZEROSTR. However, if you know that data_set
only contains numbers use the default subseq_opt value, ST_ALLNUM. Note It is faster if the data only
contains numbers.

The equation for absolute average deviation is:

avedev(X) ==> SUM(ABS(X{1..N} - MEAN(X))) / N

Example 1:

? avedev({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,7}) -- Ans: 1.966666667
? avedev({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,7},, ST_FULLPOP) -- Ans: 1.84375

Euphoria v4.0 svn3379

Parameters: 148

? avedev({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,"text"}, ST_IGNSTR) -- Ans: 1.99047619
? avedev({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,"text"}, ST_IGNSTR,ST_FULLPOP) -- Ans: 1.857777778
? avedev({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,"text"}, 0) -- Ans: 2.225
? avedev({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,"text"}, 0, ST_FULLPOP) -- Ans: 2.0859375

See also:

average, stdev

2.0.0.45 average

include std/stats.e
public function average(object data_set, object subseq_opt = ST_ALLNUM)

Returns the average (mean) of the data points.

Parameters:

data_set : A list of 1 or more numbers for which you want the mean.1.
subseq_opt : an object. When this is ST_ALLNUM (the default) it means that data_set is
assumed to contain no sub-sequences otherwise this gives instructions about how to treat
sub-sequences. See comments for details.

2.

Returns:

An object,

{} (the empty sequence) if there are no atoms in the set.•
an atom (the mean) if there are one or more atoms in the set.•

Comments:

average() is the theoretical probable value of a randomly selected item from the set.

The equation for average is:

average(X) ==> SUM(X{1..N}) / N

If the data can contain sub-sequences, such as strings, you need to let the the function know about this
otherwise it assumes every value in data_set is an number. If that is not the case then the function will
crash. So it is important that if it can possibly contain sub-sequences that you tell this function what to do with
them. Your choices are to ignore them or assume they have the value zero. To ignore them, use ST_IGNSTR
as the subseq_opt parameter value otherwise use ST_ZEROSTR. However, if you know that data_set
only contains numbers use the default subseq_opt value, ST_ALLNUM. Note It is faster if the data only

Euphoria v4.0 svn3379

Parameters: 149

contains numbers.

Example 1:

? average({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,"text"}, ST_IGNSTR) -- Ans: 5.13333333

See also:

geomean, harmean, movavg, emovavg

2.0.0.46 begins

include std/search.e
public function begins(object sub_text, sequence full_text)

Test whether a sequence is the head of another one.

Parameters:

sub_text : an object to be looked for1.
full_text : a sequence, the head of which is being inspected.2.

Returns:

An integer, 1 if sub_text begins full_text, else 0.

Example 1:

s = begins("abc", "abcdef")
-- s is 1
s = begins("bcd", "abcdef")
-- s is 0

See Also:

ends, head

2.0.0.47 belongs_to

include std/sets.e
public function belongs_to(object x, set s)

Euphoria v4.0 svn3379

Parameters: 150

Decide whether an object is in a set.

Parameters:

x : the object inquired about1.
S : the set being queried2.

Returns:

An integer, 1 if x is in S, else 0.

Example 1:

set s0 = {1,3,5,7}
 ?belongs_to(2,s) -- prints out 0

See Also:

is_subset , intersection, difference

2.0.0.48 binary_search

include std/search.e
public function binary_search(object needle, sequence haystack, integer start_point = 1, integer end_point = 0)

Finds a "needle" in an ordered "haystack". Start and end point can be given for the search.

Parameters:

needle : an object to look for1.
haystack : a sequence to search in2.
start_point : an integer, the index at which to start searching. Defaults to 1.3.
end_point : an integer, the end point of the search. Defaults to 0, ie search to end.4.

Returns:

An integer, either:

a positive integer i, which means haystack[i] equals needle.1.
a negative integer, -i, with i between adjusted start and end points. This means that needle is not
in the searched slice of haystack, but would be at index i if it were there.

2.

Euphoria v4.0 svn3379

Parameters: 151

a negative integer -i with i out of the searched range. This means than needlemight be either
below the start point if i is below the start point, or above the end point if i is.

3.

Comments:

If end_point is not greater than zero, it is added to length(haystack) once only. Then, the end
point of the search is adjusted to length(haystack) if out of bounds.

•

The start point is adjusted to 1 if below 1.•
The way this function returns is very similar to what db_find_key does. They use variants of the same
algorithm. The latter is all the more efficient as haystack is long.

•

haystack is assumed to be in ascending order. Results are undefined if it is not.•
If duplicate copies of needle exist in the range searched on haystack, any of the possible
contiguous indexes may be returned.

•

See Also:

find, db_find_key

2.0.0.49 bind

include std/socket.e
public function bind(socket sock, sequence address, integer port = - 1)

Joins a socket to a specific local internet address and port so later calls only need to provide the socket.

Parameters:

sock : the socket1.
address : the address to bind the socket to2.
port : optional, if not specified you must include :PORT in the address parameter.3.

Returns:

An integer, 0 on success and -1 on failure.

Example 1:

-- Bind to all interfaces on the default port 80.
success = bind(socket, "0.0.0.0")
-- Bind to all interfaces on port 8080.
success = bind(socket, "0.0.0.0:8080")
-- Bind only to the 243.17.33.19 interface on port 345.
success = bind(socket, "243.17.33.19", 345)

Euphoria v4.0 svn3379

Parameters: 152

2.0.0.50 bits_to_int

include std/convert.e
public function bits_to_int(sequence bits)

Converts a sequence of bits to an atom that has no fractional part.

Parameters:

bits : the sequence to convert.1.

Returns:

A positive atom, whose machine representation was given by bits.

Comments:

An element in bits can be any atom. If nonzero, it counts for 1, else for 0.

The first elements in bits represent the bits with the least weight in the returned value. Only the 52 last bits
will matter, as the PC hardware cannot hold an integer with more digits than this.

If you print s the bits will appear in "reverse" order, but it is convenient to have increasing subscripts access
bits of increasing significance.

Example 1:

a = bits_to_int({1,1,1,0,1})
-- a is 23 (binary 10111)

See Also:

bytes_to_int, int_to_bits, operations on sequences

2.0.0.51 bk_color

include std/graphics.e
public procedure bk_color(color c)

Set the background color to one of the 16 standard colors.

Euphoria v4.0 svn3379

Parameters: 153

Parameters:

c : the new text color. Add BLINKING to get blinking text in some modes.1.

Comments:

To restore the original background color when your program finishes, e.g. 0 - BLACK, you must call
bk_color(0). If the cursor is at the bottom line of the screen, you may have to actually print something
before terminating your program. Printing '\n' may be enough.

Example:

bk_color(BLACK)

See Also:

text_color

2.0.0.52 boolean

include std/types.e
public type boolean(object test_data)

Returns TRUE if argument is 1 or 0

Returns FALSE if the argument is anything else other than 1 or 0.

Example 1:

boolean(-1) -- FALSE
boolean(0) -- TRUE
boolean(1) -- TRUE
boolean(1.234) -- FALSE
boolean('A') -- FALSE
boolean('9') -- FALSE
boolean('?') -- FALSE
boolean("abc") -- FALSE
boolean("ab3") -- FALSE
boolean({1,2,"abc"}) -- FALSE
boolean({1, 2, 9.7) -- FALSE
boolean({}) -- FALSE (empty sequence)

Euphoria v4.0 svn3379

Parameters: 154

2.0.0.53 bordered_address

include std/memory.e
export type bordered_address(atom addr)

Euphoria objects are automatically garbage collected when they are no longer referenced anywhere. Euphoria
also provides the ability to manage resources associated with euphoria objects. These resources could be open
file handles, allocated memory, or other euphoria objects. There are two built-in routines for managing these
external resources.

2.0.0.54 bordered_address

include std/safe.e
export type bordered_address(ext_addr addr)

2.0.0.55 breakup

include std/sequence.e
public function breakup(sequence source, object size, integer style = BK_LEN)

Breaks up a sequence into multiple sequences of a given length.

Parameters:

source : the sequence to be broken up into sub-sequences.1.
size : an object, if an integer it is either the maximum length of each resulting sub-sequence or the
maximum number of sub-sequences to break source into.
If size is a sequence, it is a list of element counts for the sub-sequences it creates.

2.

style : an integer, Either BK_LEN if size integer represents the sub-sequences' maximum length,
or BK_PIECES if the size integer represents the maximum number of sub-sequences (pieces) to
break source into.

3.

Returns:

A sequence, of sequences.

Comments:

When size is an integer and style is BK_LEN...
The sub-sequences have length size, except possibly the last one, which may be shorter. For example if
source has 11 items and size is 3, then the first three sub-sequences will get 3 items each and the
remaining 2 items will go into the last sub-sequence. If size is less than 1 or greater than the length of the
source, the source is returned as the only sub-sequence.

Euphoria v4.0 svn3379

Parameters: 155

When size is an integer and style is BK_PIECES...
There is exactly size sub-sequences created. If the source is not evenly divisible into that many pieces,
then the lefthand sub-sequences will contain one more element than the right-hand sub-sequences. For
example, if source contains 10 items and we break it into 3 pieces, piece #1 gets 4 elements, piece #2 gets 3
items and piece #3 gets 3 items - a total of 10. If source had 11 elements then the pieces will have 4,4, and 3
respectively.

When size is a sequence...
The style parameter is ignored in this case. The source will be broken up according to the counts contained in
the size parameter. For example, if size was {3,4,0,1} then piece #1 gets 3 items, #2 gets 4 items, #3 gets 0
items, and #4 gets 1 item. Note that if not all items from source are placed into the sub-sequences defined by
size, and extra sub-sequence is appended that contains the remaining items from source.

In all cases, when concatenated these sub-sequences will be identical to the original source.

Example 1:

s = breakup("5545112133234454", 4)
-- s is {"5545", "1121", "3323", "4454"}

Example 2:

s = breakup("12345", 2)
-- s is {"12", "34", "5"}

Example 3:

s = breakup({1,2,3,4,5,6}, 3)
-- s is {{1,2,3}, {4,5,6}}

Example 4:

s = breakup("ABCDEF", 0)
-- s is {"ABCDEF"}

See Also:

split flatten

2.0.0.56 build_commandline

include std/cmdline.e
public function build_commandline(sequence cmds)

Euphoria v4.0 svn3379

Parameters: 156

Returns a text string based on the set of supplied strings. Typically, this is used to ensure that arguments on a
command line are properly formed before submitting it to the shell.

Parameters:

cmds : A sequence. Contains zero or more strings.1.

Returns:

A sequence, which is a text string. Each of the strings in cmds is quoted if they contain spaces, and then
concatenated to form a single string.

Comments:

Though this function does the quoting for you it is not going to protect your programs from globing *, ?. And
it is not specied here what happens if you pass redirection or piping characters.

Example 1:

s = build_commandline({ "-d", "/usr/my docs/"})
-- s now contains '-d "/usr/my docs/"'

Example 2:

You can use this to run things that might be difficult to quote out:

Suppose you want to run a program that requires quotes on its command line? Use this function to pass
quotation marks:

s = build_commandline({ "awk", "-e", "'{ print $1"x"$2; }'" })
system(s,0)

See Also:

parse_commandline, system, system_exec, command_line

2.0.0.57 build_list

include std/sequence.e
public function build_list(sequence source, object transformer, integer singleton = 1, object user_data = {})

Implements "List Comprehension" or building a list based on the contents of another list.

Euphoria v4.0 svn3379

Parameters: 157

Parameters:

source : A sequence. The list of items to base the new list upon.1.
transformer : One or more routine_ids. These are routine ids of functions that must receive three
parameters (object x, sequence i, object u) where 'x' is an item in the source list, 'i' contains the
position that 'x' is found in the source list and the length of source, and 'u' is the user_data
value. Each transformer must return a two-element sequence. If the first element is zero, then
build_list() continues on with the next transformer function for the same 'x'. If the first element is not
zero, the second element is added to the new list being built (other elements are ignored) and
build_list skips the rest of the transformers and processes the next element in source.

2.

singleton : An integer. If zero then the transformer functions return multiple list elements. If not
zero then the transformer functions return a single item (which might be a sequence).

3.

user_data : Any object. This is passed unchanged to each transformer function.4.

Returns:

A sequence, The new list of items.

Comments:

If the transformer is -1, then the source item is just copied.•

Example 1:

function remitem(object x, sequence i, object q)
 if (x < q) then
 return {0} -- no output
 else
 return {1,x} -- copy 'x'
 end if
end function

sequence s
-- Remove negative elements (x < 0)
s = build_list({-3, 0, 1.1, -2, 2, 3, -1.5}, routine_id("remitem"), , 0)
-- s is {0, 1.1, 2, 3}

2.0.0.58 builtins

include keywords.e
public constant builtins

Sequence of Euphoria's built-in function names

Euphoria v4.0 svn3379

Parameters: 158

Syntax Color Break Euphoria statements into words with multiple colors. The editor and pretty printer
(eprint.ex) both use this file.

2.0.0.59 byte_range

include std/io.e
public type byte_range(sequence r)

Byte Range Type

2.0.0.60 bytes_to_int

include std/convert.e
public function bytes_to_int(sequence s)

Converts a sequence of at most 4 bytes into an atom.

Parameters:

s : the sequence to convert1.

Returns:

An atom, the value of the concatenated bytes of s.

Comments:

This performs the reverse operation from int_to_bytes

An atom is being returned, because the converted value may be bigger than what can fit in an Euphoria
integer.

Example 1:

atom int32

int32 = bytes_to_int({37,1,0,0})
-- int32 is 37 + 256*1 = 293

Euphoria v4.0 svn3379

Parameters: 159

See Also:

bits_to_int, float64_to_atom, int_to_bytes, peek, peek4s, peek4u, poke4

2.0.0.61 c_func

<built-in> function c_func(integer rid, sequence args={})

Call a C function, or machine code function, or translated/compiled Euphoria function by routine id.

Parameters:

rid : an integer, the routine_id of the external function being called.1.
args : a sequence, the list of parameters to pass to the function2.

Returns:

An object, whose type and meaning was defined on calling define_c_func().

Errors:

If rid is not a valid routine id, or the arguments do not match the prototype of the routine being called, an
error occurs.

Comments:

rid must have been returned by define_c_func(), not by routine_id(). The type checks are different, and you
would get a machine level exception in the best case.

If the function does not take any arguments then args should be {}.

If you pass an argument value which contains a fractional part, where the C function expects a C integer type,
the argument will be rounded towards 0. e.g. 5.9 will be passed as 5, -5.9 will be passed as -5.

The function could be part of a .dll or .so created by the Euphoria To C Translator. In this case, a Euphoria
atom or sequence could be returned. C and machine code functions can only return integers, or more
generally, atoms (IEEE floating-point numbers).

Example 1:

atom user32, hwnd, ps, hdc
integer BeginPaint

-- open user32.dll - it contains the BeginPaint C function

Euphoria v4.0 svn3379

Parameters: 160

user32 = open_dll("user32.dll")

-- the C function BeginPaint takes a C int argument and
-- a C pointer, and returns a C int as a result:
BeginPaint = define_c_func(user32, "BeginPaint",
 {C_INT, C_POINTER}, C_INT)

-- call BeginPaint, passing hwnd and ps as the arguments,
-- hdc is assigned the result:
hdc = c_func(BeginPaint, {hwnd, ps})

See Also:

c_proc, define_c_proc, open_dll, Platform-Specific Issues

2.0.0.62 c_func

include std/safe.e
override function c_func(integer

2.0.0.63 c_proc

<built-in> procedure c_proc(integer rid, sequence args={})

Call a C void function, or machine code function, or translated/compiled Euphoria procedure by routine id.

Parameters:

rid : an integer, the routine_id of the external function being called.1.
args : a sequence, the list of parameters to pass to the function2.

Errors:

If rid is not a valid routine id, or the arguments do not match the prototype of the routine being called, an
error occurs.

Comments:

rid must have been returned by define_c_proc(), not by routine_id(). The type checks are different, and you
would get a machine level exception in the best case.

If the procedure does not take any arguments then args should be {}.

Euphoria v4.0 svn3379

Parameters: 161

If you pass an argument value which contains a fractional part, where the C void function expects a C integer
type, the argument will be rounded towards 0. e.g. 5.9 will be passed as 5, -5.9 will be passed as -5.

Example 1:

atom user32, hwnd, rect
integer GetClientRect

-- open user32.dll - it contains the GetClientRect C function
user32 = open_dll("user32.dll")

-- GetClientRect is a VOID C function that takes a C int
-- and a C pointer as its arguments:
GetClientRect = define_c_proc(user32, "GetClientRect",
 {C_INT, C_POINTER})

-- pass hwnd and rect as the arguments
c_proc(GetClientRect, {hwnd, rect})

See Also:

c_func, define_c_func, open_dll, Platform-Specific Issues

2.0.0.64 c_proc

include std/safe.e
override procedure c_proc(integer

2.0.0.65 calc_hash

include std/map.e
public function calc_hash(object key_p, integer max_hash_p)

Calculate a Hashing value from the supplied data.

Parameters:

pData : The data for which you want a hash value calculated.1.
max_hash_p : The returned value will be no larger than this value.2.

Returns:

An integer, the value of which depends only on the supplied data.

Euphoria v4.0 svn3379

Parameters: 162

Comments:

This is used whenever you need a single number to represent the data you supply. It can calculate the number
based on all the data you give it, which can be an atom or sequence of any value.

Example 1:

integer h1
-- calculate a hash value and ensure it will be a value from 1 to 4097.
h1 = calc_hash(symbol_name, 4097)

2.0.0.66 calc_primes

include std/primes.e
public function calc_primes(integer max_p, atom time_limit_p = 10)

Returns all the prime numbers below some threshold, with a cap on computation time.

Parameters:

max_p : an integer, the last prime returned is the next prime after or on this value.1.
time_out_p : an atom, the maximum number of seconds that this function can run for. The default
is 10 (ten) seconds.

2.

Returns:

A sequence, made of prime numbers in increasing order. The last value is the next prime number that falls on
or after the value of max_p.

Comments:

The returned sequence contains all the prime numbers less than its last element.•

If the function times out, it may not hold all primes below max_p, but only the largest ones will be
absent. If the last element returned is less than max_p then the function timed out.

•

To disable the timeout, simply give it a negative value.•

Example 1:

? calc_primes(1000, 5)
-- On a very slow computer, you may only get all primes up to say 719.
-- On a faster computer, the last element printed out will be 997.
-- This call will never take longer than 5 seconds.

Euphoria v4.0 svn3379

Parameters: 163

See Also:

next_prime prime_list

2.0.0.67 call

<built-in> procedure call(atom addr)

Call a machine language routine which was stored in memory prior.

Parameters:

addr : an atom, the address at which to transfer execution control.1.

Comments:

The machine code routine must execute a RET instruction #C3 to return control to Euphoria. The routine
should save and restore any registers that it uses.

You can allocate a block of memory for the routine and then poke in the bytes of machine code using
allocate_code(). You might allocate other blocks of memory for data and parameters that the machine
code can operate on using allocate(). The addresses of these blocks could be part of the machine code.

If your machine code uses the stack, use c_proc() instead of call().

Example 1:

demo/callmach.ex

See Also:

allocate_code, free_code, c_proc, define_c_proc

2.0.0.68 call

include std/safe.e
override procedure call(machine_addr

Euphoria v4.0 svn3379

Parameters: 164

2.0.0.69 call_back

include std/dll.e
public function call_back(object id)

Get a machine address for an Euphoria procedure.

Parameters:

id : an object, either the id returned by routine_id for the function/procedure, or a pair {'+', id}.1.

Returns:

An atom, the address of the machine code of the routine. It can be used by Windows, or an external C routine
in a Windows .dll or Unix-like shared library (.so), as a 32-bit "call-back" address for calling your Euphoria
routine.

Errors:

The length of name should not exceed 1,024 characters.

Comments:

By default, your routine will work with the stdcall convention. On Windows, you can specify its id as {'+',
id}, in which case it will work with the cdecl calling convention instead. On non-Microsoft platforms, you
should only use simple IDs, as there is just one standard calling convention, i.e. cdecl.

You can set up as many call-back functions as you like, but they must all be Euphoria functions (or types)
with 0 to 9 arguments. If your routine has nothing to return (it should really be a procedure), just return 0
(say), and the calling C routine can ignore the result.

When your routine is called, the argument values will all be 32-bit unsigned (positive) values. You should
declare each parameter of your routine as atom, unless you want to impose tighter checking. Your routine
must return a 32-bit integer value.

You can also use a call-back address to specify a Euphoria routine as an exception handler in the
Linux/FreeBSD signal() function. For example, you might want to catch the SIGTERM signal, and do a
graceful shutdown. Some Web hosts send a SIGTERM to a CGI process that has used too much CPU time.

A call-back routine that uses the cdecl convention and returns a floating-point result, might not work with
euiw. This is because the Watcom C compiler (used to build euiw) has a non-standard way of handling cdecl
floating-point return values.

Euphoria v4.0 svn3379

Parameters: 165

Example 1:

See: demo\win32\window.exw, demo\linux\qsort.ex

See Also:

routine_id

2.0.0.70 call_func

<built-in> function call_func(integer id, sequence args={})

Call the user-defined Euphoria function by routine id.

Parameters:

id : an integer, the routine id of the function to call1.
args : a sequence, the parameters to pass to the function.2.

Returns:

The value, the called function returns.

Errors:

If id is negative or otherwise unknown, an error occurs.

If the length of args is not the number of parameters the function takes, an error occurs.

Comments:

id must be a valid routine id returned by routine_id().

args must be a sequence of argument values of length n, where n is the number of arguments required by the
called function. Defaulted parameters currently cannot be synthesized while making a indirect call.

If the function with id id does not take any arguments then args should be {}.

Euphoria v4.0 svn3379

Parameters: 166

Example 1:

Take a look at the sample program called demo/csort.ex

See Also:

call_proc, routine_id, c_func

2.0.0.71 call_proc

<built-in> procedure call_proc(integer id, sequence args={})

Call a user-defined Euphoria procedure by routine id.

Parameters:

id : an integer, the routine id of the procedure to call1.
args : a sequence, the parameters to pass to the function.2.

Errors:

If id is negative or otherwise unknown, an error occurs.

If the length of args is not the number of parameters the function takes, an error occurs.

Comments:

id must be a valid routine id returned by routine_id().

args must be a sequence of argument values of length n, where n is the number of arguments required by the
called procedure. Defaulted parameters currently cannot be synthesized while making a indirect call.

If the procedure with id id does not take any arguments then args should be {}.

Example 1:

public integer foo_id

procedure x()
 call_proc(foo_id, {1, "Hello World\n"})
end procedure

procedure foo(integer a, sequence s)
 puts(a, s)

Euphoria v4.0 svn3379

Parameters: 167

end procedure

foo_id = routine_id("foo")

x()

See Also:

call_func, routine_id, c_proc

2.0.0.72 can_add

include std/sequence.e
public function can_add(object a, object b)

Checks whether two objects can be legally added together.

Parameters:

a : one of the objects to test for compatible shape1.
b : the other object2.

Returns:

An integer, 1 if an addition (or any of the Relational operators) are possible between a and b, else 0.

Example 1:

i = can_add({1,2,3},{4,5})
-- i is 0

i = can_add({1,2,3},4)
-- i is 1

i = can_add({1,2,3},{4,{5,6},7})
-- i is 1

See Also:

linear

Euphoria v4.0 svn3379

Parameters: 168

2.0.0.73 canon2win

include std/localeconv.e
public function canon2win(sequence new_locale)

TODO: document

Regular expressions in Euphoria are based on the PCRE (Perl Compatible Regular Expressions) library
created by Philip Hazel.

This document will detail the Euphoria interface to Regular Expressions, not really regular expression syntax.
It is a very complex subject that many books have been written on. Here are a few good resources online that
can help while learning regular expressions.

EUForum Article•
Perl Regular Expressions Man Page•
Regular Expression Library (user supplied regular expressions for just about any task).•
WikiPedia Regular Expression Article•
Man page of PCRE in HTML•

Many functions take an optional options parameter. This parameter can be either a single option constant
(see Option Constants), multiple option constants or'ed together into a single atom or a sequence of options, in
which the function will take care of ensuring the are or'ed together correctly. Options are like their C
equivalents with the 'PCRE_' prefix stripped off. Name spaces disambiguate symbols so we don't need this
prefix.

All strings passed into this library must be either 8-bit per character strings or UTF which uses multiple bytes
to encode UNICODE characters. You can use UTF8 encoded UNICODE strings when you pass the UTF8
option.

2.0.0.74 Compile Time and Match Time

When a regular expression object is created via new we call also say it get's "compiled." The options you may
use for this are called "compile time" option constants. Once the regular expression is created you can use the
other functions that take this regular expression and a string. These routines' options are called "match time"
option constants. To not set any options at all, do not supply the options argument or supply DEFAULT.

Compile Time Option Constants

The only options that may set at "compile time"; that is, to pass to new; are ANCHORED,
AUTO_CALLOUT, BSR_ANYCRLF, BSR_UNICODE, CASELESS, DEFAULT, DOLLAR_ENDONLY,
DOTALL, DUPNAMES, EXTENDED, EXTRA, FIRSTLINE, MULTILINE, NEWLINE_CR,

Euphoria v4.0 svn3379

Parameters: 169

http://openeuphoria.org/wiki/euwiki.cgi?EuGuide%20Regular%20Expressions
http://perldoc.perl.org/perlre.html
http://regexlib.com/
http://en.wikipedia.org/wiki/Regular_expression
http://www.slabihoud.de/software/archives/pcrecompat.html

NEWLINE_LF, NEWLINE_CRLF, NEWLINE_ANY, NEWLINE_ANYCRLF, NO_AUTO_CAPTURE,
NO_UTF8_CHECK, UNGREEDY, and UTF8.

Match Time Option Constants

Options that may be set at "match time" are ANCHORED, NEWLINE_CR, NEWLINE_LF,
NEWLINE_CRLF, NEWLINE_ANY NEWLINE_ANYCRLF NOTBOL, NOTEOL, NOTEMPTY,
NO_UTF8_CHECK. Routines that take match time option constants match, split or replace a regular
expression against some string.

2.0.0.75 canonical

include std/localeconv.e
public function canonical(sequence new_locale)

Get canonical name for a locale.

Parameters:

new_locale : a sequence, the string for the locale.1.

Returns:

A sequence, either the translated locale on success or new_locale on failure.

See Also:

get, set, decanonical

2.0.0.76 canonical_path

include std/filesys.e
public function canonical_path(sequence path_in, integer directory_given = 0, integer no_case = 0)

Returns the full path and file name of the supplied file name.

Parameters:

path_in : A sequence. This is the file name whose full path you want.1.
directory_given : An integer. This is zero if path_in is to be interpreted as a file specification
otherwise it is assumed to be a directory specification. The default is zero.

2.

Euphoria v4.0 svn3379

Parameters: 170

no_case : An integer. Only applies to the Windows platform. If zero (the default) the path name is
returned using the same case as supplied, otherwise the returned value is all in lowercase.

3.

Returns:

A sequence, the full path and file name.

Comment:

In non-Unix systems, the result is always in lowercase.•
The supplied file/directory does not have to actually exist.•
path_in can be enclosed in quotes, which will be stripped off.•
If path_in begins with a tilde '~' then that is replaced by the contents of $HOME in unix platforms
and %HOMEDRIVE%%HOMEPATH% in Windows.

•

In Windows, all '/' characters are replaced by '\' characters.•
Does not (yet) handle UNC paths or unix links.•

Example 1:

-- Assuming the current directory is "/usr/foo/bar"
res = canonical_path("../abc.def")
-- res is now "/usr/foo/abc.def"

2.0.0.77 cardinal

include std/sets.e
public function cardinal(set S)

Return the cardinal of a set

Parameters:

S : the set being queried.1.

Returns:

An integer, the count of elements in S.

Euphoria v4.0 svn3379

Parameters: 171

See Also:

set

2.0.0.78 ceil

include std/math.e
public function ceil(object a)

Computes the next integer equal or greater than the argument.

Parameters:

value : an object, each atom of which processed, no matter how deeply nested.1.

Returns:

An object, the same shape as value. Each atom in value is returned as an integer that is the smallest
integer equal to or greater than the corresponding atom in value.

Comments:

This function may be applied to an atom or to all elements of a sequence.

ceil(X) is 1 more than floor(X) for non-integers. For integers, X = floor(X) = ceil(X).

Example 1:

sequence nums
nums = {8, -5, 3.14, 4.89, -7.62, -4.3}
nums = ceil(nums) -- {8, -5, 4, 5, -7, -4}

See Also:

floor, round

2.0.0.79 central_moment

include std/stats.e
public function central_moment(sequence data_set, object datum, integer order_mag = 1, object subseq_opt = ST_ALLNUM)

Euphoria v4.0 svn3379

Parameters: 172

Returns the distance between a supplied value and the mean, to some supplied order of magnitude. This is
used to get a measure of the shape of a data set.

Parameters:

data_set : a list of 1 or more numbers whose mean is used.1.
datum: either a single value or a list of values for which you require the central moments.2.
order_mag: An integer. This is the order of magnitude required. Usually a number from 1 to 4, but
can be anything.

3.

subseq_opt : an object. When this is ST_ALLNUM (the default) it means that data_set is
assumed to contain no sub-sequences otherwise this gives instructions about how to treat
sub-sequences. See comments for details.

4.

Returns:

An object. The same data type as datum. This is the set of calculated central moments.

Comments:

For each of the items in datum, its central moment is calculated as ...

CM = power(ITEM - AVG, MAGNITUDE)

If the data can contain sub-sequences, such as strings, you need to let the the function know about this
otherwise it assumes every value in data_set is an number. If that is not the case then the function will
crash. So it is important that if it can possibly contain sub-sequences that you tell this function what to do with
them. Your choices are to ignore them or assume they have the value zero. To ignore them, use ST_IGNSTR
as the subseq_opt parameter value otherwise use ST_ZEROSTR. However, if you know that data_set
only contains numbers use the default subseq_opt value, ST_ALLNUM. Note It is faster if the data only
contains numbers.

Example 1:

central_moment("the cat is the hatter", "the",1) --> {23.14285714, 11.14285714, 8.142857143}
central_moment("the cat is the hatter", 't',2) --> 535.5918367
central_moment("the cat is the hatter", 't',3) --> 12395.12536

See also:

average

Euphoria v4.0 svn3379

Parameters: 173

2.0.0.80 chance

include std/rand.e
public function chance(atom my_limit, atom top_limit = 100)

Simulates the probability of a desired outcome.

Parameters:

my_limit : an atom. The desired chance of something happening.1.
top_limit: an atom. The maximum chance of something happening. The default is 100.2.

Returns:

an integer. 1 if the desired chance happened otherwise 0.

Comments:

This simulates the chance of something happening. For example, if you wnat something to happen with a
probablity of 25 times out of 100 times then you code chance(25) and if you want something to (most
likely) occur 345 times out of 999 times, you code chance(345, 999)#.

Example 1:

-- 65% of the days are sunny, so ...
 if chance(65) then
 puts(1, "Today will be a sunny day")
 elsif chance(40) then
 -- And 40% of non-sunny days it will rain.
 puts(1, "It will rain today")
 else
 puts(1, "Today will be a overcast day")
 end if

See Also:

rnd, roll

2.0.0.81 change_target

include std/sets.e
public function change_target(map f, set old_target, set new_target)

Converts a map by changing its output set.

Euphoria v4.0 svn3379

Parameters: 174

Parameters:

f : the map to retarget1.
old_target : the initial target set for f2.
new_target : the new target set.3.

Returns:

A map, which agrees with f and has values in new_target instead of old_target, or "" if f hits
something outside new_target.

Example 1:

set s1,s2
 s1={1,3,5,7,9,11} s2={1,3,7,11,17,19,23}
 map f = {2,1,4,6,2,6,6,6}
 map f0 = change_target(f,s1,s2)
 f0 is now: {2,1,3,4,2,4,6,7}

See Also:

restrict, direct_map

2.0.0.82 char_test

include std/types.e
public function char_test(object test_data, sequence char_set)

Determine whether one or more characters are in a given character set.

Parameters:

test_data : an object to test, either a character or a string1.
char_set : a sequence, either a list of allowable characters, or a list of pairs representing allowable
ranges.

2.

Returns:

An integer, 1 if all characters are allowed, else 0.

Euphoria v4.0 svn3379

Parameters: 175

Comments:

pCharset is either a simple sequence of characters eg. "qwertyuiop[]
" or a sequence of character pairs, which represent allowable ranges of characters. eg. Alphabetic is defined as
{{'a','z'}, {'A', 'Z'}}

To add an isolated character to a character set which is defined using ranges, present it as a range of length 1,
like in {%,%}.

Example 1:

char_test("ABCD", {{'A', 'D'}})
-- TRUE, every char is in the range 'A' to 'D'

char_test("ABCD", {{'A', 'C'}})
-- FALSE, not every char is in the range 'A' to 'C'

char_test("Harry", {{'a', 'z'}, {'D', 'J'}})
-- TRUE, every char is either in the range 'a' to 'z', or in the range 'D' to 'J'

char_test("Potter", "novel")
-- FALSE, not every character is in the set 'n', 'o', 'v', 'e', 'l'

2.0.0.83 chdir

include std/filesys.e
public function chdir(sequence newdir)

Set a new value for the current directory

Parameters:

newdir : a sequence, the name for the new working directory.

Returns:

An integer, 0 on failure, 1 on success.

Comments:

By setting the current directory, you can refer to files in that directory using just the file name.

The current_dir() function will return the name of the current directory.

On WIN32 the current directory is a public property shared by all the processes running under one shell. On
Unix a subprocess can change the current directory for itself, but this won't affect the current directory of its

Euphoria v4.0 svn3379

Parameters: 176

parent process.

Example 1:

if chdir("c:\\euphoria") then
 f = open("readme.doc", "r")
else
 puts(STDERR, "Error: No euphoria directory?\n")
end if

See Also:

current_dir, dir

2.0.0.84 check_all_blocks

include std/memory.e
public procedure check_all_blocks()

2.0.0.85 check_all_blocks

include std/safe.e
public procedure check_all_blocks()

2.0.0.86 check_break

include std/console.e
public function check_break()

Returns the number of Control-C/Control-BREAK key presses.

Returns:

An integer, the number of times that CTRL+C or CTRL+Break have been pressed since the last call to
check_break(), or since the beginning of the program if this is the first call.

Comments:

This is useful after you have called allow_break(0) which prevents CTRL+C or CTRL+Break from
terminating your program. You can use check_break() to find out if the user has pressed one of these keys.
You might then perform some action such as a graceful shutdown of your program.

Euphoria v4.0 svn3379

Parameters: 177

Neither CTRL+C or CTRL+Break will be returned as input characters when you read the keyboard. You can
only detect them by calling check_break().

Example 1:

k = get_key()
if check_break() then -- ^C or ^Break was hit once or more
 temp = graphics_mode(-1)
 puts(STDOUT, "Shutting down...")
 save_all_user_data()
 abort(1)
end if

See Also:

allow_break

2.0.0.87 check_calls

include std/memory.e
public integer check_calls

2.0.0.88 check_calls

include std/safe.e
public integer check_calls

Define block checking policy.

Comments:

If this integer is 1, (the default), check all blocks for edge corruption after each call(), c_proc() or c_func(). To
save time, your program can turn off this checking by setting check_calls to 0.

2.0.0.89 check_free_list

include std/eds.e
public procedure check_free_list()

Detects corruption of the free list in a Euphoria database.

Euphoria v4.0 svn3379

Parameters: 178

Comments:

This is a debug routine used by RDS to detect corruption of the free list. Users do not normally call this.

2.0.0.90 checksum

include std/filesys.e
global function checksum(sequence filename, integer size = 4)

Returns a checksum value for the specified file.

Parameters:

filename : A sequence. The name of the file whose checksum you want.1.
size : An integer. The number of atoms to return. Default is 42.

Returns:

A sequence containing size atoms.

Comments:

The larger the size value, the more unique will the checksum be. For most files and uses, a single
atom will be sufficient as this gives a 32-bit file signature. However, if you require better proof that
two files are different then use higher values for size. For example, ##size = 8 gives you 256 bits of
file signature.

•

Example 1:

? checksum("myfile", 1) --> {92837498}
 ? checksum("myfile", 2) --> {1238176, 87192873}
 ? checksum("myfile", 4) --> {23448, 239807, 79283749, 427370}
 ? checksum("myfile") --> {23448, 239807, 79283749, 427370} -- default

Euphoria v4.0 svn3379

Parameters: 179

2.0.0.91 clear

include std/map.e
public procedure clear(map the_map_p)

Remove all entries in a map.

Parameters:

the_map_p : the map to operate on1.

Comments:

This is much faster than removing each entry individually.•
If you need to remove just one entry, see remove•

Example 1:

map the_map_p
the_map_p = new()
put(the_map_p, "Amy", 66.9)
put(the_map_p, "Betty", 67.8)
put(the_map_p, "Claire", 64.1)
...
clear(the_map_p)
-- the_map_p is now an empty map again

See Also:

remove, has

2.0.0.92 clear

include std/stack.e
public procedure clear(stack sk)

Wipe out a stack.

Parameters:

sk : the stack to clear.1.

Euphoria v4.0 svn3379

Parameters: 180

Side effect:

The stack contents is emptied.

See Also:

new, is_empty

The sets.e module defines a type for sets and provides basic tools for handling them.

Other modules may be built upon them, for instance graph handling or simple topology, finite groups etc.

Notes:

A set is an ordered sequence in ascending order, not more, not less•
A map from setA to setB is a sequence the length of setA whose elements are indexes into setB,
followed by {length(setA),length(setB)}.

•

An operation of E x F ==> G is a two dimensional sequence of elements of G, indexed by E x F, and
the triple {card(E),card(F),card(G)}.

•

2.0.0.93 clear_directory

include std/filesys.e
public function clear_directory(sequence path, integer recurse = 1)

Clear (delete) a directory of all files, but retaining sub-directories.

Parameters:

name : a sequence, the name of the directory whose files you want to remove.1.
recurse : an integer, whether or not to remove files in the directory's sub-directories. If 0 then this
function is identical to remove_directory(). If 1, then we recursively delete the directory and its
contents. Defaults to 1.

2.

Returns:

An integer, 0 on failure, otherwise the number of files plus 1.

Euphoria v4.0 svn3379

Parameters: 181

Comment:

This never removes a directory. It only ever removes files. It is used to clear a directory structure of all
existing files, leaving the structure intact.

Example 1:

integer cnt = clear_directory("the_old_folder")
if cnt = 0 then
 crash("Filesystem problem - could not remove one or more of the files.")
end if
printf(1, "Number of files removed: %d\n", cnt - 1)

See Also:

remove_directory, delete_file

2.0.0.94 clear_screen

<built-in> procedure clear_screen()

Clear the screen using the current background color (may be set by bk_color()).

See Also:

bk_color

2.0.0.95 close

<built-in> procedure close(atom fn)

Close a file or device and flush out any still-buffered characters.

Parameters:

fn : an integer, the handle to the file or device to query.1.

Errors:

The target file or device must be open.

Euphoria v4.0 svn3379

Parameters: 182

Comments:

Any still-open files will be closed automatically when your program terminates.

2.0.0.96 close

include std/pipeio.e
public function close(atom fd)

Close handle fd

Returns:

An integer, 0 on success, -1 on failure

Example 1:

integer status = pipeio:close(p[STDIN])

2.0.0.97 close

include std/socket.e
public function close(socket sock)

Closes a socket.

Parameters:

sock: the socket to close1.

Returns:

An integer, 0 on success and -1 on error.

Comments:

It may take several minutes for the OS to declare the socket as closed.

Euphoria v4.0 svn3379

Parameters: 183

2.0.0.98 cmd_parse

include std/cmdline.e
public function cmd_parse(sequence opts, object parse_options = {}, sequence cmds = command_line())

Parse command line options, and optionally call procedures that relate to these options

Parameters:

opts : a sequence of valid option records: See Comments: section for details1.
parse_options : an optional sequence of parse options: See Parse Options section for details2.
cmds : an optional sequence of command line arguments. If omitted the output from
command_line() is used.

3.

Returns:

A map, containing the options set. The returned map has one special key named "extras" which are values
passed on the command line that are not part of any option, for instance a list of files myprog -verbose
file1.txt file2.txt. If any command element begins with an @ symbol then that file will be opened
and its contents used to add to the command line.

Parse Options:

parse_options can be a sequence of options that will affect the parsing of the command line options.
Options can be:

VALIDATE_ALL -- The default. All options will be validated for all possible errors.1.
NO_VALIDATION -- Do not validate any parameter.2.
NO_VALIDATION_AFTER_FIRST_EXTRA -- Do not validate any parameter after the first extra
was encountered. This is helpful for programs such as the Interpreter itself: eui -D TEST
greet.ex -name John. -D TEST should be validated but anything after "greet.ex" should not as
it is meant for greet.ex to handle, not eui.

3.

HELP_RID -- The next Parse Option must either a routine id or a set of text strings. The routine is
called or the text is displayed when a parse error (invalid option given, mandatory option not given,
no parameter given for an option that requires a parameter, etc...) occurs. This can be used to provide
additional help text. By default, just the option switches and their descriptions will be displayed.
However you can provide additional text by either supplying a routine_id of a procedure that accepts
no parameters; this procedure is expected to write text to the stdout device, or you can supply one or
more lines of text that will be displayed.

4.

NO_AT_EXPANSION -- Do not expand arguments that begin with '@.'5.
AT_EXPANSION -- Expand arguments that begin with '@'. The name that follows @ will be opened
as a file, read, and each trimmed non-empty line that does not begin with a '#' character will be
inserted as arguments in the command line. These lines replace the original '@' argument as if they
had been entered on the original command line.

If the name following the '@' begins with another '@', the extra '@' is removed and the
remainder is the name of the file. However, if that file cannot be read, it is simply ignored.
This allows optional files to be included on the command line. Normally, with just a single

♦

6.

Euphoria v4.0 svn3379

Parameters: 184

'@', if the file cannot be found the program aborts.
Lines whose first non-whitespace character is '#' are treated as a comment and thus ignored.♦
Lines enclosed with double quotes will have the quotes stripped off and the result is used as
an argument. This can be used for arguments that begin with a '#' character, for example.

♦

Lines enclosed with single quotes will have the quotes stripped off and the line is then further
split up use the space character as a delimiter. The resulting 'words' are then all treated as
individual arguments on the command line.

♦

An example of parse options:

{ HELP_RID, routine_id("my_help"), NO_VALIDATION }

Comments:

Token types recognized on the command line:

a single '-'. Simply added to the 'extras' list1.
a single "--". This signals the end of command line options. What remains of the command line is
added to the 'extras' list, and the parsing terminates.

2.

-shortName. The option will be looked up in the short name field of opts.3.
/shortName. Same as -shortName.4.
-!shortName. If the 'shortName' has already been found the option is removed.5.
/!shortName. Same as -!shortName6.
--longName. The option will be looked up in the long name field of opts.7.
--!longName. If the 'longName' has already been found the option is removed.8.
anything else. The word is simply added to the 'extras' list.9.

For those options that require a parameter to also be supplied, the parameter can be given as either the next
command line argument, or by appending '=' or ':' to the command option then appending the parameter data.
For example, -path=/usr/local or as -path /usr/local.

On a failed lookup, the program shows the help by calling show_help(opts, add_help_rid, cmds) and
terminates with status code 1.

Option records have the following structure:

a sequence representing the (short name) text that will follow the "-" option format. Use an atom if
not relevant

1.

a sequence representing the (long name) text that will follow the "--" option format. Use an atom if
not relevant

2.

a sequence, text that describes the option's purpose. Usually short as it is displayed when "-h"/"--help"
is on the command line. Use an atom if not required.

3.

An object ...
If an atom then it can be either HAS_PARAMETER or anything else if there is no parameter
for this option. This format also implies that the option is optional, case-sensitive and can
only occur once.

♦
4.

Euphoria v4.0 svn3379

Parameters: 185

If a sequence, it can containing zero or more processing flags in any order ...
MANDATORY to indicate that the option must always be supplied.◊
HAS_PARAMETER to indicate that the option must have a parameter following it.
You can optionally have a name for the parameter immediately follow the
HAS_PARAMETER flag. If one isn't there, the help text will show "x" otherwise it
shows the supplied name.

◊

NO_CASE to indicate that the case of the supplied option is not significant.◊
ONCE to indicate that the option must only occur once on the command line.◊
MULTIPLE to indicate that the option can occur any number of times on the
command line.

◊

♦

If both ONCE and MULTIPLE are omitted then switches that also have HAS_PARAMETER
are only allowed once but switches without HAS_PARAMETER can have multuple occurances
but only one is recorded in the output map.

♦

an integer; a routine_id. This function will be called when the option is located on the command line
and before it updates the map.
Use -1 if cmd_parse is not to invoke a function for this option.
The user defined function must accept a single sequence parameter containing four values. If the
function returns 1 then the command option does not update the map. You can use the predefined
index values OPT_IDX, OPT_CNT, OPT_VAL, OPT_REV when referencing the function's
parameter elements.

An index into the opts list.1.
The number of times that the routine has been called by cmd_parse for this option2.
The option's value as found on the command line3.
1 if the command line indicates that this option is to remove any earlier occurrences of it.4.

5.

When assigning a value to the resulting map, the key is the long name if present, otherwise it uses the short
name. For options, you must supply a short name, a long name or both.

If you want cmd_parse() to call a user routine for the extra command line values, you need to specify an
Option Record that has neither a short name or a long name, in which case only the routine_id field is used.

For more details on how the command line is being pre-parsed, see command_line.

Example:

sequence option_definition
integer gVerbose = 0
sequence gOutFile = {}
sequence gInFile = {}
function opt_verbose(sequence value)
 if value[OPT_VAL] = -1 then -- (-!v used on command line)
 gVerbose = 0
 else
 if value[OPT_CNT] = 1 then
 gVerbose = 1
 else
 gVerbose += 1
 end if
 end if
 return 1
end function

Euphoria v4.0 svn3379

Parameters: 186

function opt_output_filename(sequence value)
 gOutFile = value[OPT_VAL]
 return 1
end function

function opt_extras(sequence value)
 if not file_exists(value[OPT_VAL]) then
 show_help(option_definition, sprintf("Cannot find '%s'", {value[OPT_VAL]}))
 abort(1)
 end if
 gInFile = append(gInFile, value[OPT_VAL])
 return 1
end function

option_definition = {
 { "v", "verbose", "Verbose output",{NO_PARAMETER}, routine_id("opt_verbose")},
 { "h", "hash", "Calculate hash values",{NO_PARAMETER}, -1},
 { "o", "output", "Output filename",{MANDATORY, HAS_PARAMETER, ONCE} , routine_id("opt_output_filename") },
 { "i", "import", "An import path", {HAS_PARAMETER, MULTIPLE}, -1 },
 { 0, 0, 0, 0, routine_id("opt_extras")}
}

map:map opts = cmd_parse(option_definition)

-- When run as: eui myprog.ex -v @output.txt -i /etc/app input1.txt input2.txt
-- and the file "output.txt" contains the two lines ...
-- --output=john.txt
-- '-i /usr/local'
--
-- map:get(opts, "verbose") --> 1
-- map:get(opts, "hash") --> 0 (not supplied on command line)
-- map:get(opts, "output") --> "john.txt"
-- map:get(opts, "import") --> {"/usr/local", "/etc/app"}
-- map:get(opts, "extras") --> {"input1.txt", "input2.txt"}

See Also:

show_help, command_line

2.0.0.99 color

include std/graphcst.e
public type color(integer x)

2.0.0.100 colors_to_attr

include std/console.e
public function colors_to_attr(object fgbg, integer bg = 0)

Euphoria v4.0 svn3379

Parameters: 187

Converts a foreground and background color set to its attribute code format.

Parameters:

fgbg : Either a sequence of {fgcolor, bgcolor} or just an integer fgcolor.1.
bg : An integer bgcolor. Only used when fgbg is an integer.2.

Returns:

An integer attribute code.

Example 1:

? colors_to_attr({12, 5}) --> 92
? colors_to_attr(12, 5) --> 92

See Also:

get_screen_char, put_screen_char, attr_to_colors

2.0.0.101 columnize

include std/sequence.e
public function columnize(sequence source, object cols = {}, object defval = 0)

Converts a set of sub sequences into a set of 'columns'.

Parameters:

source : sequence containing the sub-sequences1.
cols : either a specific column number or a set of column numbers. Default is 0, which returns the
maximum number of columns.

2.

defval : an object. Used when a column value is not available. Default is 03.

Comments:

Any atoms found in source are treated as if they are a 1-element sequence.

Euphoria v4.0 svn3379

Parameters: 188

Example 1:

s = columnize({{1, 2}, {3, 4}, {5, 6}})
-- s is { {1,3,5}, {2,4,6}}

Example 2:

s = columnize({{1, 2}, {3, 4}, {5, 6, 7}})
-- s is { {1,3,5}, {2,4,6}, {0,0,7} }
s = columnize({{1, 2}, {3, 4}, {5, 6, 7},,-999}) -- Change the not-available value.
-- s is { {1,3,5}, {2,4,6}, {-999,-999,7} }

Example 3:

s = columnize({{1, 2}, {3, 4}, {5, 6, 7}}, 2)
-- s is { {2,4,6} } -- Column 2 only

Example 4:

s = columnize({{1, 2}, {3, 4}, {5, 6, 7}}, {2,1})
-- s is { {2,4,6}, {1,3,5} } -- Column 2 then column 1

Example 5:

s = columnize({"abc", "def", "ghi"})
-- s is {"adg", "beh", "cfi" }

2.0.0.102 combine

include std/sequence.e
public function combine(sequence source_data, integer proc_option = COMBINE_SORTED)

Combines all the sub-sequences into a single, optionally sorted, list

Parameters:

source_data : A sequence that contains sub-sequences to be combined.1.
proc_option : An integer; COMBINE_UNSORTED to return a non-sorted list and
COMBINE_SORTED (the default) to return a sorted list.

2.

Returns:

A sequence, that contains all the elements from all the first-level of sub-sequences from source_data.

Euphoria v4.0 svn3379

Parameters: 189

Comments:

The elements in the sub-sequences do not have to be pre-sorted.

Only one level of sub-sequence is combined.

Example 1:

sequence s = { {4,7,9}, {7,2,5,9}, {0,4}, {5}, {6,5}}
? combine(s, COMBINE_SORTED) --> {0,2,4,4,5,5,5,6,7,7,9,9}
? combine(s, COMBINE_UNSORTED) --> {4,7,9,7,2,5,9,0,4,5,6,5}

Example 2:

sequence s = { {"cat", "dog"}, {"fish", "whale"}, {"wolf"}, {"snail", "worm"}}
? combine(s) --> {"cat","dog","fish","snail","whale","wolf","worm"}
? combine(s, COMBINE_UNSORTED) --> {"cat","dog","fish","whale","wolf","snail","worm"}

Example 3:

sequence s = { "cat", "dog","fish", "whale", "wolf", "snail", "worm"}
? combine(s) --> "aaacdeffghhiilllmnooorsstwww"
? combine(s, COMBINE_UNSORTED) --> "catdogfishwhalewolfsnailworm"

2.0.0.103 combine_maps

include std/sets.e
public function combine_maps(map f1, set source1, set target1, map f2, set source2, set target2)

Combines two maps into one defined from the union of source sets to the union of target sets.

Parameters:

f1 : the first map1.
source1 : its source set2.
target1 : its target set3.
f2 : the second map4.
source2 : its source set5.
target2 : its target set6.

Returns:

A map, from union(source1,source2) to union(target1,target2) which agrees with f1 and
f2, or "" if f1 and f2 disagree at any point of intersection(s11,s21).

Euphoria v4.0 svn3379

Parameters: 190

Errors:

If f1 and f2 are both defined for some point, they must have the same value at this point..

Example 1:

set s11,s12,s21,s22
 s11={2,3,5,7,11,13,17,19} s21={7,13,19,23,29}
 s12={-1,0,1,4} s22={-2,0,1,2,6}
 map f1,f2
 f1={2,1,3,3,2,3,1,2,8,4} f2={3,3,2,4,5,5,5}
 map f = combine_maps(f1,s11,s12,f2,s21,s22)
 -- f is now: {3,2,4,4,3,4,2,3,5,7,10,7}.

See Also:

restrict, direct_map

2.0.0.104 command_line

<built-in> function command_line()

A sequence, of strings, where each string is a word from the command-line that started your program.

Returns:

The path, to either the Euphoria executable, (eui, eui.exe, euid.exe euiw.exe) or to your bound
executable file.

1.

The next word, is either the name of your Euphoria main file, or (again) the path to your bound
executable file.

2.

Any extra words, typed by the user. You can use these words in your program.3.

There are as many entries as words, plus the two mentioned above.

The Euphoria interpreter itself does not use any command-line options. You are free to use any options for
your own program. It does have command line switches though.

The user can put quotes around a series of words to make them into a single argument.

If you convert your program into an executable file, either by binding it, or translating it to C, you will find
that all command-line arguments remain the same, except for the first two, even though your user no longer
types "eui" on the command-line (see examples below).

Euphoria v4.0 svn3379

Parameters: 191

Example 1:

-- The user types: eui myprog myfile.dat 12345 "the end"

cmd = command_line()

-- cmd will be:
 {"C:\EUPHORIA\BIN\EUI.EXE",
 "myprog",
 "myfile.dat",
 "12345",
 "the end"}

Example 2:

-- Your program is bound with the name "myprog.exe"
-- and is stored in the directory c:\myfiles
-- The user types: myprog myfile.dat 12345 "the end"

cmd = command_line()

-- cmd will be:
 {"C:\MYFILES\MYPROG.EXE",
 "C:\MYFILES\MYPROG.EXE", -- place holder
 "myfile.dat",
 "12345",
 "the end"
 }

-- Note that all arguments remain the same as example 1
-- except for the first two. The second argument is always
-- the same as the first and is inserted to keep the numbering
-- of the subsequent arguments the same, whether your program
-- is bound or translated as a .exe, or not.

See Also:

build_commandline, option_switches, getenv, cmd_parse, show_help

2.0.0.105 compare

<built-in> function compare(object compared, object reference)

Compare two items returning less than, equal or greater than.

Parameters:

compared : the compared object1.
reference : the reference object2.

Euphoria v4.0 svn3379

Parameters: 192

Returns:

An integer,

0 -- if objects are identical•
1 -- if compared is greater than reference•
-1 -- if compared is less than reference•

Comments:

Atoms are considered to be less than sequences. Sequences are compared alphabetically starting with the first
element until a difference is found or one of the sequences is exhausted. Atoms are compared as ordinary
reals.

Example 1:

x = compare({1,2,{3,{4}},5}, {2-1,1+1,{3,{4}},6-1})
-- identical, x is 0

Example 2:

if compare("ABC", "ABCD") < 0 then -- -1
 -- will be true: ABC is "less" because it is shorter
end if

Example 3:

x = compare('a', "a")
-- x will be -1 because 'a' is an atom
-- while "a" is a sequence

See Also:

equal, relational operators, operations on sequences, sort

2.0.0.106 compare

include std/map.e
public function compare(map map_1_p, map map_2_p, integer scope_p = 'd')

Compares two maps to test equality.

Euphoria v4.0 svn3379

Parameters: 193

Parameters:

map_1_p : A map1.
map_2_p : A map2.
scope_p : An integer that specifies what to compare.

'k' or 'K' to only compare keys.♦
'v' or 'V' to only compare values.♦
'd' or 'D' to compare both keys and values. This is the default.♦

3.

Returns:

An integer,

-1 if they are not equal.•
0 if they are literally the same map.•
1 if they contain the same keys and/or values.•

Example 1:

map map_1_p = foo()
map map_2_p = bar()
if compare(map_1_p, map_2_p, 'k') >= 0 then
 ... -- two maps have the same keys

2.0.0.107 compose_map

include std/sets.e
public function compose_map(map f1, map f2)

Creates a new map using elements from f2, mapped against f1

Parameters:

f1 : the map containing indexes into f21.
f2 : the map containing elements used to build the resulting map.2.

Returns:

A map, f defined by f(x)=f2(f1(x)) for all x

Euphoria v4.0 svn3379

Parameters: 194

Comments:

Each element in f1 is an index into the elements of f2. So if f1 contains {3,2,1} the result map contains the
3rd, 2nd and 1st element from f2 in that order.

Errors:

Every element of f1 must be a valid index into f2.

Example 1:

map f1,f2,f
 f1={2,3,1,1,2,5,3}
 f2={4,8,1,2,6,7,6,9}
 f=compose_map(f1,f2)
 -- f is now: {8,1,4,4,8,5,9}

See Also:

diagram_commutes

2.0.0.108 connect

include std/socket.e
public function connect(socket sock, sequence address, integer port = - 1)

Establish an outgoing connection to a remote computer. Only works with TCP sockets.

Parameters:

sock : the socket1.
address : ip address to connect, optionally with :PORT at the end2.
port : port number3.

Returns:

An integer, 0 for success and -1 on failure.

Comments:

address can contain a port number. If it does not, it has to be supplied to the port parameter.

Euphoria v4.0 svn3379

Parameters: 195

Example 1:

success = connect(sock, "11.1.1.1") -- uses default port 80
success = connect(sock, "11.1.1.1:110") -- uses port 110
success = connect(sock, "11.1.1.1", 345) -- uses port 345

2.0.0.109 copy

include std/map.e
public function copy(map source_map, object dest_map = 0, integer put_operation = PUT)

Duplicates a map.

Parameters:

source_map : map to copy from1.
dest_map : optional, map to copy to2.
put_operation : optional, operation to use when destmap## is used. The default is PUT.3.

Returns:

If dest_map was not provided, an exact duplicate of source_map otherwise dest_map, which does not
have to be empty, is returned with the new values copied from source_map, according to the
put_operation value.

Example 1:

map m1 = new()
put(m1, 1, "one")
put(m1, 2, "two")

map m2 = copy(m1)
printf(1, "%s, %s\n", { get(m2, 1), get(m2, 2) })
-- one, two

put(m1, 1, "one hundred")
printf(1, "%s, %s\n", { get(m1, 1), get(m1, 2) })
-- one hundred, two

printf(1, "%s, %s\n", { get(m2, 1), get(m2, 2) })
-- one, two

Euphoria v4.0 svn3379

Parameters: 196

Example 2:

map m1 = new()
map m2 = new()

put(m1, 1, "one")
put(m1, 2, "two")
put(m2, 3, "three")

copy(m1, m2)

? keys(m2)
-- { 1, 2, 3 }

Example 3:

map m1 = new()
map m2 = new()

put(m1, "XY", 1)
put(m1, "AB", 2)
put(m2, "XY", 3)

? pairs(m1) -- { {"AB", 2}, {"XY", 1} }
? pairs(m2) -- { {"XY", 3} }

-- Add same keys' values.
copy(m1, m2, ADD)

? pairs(m2)
-- { {"AB", 2}, {"XY", 4} }

See Also:

put

2.0.0.110 copy_file

include std/filesys.e
public function copy_file(sequence src, sequence dest, integer overwrite = 0)

Copy a file.

Parameters:

src : a sequence, the name of the file or directory to copy1.
dest : a sequence, the new name or location of the file2.
overwrite : an integer; 0 (the default) will prevent an existing destination file from being
overwritten. Non-zero will overwrite the destination file.

3.

Euphoria v4.0 svn3379

Parameters: 197

Returns:

An integer, 0 on failure, 1 on success.

Comments:

If overwrite is true, and if dest file already exists, the function overwrites the existing file and succeeds.

See Also:

move_file, rename_file

2.0.0.111 cos

<built-in> function cos(object angle)

Return the cosine of an angle expressed in radians

Parameters:

angle : an object, each atom of which will be converted, no matter how deeply nested.1.

Returns:

An object, the same shape as angle. Each atom in angle is turned into its cosine.

Comments:

This function may be applied to an atom or to all elements of a sequence.

The cosine of an angle is an atom between -1 and 1 inclusive. 0.0 is hit by odd multiples of PI/2 only.

Example 1:

x = cos({.5, .6, .7})
-- x is {0.8775826, 0.8253356, 0.7648422}

See Also:

sin, tan, arccos, PI, deg2rad

Euphoria v4.0 svn3379

Parameters: 198

2.0.0.112 cosh

include std/math.e
public function cosh(object a)

Computes the hyperbolic cosine of an object.

Parameters:

x : the object to process.1.

Returns:

An object, the same shape as x, each atom of which was acted upon.

Comments:

The hyperbolic cosine grows like the exponential function.

For all reals, power(cosh(x), 2) - power(sinh(x), 2) = 1. Compare with ordinary
trigonometry.

Example 1:

? cosh(LN2) -- prints out 1.25

See Also:

cos, sinh, arccosh

2.0.0.113 count

include std/stats.e
public function count(object data_set, object subseq_opt = ST_ALLNUM)

Returns the count of all the atoms in an object.

Euphoria v4.0 svn3379

Parameters: 199

Parameters:

data_set : either an atom or a list.1.
subseq_opt : an object. When this is ST_ALLNUM (the default) it means that data_set is
assumed to contain no sub-sequences otherwise this gives instructions about how to treat
sub-sequences. See comments for details.

2.

Comments:

This returns the number of numbers in data_set

If the data can contain sub-sequences, such as strings, you need to let the the function know about this
otherwise it assumes every value in data_set is an number. If that is not the case then the function will
crash. So it is important that if it can possibly contain sub-sequences that you tell this function what to do with
them. Your choices are to ignore them or assume they have the value zero. To ignore them, use ST_IGNSTR
as the subseq_opt parameter value otherwise use ST_ZEROSTR. However, if you know that data_set
only contains numbers use the default subseq_opt value, ST_ALLNUM. Note It is faster if the data only
contains numbers.

Returns:

An integer, the number of atoms in the set. When data_set is an atom, 1 is returned.

Example 1:

? count({7,2,8.5,6,6,-4.8,6,6,3.341,-8,"text"}) -- Ans: 10
? count({"cat", "dog", "lamb", "cow", "rabbit"}) -- Ans: 0 (no atoms)
? count(5) -- Ans: 1

See also:

average, sum

2.0.0.114 crash

include std/error.e
public procedure crash(sequence fmt, object data = {})

Crash running program, displaying a formatted error message the way printf() does.

Euphoria v4.0 svn3379

Parameters: 200

Parameters:

fmt : a sequence representing the message text. It may have format specifiers in it1.
data : an object, defaulted to {}.2.

Comments:

The actual message being shown, both on standard error and in ex.err (or whatever file last passed to
crash_file()), is sprintf(fmt, data). The program terminates as for any runtime error.

Example 1:

if PI = 3 then
 crash("The whole structure of universe just changed - please reload solar_system.ex")
end if

Example 2:

if token = end_of_file then
 crash("Test file #%d is bad, text read so far is %s\n", {file_number, read_so_far})
end if

See Also:

crash_file, crash_message, printf

2.0.0.115 crash_file

include std/error.e
public procedure crash_file(sequence file_path)

Specify a file path name in place of "ex.err" where you want any diagnostic information to be written.

Parameters:

file_path : a sequence, the new error and traceback file path.1.

Comments:

There can be as many calls to crash_file() as needed. Whatever was defined last will be used in case of
an error at runtime, whether it was triggered by crash() or not.

Euphoria v4.0 svn3379

Parameters: 201

See Also:

crash, crash_message

2.0.0.116 crash_message

include std/error.e
public procedure crash_message(sequence msg)

Specify a final message to display for your user, in the event that Euphoria has to shut down your program
due to an error.

Parameters:

msg : a sequence to display. It must only contain printable characters.1.

Comments:

There can be as many calls to crash_message() as needed in a program. Whatever was defined last will be
used in case of a runtime error.

Example 1:

crash_message("The password you entered must have at least 8 characters.")
pwd_key = input_text[1..8]
-- if ##input_text## is too short, user will get a more meaningful message than
-- "index out of bounds".

See Also:

crash, crash_file

2.0.0.117 crash_routine

include std/error.e
public procedure crash_routine(integer func)

Specify a function to be called when an error takes place at run time.

Euphoria v4.0 svn3379

Parameters: 202

Parameters:

func : an integer, the routine_id of the function to link in.1.

Comments:

The supplied function must have only one parameter, which should be integer or more general. Defaulted
parameters in crash routines are not supported yet.

Euphoria maintains a linked list of routines to execute upon a crash. crash_routine() adds a new function
to the list. The routines defined first are executed last. You cannot unlink a routine once it is linked, nor
inspect the crash routine chain.

Currently, the crash routines are passed 0. Future versions may attempt to convey more information to them.
If a crash routine returns anything else than 0, the remaining routines in the chain are skipped.

crash routines are not full fledged exception handlers, and they cannot resume execution at current or next
statement. However, they can read the generated crash file, and might perform any action, including restarting
the program.

Example 1:

function report_error(integer dummy)
 mylib:email("maintainer@remote_site.org", "ex.err")
 return 0 and dummy
end function
crash_routine(routine_id("report_error"))

See Also:

crash_file, routine_id, Debugging and Profiling

One use is to emulate PBR, such as Euphoria's map and stack types.

2.0.0.118 create

include std/pipeio.e
public function create()

Create pipes for inter-process communication

Euphoria v4.0 svn3379

Parameters: 203

Returns:

A handle, process handles { {parent side pipes},{child side pipes} }

Example 1:

object p = exec("dir", create())

2.0.0.119 create

include std/socket.e
public function create(integer family, integer sock_type, integer protocol)

Create a new socket

Parameters:

family: an integer1.
sock_type: an integer, the type of socket to create2.
protocol: an integer, the communication protocol being used3.

family options:

AF_UNIX•
AF_INET•
AF_INET6•
AF_APPLETALK•
AF_BTH•

sock_type options:

SOCK_STREAM•
SOCK_DGRAM•
SOCK_RAW•
SOCK_RDM•
SOCK_SEQPACKET•

Returns:

An object, -1 on failure, else a supposedly valid socket id.

Euphoria v4.0 svn3379

Parameters: 204

Example 1:

socket = create(AF_INET, SOCK_STREAM, 0)

2.0.0.120 create_directory

include std/filesys.e
public function create_directory(sequence name, integer mode = 448, integer mkparent = 1)

Create a new directory.

Parameters:

name : a sequence, the name of the new directory to create1.
mode : on Unix systems, permissions for the new directory. Default is 448 (all rights for owner, none
for others).

2.

mkparent : If true (default) the parent directories are also created if needed.3.

Returns:

An integer, 0 on failure, 1 on success.

Comments:

mode is ignored on non-Unix platforms.

Example 1:

if not create_directory("the_new_folder") then
 crash("Filesystem problem - could not create the new folder")
end if

-- This example will also create "myapp/" and "myapp/interface/" if they don't exist.
if not create_directory("myapp/interface/letters") then
 crash("Filesystem problem - could not create the new folder")
end if

-- This example will NOT create "myapp/" and "myapp/interface/" if they don't exist.
if not create_directory("myapp/interface/letters",,0) then
 crash("Filesystem problem - could not create the new folder")
end if

Euphoria v4.0 svn3379

Parameters: 205

See Also:

remove_directory, chdir

2.0.0.121 create_file

include std/filesys.e
public function create_file(sequence name)

Create a new file.

Parameters:

name : a sequence, the name of the new file to create1.

Returns:

An integer, 0 on failure, 1 on success.

Comments:

The created file will be empty, that is it has a length of zero.•
The created file will not be open when this returns.•

Example 1:

if not create_file("the_new_file") then
 crash("Filesystem problem - could not create the new file")
end if

See Also:

create_directory

2.0.0.122 curdir

include std/filesys.e
public function curdir(integer drive_id = 0)

Returns the current directory, with a trailing SLASH

Euphoria v4.0 svn3379

Parameters: 206

Parameters:

drive_id : For non-Unix systems only. This is the Drive letter to to get the current directory of. If
omitted, the current drive is used.

1.

Returns:

A sequence, the current directory.

Comment:

Windows maintain a current directory for each disk drive. You would use this routine if you wanted the
current directory for a drive that may not be the current drive.

For Unix systems, this is simply ignored because there is only one current directory at any time on Unix.

Note:

This always ensures that the returned value has a trailing SLASH character.

Example 1:

res = curdir('D') -- Find the current directory on the D: drive.
-- res might be "D:\backup\music\"
res = curdir() -- Find the current directory on the current drive.
-- res might be "C:\myapp\work\"

2.0.0.123 current_dir

include std/filesys.e
public function current_dir()

Return the name of the current working directory.

Returns:

A sequence, the name of the current working directory

Comments:

There will be no slash or backslash on the end of the current directory, except under Windows, at the top-level
of a drive, e.g. C:\

Euphoria v4.0 svn3379

Parameters: 207

Example 1:

sequence s
s = current_dir()
-- s would have "C:\EUPHORIA\DOC" if you were in that directory

See Also:

dir, chdir

2.0.0.124 cursor

include std/console.e
public procedure cursor(integer style)

Select a style of cursor.

Parameters:

style : an integer defining the cursor shape.1.

Platform:

Not Unix

Comments:

In pixel-graphics modes no cursor is displayed.

Example 1:

cursor(BLOCK_CURSOR)

Cursor Type Constants:

NO_CURSOR•
UNDERLINE_CURSOR•
THICK_UNDERLINE_CURSOR•
HALF_BLOCK_CURSOR•
BLOCK_CURSOR•

Euphoria v4.0 svn3379

Parameters: 208

See Also:

graphics_mode, text_rows

2.0.0.125 custom_sort

include std/sort.e
public function custom_sort(integer custom_compare, sequence x, object data = {}, integer order = NORMAL_ORDER)

Sort the elements of a sequence according to a user-defined order.

Parameters:

custom_compare : an integer, the routine-id of the user defined routine that compares two items
which appear in the sequence to sort.

1.

x : the sequence of items to be sorted.2.
data : an object, either {} (no custom data, the default), an atom or a non-empty sequence.3.
order : an integer, either NORMAL_ORDER (the default) or REVERSE_ORDER.4.

Returns:

A sequence, a copy of the original sequence in sorted order

Errors:

If the user defined routine does not return according to the specifications in the Comments section below, an
error will occur.

Comments:

If some user data is being provided, that data must be either an atom or a sequence with at least one
element. NOTE only the first element is passed to the user defined comparison routine, any other
elements are just ignored. The user data is not used or inspected it in any way other than passing it to
the user defined routine.

•

The user defined routine must return an integer comparison result
a negative value if object A must appear before object B♦
a positive value if object B must appear before object A♦
0 if the order does not matter♦

•

NOTE: The meaning of the value returned by the user-defined routine is reversed when order =
REVERSE_ORDER. The default is order = NORMAL_ORDER, which sorts in order returned by the custom
comparison routine.

Euphoria v4.0 svn3379

Parameters: 209

When no user data is provided, the user defined routine must accept two objects (A, B) and return just
the comparison result.

•

When some user data is provided, the user defined routine must take three objects (A, B , data). It
must return either...

an integer, which is a comparison result♦
a two-element sequence, in which the first element is a comparison result and the second
element is the updated user data that is to be used for the next call to the user defined routine.

♦

•

The elements of x can be atoms or sequences. Each time that the sort needs to compare two items in
the sequence, it calls the user-defined function to determine the order.

•

This function uses the "Shell" sort algorithm. This sort is not "stable", i.e. elements that are
considered equal might change position relative to each other.

•

Example 1:

constant students = {{"Anne",18}, {"Bob",21},
 {"Chris",16}, {"Diane",23},
 {"Eddy",17}, {"Freya",16},
 {"George",20}, {"Heidi",20},
 {"Ian",19}}
sequence sorted_byage
function byage(object a, object b)
 ----- If the ages are the same, compare the names otherwise just compare ages.
 if equal(a[2], b[2]) then
 return compare(upper(a[1]), upper(b[1]))
 end if
 return compare(a[2], b[2])
end function

sorted_byage = custom_sort(routine_id("byage"), students)
-- result is {{"Chris",16}, {"Freya",16},
-- {"Eddy",17}, {"Anne",18},
-- {"Ian",19}, {"George",20},
-- {"Heidi",20}, {"Bob",21},
-- {"Diane",23}}

sorted_byage = custom_sort(routine_id("byage"), students,, REVERSE_ORDER)
-- result is {{"Diane",23}, {"Bob",21},
-- {"Heidi",20}, {"George",20},
-- {"Ian",19}, {"Anne",18},
-- {"Eddy",17}, {"Freya",16},
-- {"Chris",16}}
--

Example 2:

constant students = {{"Anne","Baxter",18}, {"Bob","Palmer",21},
 {"Chris","du Pont",16},{"Diane","Fry",23},
 {"Eddy","Ammon",17},{"Freya","Brash",16},
 {"George","Gungle",20},{"Heidi","Smith",20},
 {"Ian","Sidebottom",19}}

Euphoria v4.0 svn3379

Parameters: 210

sequence sorted
function colsort(object a, object b, sequence cols)
 integer sign
 for i = 1 to length(cols) do
 if cols[i] < 0 then
 sign = -1
 cols[i] = -cols[i]
 else
 sign = 1
 end if
 if not equal(a[cols[i]], b[cols[i]]) then
 return sign * compare(upper(a[cols[i]]), upper(b[cols[i]]))
 end if
 end for

 return 0
end function

-- Order is age:descending, Surname, Given Name
sequence column_order = {-3,2,1}
sorted = custom_sort(routine_id("colsort"), students, {column_order})
-- result is
{
 {"Diane","Fry",23},
 {"Bob","Palmer",21},
 {"George","Gungle",20},
 {"Heidi","Smith",20},
 {"Ian","Sidebottom",19},
 {"Anne", "Baxter", 18 },
 {"Eddy","Ammon",17},
 {"Freya","Brash",16},
 {"Chris","du Pont",16}
}

sorted = custom_sort(routine_id("colsort"), students, {column_order}, REVERSE_ORDER)
-- result is
{
 {"Chris","du Pont",16},
 {"Freya","Brash",16},
 {"Eddy","Ammon",17},
 {"Anne", "Baxter", 18 },
 {"Ian","Sidebottom",19},
 {"Heidi","Smith",20},
 {"George","Gungle",20},
 {"Bob","Palmer",21},
 {"Diane","Fry",23}
}

See Also:

compare, sort

Euphoria v4.0 svn3379

Parameters: 211

2.0.0.126 date

<built-in> function date()

Return a sequence with information on the current date.

Returns:

A sequence of length 8, laid out as follows:

year -- since 19001.
month -- January = 12.
day -- day of month, starting at 13.
hour -- 0 to 234.
minute -- 0 to 595.
second -- 0 to 596.
day of the week -- Sunday = 17.
day of the year -- January 1st = 18.

Comments:

The value returned for the year is actually the number of years since 1900 (not the last 2 digits of the year). In
the year 2000 this value was 100. In 2001 it was 101, etc.

Example 1:

now = date()
-- now has: {95,3,24,23,47,38,6,83}
-- i.e. Friday March 24, 1995 at 11:47:38pm, day 83 of the year

See Also:

time, now

2.0.0.127 datetime

include std/datetime.e
public type datetime(object o)

datetime type

Euphoria v4.0 svn3379

Parameters: 212

Parameters:

obj : any object, so no crash takes place.1.

Comments:

A datetime type consists of a sequence of length 6 in the form {year, month, day_of_month,
hour, minute, second}. Checks are made to guarantee those values are in range.

Note:

All components must be integers except seconds, as those can also be floating point values.

2.0.0.128 datetime

include std/locale.e
public function datetime(sequence fmt, dt :datetime dtm)

Formats a date according to current locale.

Parameters:

fmt : A format string, as described in datetime:format1.
dtm : the datetime to write out.2.

Returns:

A sequence, representing the formatted date.

Example 1:

? datetime("Today is a %A",dt:now())

See Also:

datetime:format

Win32 locale names:

Euphoria v4.0 svn3379

Parameters: 213

af-ZA sq-AL gsw-FR am-ET ar-DZ ar-BH ar-EG ar-IQ
ar-JO ar-KW ar-LB ar-LY ar-MA ar-OM ar-QA ar-SA
ar-SY ar-TN ar-AE ar-YE hy-AM as-IN az-Cyrl-AZ az-Latn-AZ
ba-RU eu-ES be-BY bn-IN bs-Cyrl-BA bs-Latn-BA br-FR bg-BG
ca-ES zh-HK zh-MO zh-CN zh-SG zh-TW co-FR hr-BA
hr-HR cs-CZ da-DK prs-AF dv-MV nl-BE nl-NL en-AU
en-BZ en-CA en-029 en-IN en-IE en-JM en-MY en-NZ
en-PH en-SG en-ZA en-TT en-GB en-US en-ZW et-EE
fo-FO fil-PH fi-FI fr-BE fr-CA fr-FR fr-LU fr-MC
fr-CH fy-NL gl-ES ka-GE de-AT de-DE de-LI de-LU
de-CH el-GR kl-GL gu-IN ha-Latn-NG he-IL hi-IN hu-HU
is-IS ig-NG id-ID iu-Latn-CA iu-Cans-CA ga-IE it-IT it-CH
ja-JP kn-IN kk-KZ kh-KH qut-GT rw-RW kok-IN ko-KR
ky-KG lo-LA lv-LV lt-LT dsb-DE lb-LU mk-MK ms-BN
ms-MY ml-IN mt-MT mi-NZ arn-CL mr-IN moh-CA mn-Cyrl-MN
mn-Mong-CN ne-IN ne-NP nb-NO nn-NO oc-FR or-IN ps-AF
fa-IR pl-PL pt-BR pt-PT pa-IN quz-BO quz-EC quz-PE
ro-RO rm-CH ru-RU smn-FI smj-NO smj-SE se-FI se-NO
se-SE sms-FI sma-NO sma-SE sa-IN sr-Cyrl-BA sr-Latn-BA sr-Cyrl-CS
sr-Latn-CS ns-ZA tn-ZA si-LK sk-SK sl-SI es-AR es-BO
es-CL es-CO es-CR es-DO es-EC es-SV es-GT es-HN
es-MX es-NI es-PA es-PY es-PE es-PR es-ES es-ES_tradnl
es-US es-UY es-VE sw-KE sv-FI sv-SE syr-SY tg-Cyrl-TJ
tmz-Latn-DZ ta-IN tt-RU te-IN th-TH bo-BT bo-CN tr-TR
tk-TM ug-CN uk-UA wen-DE tr-IN ur-PK uz-Cyrl-UZ uz-Latn-UZ
vi-VN cy-GB wo-SN xh-ZA sah-RU ii-CN yo-NG zu-ZA

2.0.0.129 day_abbrs

include std/datetime.e
public sequence day_abbrs

Abbreviations of day names

2.0.0.130 day_names

include std/datetime.e
public sequence day_names

Names of the days

Euphoria v4.0 svn3379

Parameters: 214

2.0.0.131 days_in_month

include std/datetime.e
public function days_in_month(datetime dt)

Return the number of days in the month of dt.

This takes into account leap year.

Parameters:

dt : a datetime to be queried.1.

Example 1:

d = new(2008, 1, 1, 0, 0, 0)
? days_in_month(d) -- 31
d = new(2008, 2, 1, 0, 0, 0) -- Leap year
? days_in_month(d) -- 29

See Also:

is_leap_year

2.0.0.132 days_in_year

include std/datetime.e
public function days_in_year(datetime dt)

Return the number of days in the year of dt.

This takes into account leap year.

Parameters:

dt : a datetime to be queried.1.

Euphoria v4.0 svn3379

Parameters: 215

Example 1:

d = new(2007, 1, 1, 0, 0, 0)
? days_in_year(d) -- 365
d = new(2008, 1, 1, 0, 0, 0) -- leap year
? days_in_year(d) -- 366

See Also:

is_leap_year, days_in_month

2.0.0.133 db_cache_clear

include std/eds.e
public procedure db_cache_clear()

Forces the database index cache to be cleared.

Parameters:

None

Comments:

This is not normally required to the run. You might run it to set up a predetermined state for
performance timing, or to release some memory back to the application.

•

Example 1:

db_cache_clear() -- Clear the cache.

2.0.0.134 db_clear_table

include std/eds.e
public procedure db_clear_table(sequence name, integer init_records = INIT_RECORDS)

Clears a table of all its records, in the current database.

Parameters:

name : a sequence, the name of the table to clear.1.

Euphoria v4.0 svn3379

Parameters: 216

Errors:

An error occurs if the current database is not defined.

Comments:

If there is no table with the name given by name, then nothing happens. On success, all records are deleted
and all space used by the table is freed up. If this is the current table, after this operation it will still be the
current table.

See Also:

db_table_list, db_select_table, db_delete_table

2.0.0.135 db_close

include std/eds.e
public procedure db_close()

Unlock and close the current database.

Comments:

Call this procedure when you are finished with the current database. Any lock will be removed, allowing other
processes to access the database file. The current database becomes undefined.

2.0.0.136 db_compress

include std/eds.e
public function db_compress()

Compresses the current database.

Returns:

An integer, either DB_OK on success or an error code on failure.

Comments:

The current database is copied to a new file such that any blocks of unused space are eliminated. If successful,
the return value will be set to DB_OK, and the new compressed database file will retain the same name. The

Euphoria v4.0 svn3379

Parameters: 217

current table will be undefined. As a backup, the original, uncompressed file will be renamed with an
extension of .t0 (or .t1, .t2, ..., .t99). In the highly unusual case that the compression is unsuccessful, the
database will be left unchanged, and no backup will be made.

When you delete items from a database, you create blocks of free space within the database file. The system
keeps track of these blocks and tries to use them for storing new data that you insert. db_compress() will copy
the current database without copying these free areas. The size of the database file may therefore be reduced.
If the backup filenames reach .t99 you will have to delete some of them.

Example 1:

if db_compress() != DB_OK then
 puts(2, "compress failed!\n")
end if

2.0.0.137 db_create

include std/eds.e
public function db_create(sequence path, integer lock_method = DB_LOCK_NO, integer init_tables = INIT_TABLES, integer init_free = INIT_FREE)

Create a new database, given a file path and a lock method.

Parameters:

path : a sequence, the path to the file that will contain the database.1.
lock_method : an integer specifying which type of access can be granted to the database. The
value of lock_method can be either DB_LOCK_NO (no lock) or DB_LOCK_EXCLUSIVE
(exclusive lock).

2.

init_tables : an integer giving the initial number of tables to reserve space for. The default is 5
and the minimum is 1.

3.

init_free : an integer giving the initial amount of free space pointers to reserve space for. The
default is 5 and the minimum is 0.

4.

Returns:

An integer, status code, either DB_OK if creation successful or anything else on an error.

Comments:

On success, the newly created database becomes the current database to which all other database operations
will apply.

If the path, s, does not end in .edb, it will be added automatically.

Euphoria v4.0 svn3379

Parameters: 218

A version number is stored in the database file so future versions of the database software can recognize the
format, and possibly read it and deal with it in some way.

If the database already exists, it will not be overwritten. db_create() will return DB_EXISTS_ALREADY.

Example 1:

if db_create("mydata", DB_LOCK_NO) != DB_OK then
 puts(2, "Couldn't create the database!\n")
 abort(1)
end if

See Also:

db_open, db_select

2.0.0.138 db_create_table

include std/eds.e
public function db_create_table(sequence name, integer init_records = INIT_RECORDS)

Create a new table within the current database.

Parameters:

name : a sequence, the name of the new table.1.
init_records : The number of records to initially reserve space for. (Default is 50)2.

Returns:

An integer, either DB_OK on success or DB_EXISTS_ALREADY on failure.

Errors:

An error occurs if the current database is not defined.

Comments:

The supplied name must not exist already on the current database.•
The table that you create will initially have 0 records. However it will reserve some space for a
number of records, which will improve the initial data load for the table.

•

It becomes the current table.•

Euphoria v4.0 svn3379

Parameters: 219

Example 1:

if db_create_table("my_new_table") != DB_OK then
 puts(2, "Could not create my_new_table!\n")
end if

See Also:

db_select_table, db_table_list

2.0.0.139 db_current

include std/eds.e
public function db_current()

Get name of currently selected database.

Parameters:

None.1.

Returns:

A sequence, the name of the current database. An empty string means that no database is currently selected.

Comments:

The actual name returned is the path as supplied to the db_open routine.

Example 1:

s = db_current_database()

See Also:

db_select

2.0.0.140 db_current_table

include std/eds.e
public function db_current_table()

Euphoria v4.0 svn3379

Parameters: 220

Get name of currently selected table

Parameters:

None.1.

Returns:

A sequence, the name of the current table. An empty string means that no table is currently selected.

Example 1:

s = db_current_table()

See Also:

db_select_table, db_table_list

2.0.0.141 db_delete_record

include std/eds.e
public procedure db_delete_record(integer key_location, object table_name = current_table_name)

Delete record number key_location from the current table.

Parameter:

key_location : a positive integer, designating the record to delete.1.
table_name : optional table name to delete record from.2.

Errors:

If the current table is not defined, or key_location is not a valid record index, an error will occur. Valid
record indexes are between 1 and the number of records in the table.

Example 1:

db_delete_record(55)

Euphoria v4.0 svn3379

Parameters: 221

See Also:

db_find_key

2.0.0.142 db_delete_table

include std/eds.e
public procedure db_delete_table(sequence name)

Delete a table in the current database.

Parameters:

name : a sequence, the name of the table to delete.1.

Errors:

An error occurs if the current database is not defined.

Comments:

If there is no table with the name given by name, then nothing happens. On success, all records are deleted
and all space used by the table is freed up. If the table was the current table, the current table becomes
undefined.

See Also:

db_table_list, db_select_table, db_clear_table

2.0.0.143 db_dump

include std/eds.e
public procedure db_dump(object file_id, integer low_level_too = 0)

print the current database in readable form to file fn

Parameters:

fn : the destination file for printing the current Euphoria database;1.
low_level_too : a boolean. If true, a byte-by-byte binary dump is presented as well; otherwise
this step is skipped. If omitted, false is assumed.

2.

Euphoria v4.0 svn3379

Parameters: 222

Errors:

If the current database is not defined, an error will occur.

Comments:

All records in all tables are shown.•
If low_level_too is non-zero, then a low-level byte-by-byte dump is also shown. The low-level dump
will only be meaningful to someone who is familiar with the internal format of a Euphoria database.

•

Example 1:

if db_open("mydata", DB_LOCK_SHARED) != DB_OK then
 puts(2, "Couldn't open the database!\n")
 abort(1)
end if
fn = open("db.txt", "w")
db_dump(fn) -- Simple output
db_dump("lowlvl_db.txt", 1) -- Full low-level dump created.

2.0.0.144 db_fatal_id

include std/eds.e
public integer db_fatal_id db_fatal_id

Exception handler
Set this to a valid routine_id value for a procedure that will be called whenever the library detects a serious
error. You procedure will be passed a single text string that describes the error. It may also call db_get_errors
to get more detail about the cause of the error.

2.0.0.145 db_fetch_record

include std/eds.e
public function db_fetch_record(object key, object table_name = current_table_name)

Returns the data for the record with supplied key.

Parameters:

key : the identifier of the record to be looked up.1.
table_name : optional name of table to find key in2.

Euphoria v4.0 svn3379

Parameters: 223

Returns:

An integer,

If less than zero, the record was not found. The returned integer is the opposite of what the record
number would have been, had the record been found.

•

If equal to zero, an error occured. A sequence, the data for the record.•

Errors:

If the current table is not defined, it returns 0.

Comments:

Each record in a Euphoria database consists of a key portion and a data portion. Each of these can be any
Euphoria atom or sequence. NOTE This function does not support records that data consists of a single
non-sequence value. In those cases you will need to use db_find_key and db_record_data.

Example 1:

printf(1, "The record['%s'] has data value:\n", {"foo"})
? db_fetch_record("foo")

See Also:

db_find_key, db_record_data

2.0.0.146 db_find_key

include std/eds.e
public function db_find_key(object key, object table_name = current_table_name)

Find the record in the current table with supplied key.

Parameters:

key : the identifier of the record to be looked up.1.
table_name : optional name of table to find key in2.

Euphoria v4.0 svn3379

Parameters: 224

Returns:

An integer, either greater or less than zero:

If above zero, the record identified by key was found on the current table, and the returned integer is
its record number.

•

If less than zero, the record was not found. The returned integer is the opposite of what the record
number would have been, had the record been found.

•

If equal to zero, an error occured.•

Errors:

If the current table is not defined, it returns 0.

Comments:

A fast binary search is used to find the key in the current table. The number of comparisons is proportional to
the log of the number of records in the table. The key is unique--a table is more like a dictionary than like a
spreadsheet.

You can select a range of records by searching for the first and last key values in the range. If those key values
don't exist, you'll at least get a negative value showing where they would be, if they existed. e.g. Suppose you
want to know which records have keys greater than "GGG" and less than "MMM". If -5 is returned for key
"GGG", it means a record with "GGG" as a key would be inserted as record number 5. -27 for "MMM" means
a record with "MMM" as its key would be inserted as record number 27. This quickly tells you that all
records, >= 5 and < 27 qualify.

Example 1:

rec_num = db_find_key("Millennium")
if rec_num > 0 then
 ? db_record_key(rec_num)
 ? db_record_data(rec_num)
else
 puts(2, "Not found, but if you insert it,\n")

 printf(2, "it will be #%d\n", -rec_num)
end if

See Also:

db_insert, db_replace_data, db_delete_record, db_get_recid

Euphoria v4.0 svn3379

Parameters: 225

2.0.0.147 db_get_errors

include std/eds.e
public function db_get_errors(integer clearing = 1)

Fetches the most recent set of errors recorded by the library.

Parameters:

clearing : if zero the set of errors is not reset, otherwise it will be cleared out. The default is to
clear the set.

1.

Returns:

A sequence, each element is a set of four fields.

Error Code.1.
Error Text.2.
Name of library routine that recorded the error.3.
Parameters passed to that routine.4.

Comments:

A number of library routines can detect errors. If the routine is a function, it usually returns an error
code. However, procedures that detect an error can't do that. Instead, they record the error details and
you can query that after calling the library routine.

•

Both functions and procedures that detect errors record the details in the Last Error Set, which
is fetched by this function.

•

Example 1:

db_replace_data(recno, new_data)
errs = db_get_errors()
if length(errs) != 0 then
 display_errors(errs)
 abort(1)
end if

2.0.0.148 db_get_recid

include std/eds.e
public function db_get_recid(object key, object table_name = current_table_name)

Returns the unique record identifier (recid) value for the record.

Euphoria v4.0 svn3379

Parameters: 226

Parameters:

key : the identifier of the record to be looked up.1.
table_name : optional name of table to find key in2.

Returns:

An atom, either greater or equal to zero:

If above zero, it is a recid.•
If less than zero, the record wasn't found.•
If equal to zero, an error occured.•

Errors:

If the table is not defined, an error is raised.

Comments:

A recid is a number that uniquely identifies a record in the database. No two records in a database has the
same recid value. They can be used instead of keys to quickly refetch a record, as they avoid the overhead
of looking for a matching record key. They can also be used without selecting a table first, as the recid is
unique to the database and not just a table. However, they only remain valid while a database is open and so
long as it doesn't get compressed. Compressing the database will give each record a new recid value.

Because it is faster to fetch a record with a recid rather than with its key, these are used when you know you
have to refetch a record.

Example 1:

rec_num = db_get_recid("Millennium")
if rec_num > 0 then
 ? db_record_recid(rec_num) -- fetch key and data.
else
 puts(2, "Not found\n")
end if

See Also:

db_insert, db_replace_data, db_delete_record, db_find_key

Euphoria v4.0 svn3379

Parameters: 227

2.0.0.149 db_insert

include std/eds.e
public function db_insert(object key, object data, object table_name = current_table_name)

Insert a new record into the current table.

Parameters:

key : an object, the record key, which uniquely identifies it inside the current table1.
data : an object, associated to key.2.
table_name : optional table name to insert record into3.

Returns:

An integer, either DB_OK on success or an error code on failure.

Comments:

Within a table, all keys must be unique. db_insert() will fail with DB_EXISTS_ALREADY if a record
already exists on current table with the same key value.

Both key and data can be any Euphoria data objects, atoms or sequences.

Example 1:

if db_insert("Smith", {"Peter", 100, 34.5}) != DB_OK then
 puts(2, "insert failed!\n")
end if

See Also:

db_delete_record

2.0.0.150 db_open

include std/eds.e
public function db_open(sequence path, integer lock_method = DB_LOCK_NO)

Open an existing Euphoria database.

Euphoria v4.0 svn3379

Parameters: 228

Parameters:

path : a sequence, the path to the file containing the database1.
lock_method : an integer specifying which sort of access can be granted to the database. The types
of lock that you can use are:

DB_LOCK_NO : (no lock) - The default1.
DB_LOCK_SHARED : (shared lock for read-only access)2.
DB_LOCK_EXCLUSIVE : (for read/write access).3.

2.

Returns:

An integer, status code, either DB_OK if creation successful or anything else on an error.

The return codes are:

public constant
 DB_OK = 0 -- success
 DB_OPEN_FAIL = -1 -- could not open the file
 DB_LOCK_FAIL = -3 -- could not lock the file in the
 -- manner requested

Comments:

DB_LOCK_SHARED is only supported on Unix platforms. It allows you to read the database, but not write
anything to it. If you request DB_LOCK_SHARED on WIN32 it will be treated as if you had asked for
DB_LOCK_EXCLUSIVE.

If the lock fails, your program should wait a few seconds and try again. Another process might be currently
accessing the database.

Example 1:

tries = 0
while 1 do
 err = db_open("mydata", DB_LOCK_SHARED)
 if err = DB_OK then
 exit
 elsif err = DB_LOCK_FAIL then
 tries += 1
 if tries > 10 then
 puts(2, "too many tries, giving up\n")
 abort(1)
 else
 sleep(5)
 end if
 else
 puts(2, "Couldn't open the database!\n")
 abort(1)
 end if

Euphoria v4.0 svn3379

Parameters: 229

end while

See Also:

db_create, db_select

2.0.0.151 db_record_data

include std/eds.e
public function db_record_data(integer key_location, object table_name = current_table_name)

Returns the data in a record queried by position.

Parameters:

key_location : the index of the record the data of which is being fetched.1.
table_name : optional table name to get record data from.2.

Returns:

An object, the data portion of requested record.
NOTE This function calls fatal() and returns a value of -1 if an error prevented the correct data being
returned.

Comments:

Each record in a Euphoria database consists of a key portion and a data portion. Each of these can be any
Euphoria atom or sequence.

Errors:

If the current table is not defined, or if the record index is invalid, an error will occur.

Example 1:

puts(1, "The 6th record has data value: ")
? db_record_data(6)

Euphoria v4.0 svn3379

Parameters: 230

See Also:

db_find_key, db_replace_data

2.0.0.152 db_record_key

include std/eds.e
public function db_record_key(integer key_location, object table_name = current_table_name)

Parameters:

key_location : an integer, the index of the record the key is being requested.1.
table_name : optional table name to get record key from.2.

Returns An object, the key of the record being queried by index.
NOTE This function calls fatal() and returns a value of -1 if an error prevented the correct data being
returned.

Errors:

If the current table is not defined, or if the record index is invalid, an error will occur.

Comments:

Each record in a Euphoria database consists of a key portion and a data portion. Each of these can be any
Euphoria atom or sequence.

Example 1:

puts(1, "The 6th record has key value: ")
? db_record_key(6)

See Also:

db_record_data

2.0.0.153 db_record_recid

include std/eds.e
public function db_record_recid(integer recid)

Euphoria v4.0 svn3379

Parameters: 231

Returns the key and data in a record queried by recid.

Parameters:

recid : the recid of the required record, which has been previously fetched using db_get_recid.1.

Returns:

An sequence, the first element is the key and the second element is the data portion of requested record.

Comments:

This is much faster than calling db_record_key and db_record_data.•
This does no error checking. It assumes the database is open and valid.•
This function does not need the requested record to be from the current table. The recid can refer to
a record in any table.

•

Example 1:

rid = db_get_recid("SomeKey")
? db_record_recid(rid)

See Also:

db_get_recid, db_replace_recid

2.0.0.154 db_rename_table

include std/eds.e
public procedure db_rename_table(sequence name, sequence new_name)

Rename a table in the current database.

Parameters:

name : a sequence, the name of the table to rename1.
new_name : a sequence, the new name for the table2.

Euphoria v4.0 svn3379

Parameters: 232

Errors:

An error occurs if the current database is not defined.•
If name does not exist on the current database, or if new_name does exist on the current database, an
error will occur.

•

Comments:

The table to be renamed can be the current table, or some other table in the current database.

See Also:

db_table_list

2.0.0.155 db_replace_data

include std/eds.e
public procedure db_replace_data(integer key_location, object data, object table_name = current_table_name)

In the current table, replace the data portion of a record with new data.

Parameters:

key_location: an integer, the index of the record the data is to be altered.1.
data: an object , the new value associated to the key of the record.2.
table_name: optional table name of record to replace data in.3.

Comments:

key_location must be from 1 to the number of records in the current table. data is an Euphoria object of
any kind, atom or sequence.

Example 1:

db_replace_data(67, {"Peter", 150, 34.5})

See Also:

db_find_key

Euphoria v4.0 svn3379

Parameters: 233

2.0.0.156 db_replace_recid

include std/eds.e
public procedure db_replace_recid(integer recid, object data)

In the current database, replace the data portion of a record with new data. This can be used to quickly update
records that have already been located by calling db_get_recid. This operation is faster than using
db_replace_data

Parameters:

recid : an atom, the recid of the record to be updated.1.
data : an object, the new value of the record.2.

Comments:

recid must be fetched using db_get_recid first.•
data is an Euphoria object of any kind, atom or sequence.•
The recid does not have to be from the current table.•
This does no error checking. It assumes the database is open and valid.•

Example 1:

rid = db_get_recid("Peter")
rec = db_record_recid(rid)
rec[2][3] *= 1.10
db_replace_recid(rid, rec[2])

See Also:

db_replace_data, db_find_key, db_get_recid

2.0.0.157 db_select

include std/eds.e
public function db_select(sequence path, integer lock_method = - 1)

Choose a new, already open, database to be the current database.

Parameters:

path : a sequence, the path to the database to be the new current database.1.
lock_method : an integer. Optional locking method.2.

Euphoria v4.0 svn3379

Parameters: 234

Returns:

An integer, DB_OK on success or an error code.

Comments:

Subsequent database operations will apply to this database. path is the path of the database file as it
was originally opened with db_open() or db_create().

•

When you create (db_create) or open (db_open) a database, it automatically becomes the current
database. Use db_select() when you want to switch back and forth between open databases,
perhaps to copy records from one to the other. After selecting a new database, you should select a
table within that database using db_select_table().

•

If the lock_method is omitted and the database has not already been opened, this function will fail.
However, if lock_method is a valid lock type for db_open and the database is not open yet, this
function will attempt to open it. It may still fail if the database cannot be opened.

•

Example 1:

if db_select("employees") != DB_OK then
 puts(2, "Could not select employees database\n")
end if

Example 2:

if db_select("customer", DB_LOCK_SHARED) != DB_OK then
 puts(2, "Could not open or select Customer database\n")
end if

See Also:

db_open, db_select

2.0.0.158 db_select_table

include std/eds.e
public function db_select_table(sequence name)

2.0.0.159 Managing tables

Parameters:

name : a sequence which defines the name of the new current table.1.

Euphoria v4.0 svn3379

Parameters: 235

On success, the table with name given by name becomes the current table.

Returns:

An integer, either DB_OK on success or DB_OPEN_FAIL otherwise.

Errors:

An error occurs if the current database is not defined.

Comments:

All record-level database operations apply automatically to the current table.

Example 1:

if db_select_table("salary") != DB_OK then
 puts(2, "Couldn't find salary table!\n")
 abort(1)
end if

See Also:

db_table_list

2.0.0.160 db_set_caching

include std/eds.e
public function db_set_caching(atom new_setting)

Sets the key cache behavior.
Initially, the cache option is turned on. This means that when possible, the keys of a table are kept in RAM
rather than read from disk each time db_select_table() is called. For most databases, this will improve
performance when you have more than one table in it.

Parameters:

integer : 0 will turn of caching, 1 will turn it back on.1.

Euphoria v4.0 svn3379

Parameters: 236

Returns:

An integer, the previous setting of the option.

Comments:

When caching is turned off, the current cache contents is totally cleared.

Example 1:

x = db_set_caching(0) -- Turn off key caching.

Page Contents

2.0.0.161 db_table_list

include std/eds.e
public function db_table_list()

Lists all tables on the current database.

Returns:

A sequence, of all the table names in the current database. Each element of this sequence is a sequence, the
name of a table.

Errors:

An error occurs if the current database is undefined.

Example 1:

sequence names = db_table_list()
for i = 1 to length(names) do
 puts(1, names[i] & '\n')
end for

Euphoria v4.0 svn3379

Parameters: 237

See Also:

db_select_table, db_create_table

2.0.0.162 Managing Records

2.0.0.163 db_table_size

include std/eds.e
public function db_table_size(object table_name = current_table_name)

Get the size (number of records) of the default table.

Parameters:

table_name : optional table name to get the size of.1.

Returns An integer, the current number of records in the current table. If a value less than zero is returned, it
means that an error occured.

Errors:

If the current table is undefined, an error will occur.

Example 1:

-- look at all records in the current table
for i = 1 to db_table_size() do
 if db_record_key(i) = 0 then
 puts (1, "0 key found\n")
 exit
 end if
end for

See Also:

db_replace_data

2.0.0.164 deallocate

include std/memory.e
export procedure deallocate(atom addr)

Euphoria v4.0 svn3379

Parameters: 238

2.0.0.165 deallocate

include std/safe.e
export procedure deallocate(atom a)

2.0.0.166 decanonical

include std/localeconv.e
public function decanonical(sequence new_locale)

Get the translation of a locale string for current platform.

Parameters:

new_locale: a sequence, the string for the locale.1.

Returns:

A sequence, either the translated locale on success or new_locale on failure.

See Also:

get, set, canonical

2.0.0.167 decode

include std/net/url.e
public function decode(sequence what)

Convert all encoded entities to their decoded counter parts

Parameters:

what: what value to decode1.

Euphoria v4.0 svn3379

Parameters: 239

Returns:

A decoded sequence

Example 1:

puts(1, decode("Fred+%26+Ethel"))
-- Prints "Fred & Ethel"

See Also:

encode

These C type constants are used when defining external C functions in a shared library file.

Example 1:

See define_c_proc

See Also:

define_c_proc, define_c_func, define_c_var

2.0.0.168 defaulted_value

include std/get.e
public function defaulted_value(object st, object def, integer start_point = 1)

Perform a value() operation on a sequence, returning the value on success or the default on failure.

Parameters:

st : object to retrieve value from.1.
def : the value returned if st is an atom or value(st) fails.2.
start_point : an integer, the position in st at which to start getting the value from. Defaults to 13.

Returns:

If st, is an atom then def is returned.•
If value(st), call is a success, then value()[2], otherwise it will return the parameter #def#.•

Euphoria v4.0 svn3379

Parameters: 240

Examples:

object i = defaulted_value("10", 0)
-- i is 10

i = defaulted_value("abc", 39)
-- i is 39

i = defaulted_value(12, 42)
-- i is 42

i = defaulted_value("{1,2}", 42)
-- i is {1,2}

See Also:

value

Page Contents

2.0.0.169 defaultext

include std/filesys.e
public function defaultext(sequence path, sequence defext)

Returns the supplied filepath with the supplied extension, if the filepath does not have an extension already.

Parameters:

path : the path to check for an extension.1.
defext : the extension to add if path does not have one.2.

Returns:

A sequence, the path with an extension.

Example:

-- ensure that the supplied path has an extension, but if it doesn't use "tmp".
theFile = defaultext(UserFileName, "tmp")

Euphoria v4.0 svn3379

Parameters: 241

See Also:

pathinfo

2.0.0.170 define_c_func

include std/dll.e
public function define_c_func(object lib, object routine_name, sequence arg_types, atom return_type)

Define the characteristics of either a C function, or a machine-code routine that returns a value.

Parameters:

lib : an object, either an entry point returned as an atom by open_dll(), or "" to denote a routine the
RAM address is known.

1.

routine_name : an object, either the name of a procedure in a shared object or the machine
address of the procedure.

2.

argtypes : a sequence of type constants.3.
return_type : an atom, indicating what type the function will return.4.

Returns:

A small integer, known as a routine id, will be returned.

Errors:

The length of name should not exceed 1,024 characters.

Comments:

Use the returned routine id as the first argument to c_proc() when you wish to call the routine from Euphoria.

A returned value of -1 indicates that the procedure could not be found or linked to.

On Windows, you can add a '+' character as a prefix to the function name. This indicates to Euphoria that the
function uses the cdecl calling convention. By default, Euphoria assumes that C routines accept the stdcall
convention.

When defining a machine code routine, x1 must be the empty sequence, "" or {}, and x2 indicates the address
of the machine code routine. You can poke the bytes of machine code into a block of memory reserved using
allocate(). On Windows, the machine code routine is normally expected to follow the stdcall calling
convention, but if you wish to use the cdecl convention instead, you can code {'+', address} instead of address
for x2.

Euphoria v4.0 svn3379

Parameters: 242

The C function that you define could be one created by the Euphoria To C Translator, in which case you can
pass Euphoria data to it, and receive Euphoria data back. A list of Euphoria types is contained in dll.e:

E_INTEGER = #06000004•
E_ATOM = #07000004•
E_SEQUENCE= #08000004•
E_OBJECT = #09000004•

You can pass or return any C integer type or pointer type. You can also pass a Euphoria atom as a C double or
float, and get a C double or float returned to you as a Euphoria atom.

Parameter types which use 4 bytes or less are all passed the same way, so it is not necessary to be exact when
choosing a 4-byte parameter type. However the distinction between signed and unsigned may be important
when you specify the return type of a function.

Currently, there is no way to pass a C structure by value or get a C structure as a return result. You can only
pass a pointer to a structure and get a pointer to a structure as a result. However, you can pass a 64 bit integer
as two C_LONG instead. On calling the routine, pass low doubleword first, then high doubleword.

If you are not interested in using the value returned by the C function, you should instead define it with
define_c_proc() and call it with c_proc().

If you use euiw to call a cdecl C routine that returns a floating-point value, it might not work. This is because
the Watcom C compiler (used to build euiw) has a non-standard way of handling cdecl floating-point return
values.

Passing floating-point values to a machine code routine will be faster if you use c_func() rather than call()
to call the routine, since you won't have to use atom_to_float64() and poke() to get the floating-point
values into memory.

Example 1:

atom user32
integer LoadIcon

-- open user32.dll - it contains the LoadIconA C function
user32 = open_dll("user32.dll")

-- It takes a C pointer and a C int as parameters.
-- It returns a C int as a result.
LoadIcon = define_c_func(user32, "LoadIconA",
 {C_POINTER, C_INT}, C_INT)
-- We use "LoadIconA" here because we know that LoadIconA
-- needs the stdcall convention, as do
-- all standard .dll routines in the WIN32 API.
-- To specify the cdecl convention, we would have used "+LoadIconA".

if LoadIcon = -1 then
 puts(1, "LoadIconA could not be found!\n")
end if

Euphoria v4.0 svn3379

Parameters: 243

See Also:

demo\callmach.ex, c_func, define_c_proc, c_proc, open_dll

2.0.0.171 define_c_proc

include std/dll.e
public function define_c_proc(object lib, object routine_name, sequence arg_types)

Define the characteristics of either a C function, or a machine-code routine that you wish to call as a
procedure from your Euphoria program.

Parameters:

lib : an object, either an entry point returned as an atom by open_dll(), or "" to denote a routine the
RAM address is known.

1.

routine_name : an object, either the name of a procedure in a shared object or the machine
address of the procedure.

2.

argtypes : a sequence of type constants.3.

Returns:

A small integer, known as a routine id, will be returned.

Errors:

The length of name should not exceed 1,024 characters.

Comments:

Use the returned routine id as the first argument to c_proc() when you wish to call the routine from Euphoria.

A returned value of -1 indicates that the procedure could not be found or linked to.

On Windows, you can add a '+' character as a prefix to the procedure name. This tells Euphoria that the
function uses the cdecl calling convention. By default, Euphoria assumes that C routines accept the stdcall
convention.

When defining a machine code routine, lib must be the empty sequence, "" or {}, and routine_name
indicates the address of the machine code routine. You can poke the bytes of machine code into a block of
memory reserved using allocate(). On Windows, the machine code routine is normally expected to follow the
stdcall calling convention, but if you wish to use the cdecl convention instead, you can code {'+', address}
instead of address.

Euphoria v4.0 svn3379

Parameters: 244

argtypes is made of type constants, which describe the C types of arguments to the procedure. They may
be used to define machine code parameters as well.

The C function that you define could be one created by the Euphoria To C Translator, in which case you can
pass Euphoria data to it, and receive Euphoria data back. A list of Euphoria types is shown above.

You can pass any C integer type or pointer type. You can also pass a Euphoria atom as a C double or float.

Parameter types which use 4 bytes or less are all passed the same way, so it is not necessary to be exact.

Currently, there is no way to pass a C structure by value. You can only pass a pointer to a structure. However,
you can pass a 64 bit integer by pretending to pass two C_LONG instead. When calling the routine, pass low
doubleword first, then high doubleword.

The C function can return a value but it will be ignored. If you want to use the value returned by the C
function, you must instead define it with define_c_func() and call it with c_func().

Example 1:

atom user32
integer ShowWindow

-- open user32.dll - it contains the ShowWindow C function
user32 = open_dll("user32.dll")

-- It has 2 parameters that are both C int.
ShowWindow = define_c_proc(user32, "ShowWindow", {C_INT, C_INT})
-- If ShowWindow used the cdecl convention,
-- we would have coded "+ShowWindow" here

if ShowWindow = -1 then
 puts(1, "ShowWindow not found!\n")
end if

See Also:

c_proc, define_c_func, c_func, open_dll

2.0.0.172 define_c_var

include std/dll.e
public function define_c_var(atom lib, sequence variable_name)

Gets the address of a symbol in a shared library or in RAM.

Euphoria v4.0 svn3379

Parameters: 245

Parameters:

lib : an atom, the address of a Linux or FreeBSD shared library, or Windows .dll, as returned by
open_dll().

1.

variable_name : a sequence, the name of a public C variable defined within the library.2.

Returns:

An atom, the memory address of variable_name.

Comments:

Once you have the address of a C variable, and you know its type, you can use peek() and poke() to read or
write the value of the variable. You can in the same way obtain the address of a C function and pass it to any
external routine that requires a callback address.

Example:

see euphoria/demo/linux/mylib.ex

See Also:

c_proc, define_c_func, c_func, open_dll

2.0.0.173 define_map

include std/sets.e
public function define_map(sequence mapping, set target)

Returns a map which sends each element of its source set to the corresponding one in a list.

Parameters:

mapping : the sequence mapped to1.
target : the target set that contains the elements mapping refers to by index2.

Returns:

The requested map, descriptor.

Euphoria v4.0 svn3379

Parameters: 246

Example 1:

sequence s0 = {2, 3, 4, 1, 4, 2}
set s1 = {-1, 1, 2, 3, 4}
map f = define_map(s0,s1)
-- As a sequence, f is {3, 4, 5, 2, 5, 3, 6, 5}

See Also:

map, sequences_to_map, direct_map

2.0.0.174 define_operation

include std/sets.e
public function define_operation(sequence left_actions)

Returns an operation that splits by left action into the supplied mappings.

Parameters:

left_actions : a sequence of maps, the left actions of each element in the left hand set.1.

Returns:

An operation F, realizing the conditions above, with minimal cardinal values, or "" if the maps are not defined
on the same set.

Errors:

left_actions must be a rectangular matrix.

Comments:

If F is the result, and is defined from E1 x E2 to E, then each left action is a map from E2 to E, the "left
multiplication" by an element of E1.

Example 1:

sequence s = {{2, 3, 2, 3}, {3, 1, 2, 5}, {1, 2, 2, 2}, {2, 3, 2, 4}, {3, 1, 2, 3}}
operation F = define_operation(s)
-- F is now {{{2,3},{3,1},{1,2},{2,3},{3,1}},{5,2,3}
? operation(s) -- prints out 1.

Euphoria v4.0 svn3379

Parameters: 247

See Also:

operation

2.0.0.175 deg2rad

include std/math.e
public function deg2rad(object x)

Convert an angle measured in degrees to an angle measured in radians

Parameters:

angle : an object, all atoms of which will be converted, no matter how deeply nested.1.

Returns:

An object, the same shape as angle, all atoms of which were multiplied by PI/180.

Comments:

This function may be applied to an atom or sequence. A flat angle is PI radians and 180 degrees. sin(), cos()
and tan() expect angles in radians.

Example 1:

x = deg2rad(194)
-- x is 3.385938749

See Also:

rad2deg

2.0.0.176 delete

<built-in> procedure delete(object x)

Calls the cleanup routines associated with the object, and removes the association with those routines.

Euphoria v4.0 svn3379

Parameters: 248

Comments:

The cleanup routines associated with the object are called in reverse order than they were added. If the object
is an integer, or if no cleanup routines are associated with the object, then nothing happens.

After the cleanup routines are called, the value of the object is unchanged, though the cleanup routine will no
longer be associated with the object.

2.0.0.177 delete_file

include std/filesys.e
public function delete_file(sequence name)

Delete a file.

Parameters:

name : a sequence, the name of the file to delete.1.

Returns:

An integer, 0 on failure, 1 on success.

2.0.0.178 delete_routine

<built-in> function delete_routine(object x, integer rid)

Associates a routine for cleaning up after a euphoria object.

Comments:

delete_routine() associates a euphoria object with a routine id meant to clean up any allocated resources. It
always returns an atom (double) or a sequence, depending on what was passed (integers are promoted to
atoms).

The routine specified by delete_routine() should be a procedure that takes a single parameter, being the object
to be cleaned up after. Objects are cleaned up under one of two circumstances. The first is if it's called as a
parameter to delete(). After the call, the association with the delete routine is removed.

The second way for the delete routine to be called is when its reference count is reduced to 0. Before its
memory is freed, the delete routine is called. A default delete will be used if the cleanup parameter to one of
the allocate routines is true.

Euphoria v4.0 svn3379

Parameters: 249

delete_routine() may be called multiple times for the same object. In this case, the routines are called in
reverse order compared to how they were associated.

2.0.0.179 delta

include std/sets.e
public function delta(set s1, set s2)

Returns the set of elements belonging to either of two sets.

Parameters:

s1 : One of the sets to take a symmetrical difference with1.
s2 : the other set.2.

Returns:

The set, of all elements belonging to either s1 or s2.

Example 1:

set s0,s1,s2
 s1={1,3,5,7} s2={-1,2,3,7,11}
 s0=delta(s1,s2) -- s0 is now {-1,1,2,5,11}.

See Also:

intersection, union, difference

2.0.0.180 dep_works

include std/memory.e
export function dep_works()

Returns 1 if the DEP executing data only memory would cause an exception

2.0.0.181 dep_works

include std/safe.e
export function dep_works()

Euphoria v4.0 svn3379

Parameters: 250

2.0.0.182 dequote

include std/text.e
public function dequote(sequence text_in, object quote_pairs = {{"\"", "\""}}, integer esc = - 1)

Removes 'quotation' text from the argument.

Parameters:

text_in : The string or set of strings to de-quote.1.
quote_pairs : A set of one or more sub-sequences of two strings, or an atom representing a single
character to be used as both the open and close quotes. The first string in each sub-sequence is the
opening quote to look for, and the second string is the closing quote. The default is "\"", "\"" which
means that the output is 'quoted' if it is enclosed by double-quotation marks.

2.

esc : A single escape character. If this is not negative (the default), then this is used to 'escape' any
embedded occurrences of the quote characters. In which case the 'escape' character is also removed.

3.

Returns:

A sequence, the original text but with 'quote' strings stripped of quotes.

Example 1:

-- Using the defaults.
s = dequote("\"The small man\"")
-- 's' now contains "The small man"

Example 2:

-- Using the defaults.
s = dequote("(The small ?(?) man)", {{"(",")"}}, '?')
-- 's' now contains "The small () man"

2.0.0.183 deserialize

include std/serialize.e
public function deserialize(object sdata, integer pos = 1)

Convert a serialized object in to a standard Euphoria object.

Euphoria v4.0 svn3379

Parameters: 251

Parameters:

sdata : either a sequence containing one or more concatenated serialized objects or an open file
handle. If this is a file handle, the current position in the file is assumed to be at a serialized object in
the file.

1.

pos : optional index into sdata. If omitted 1 is assumed. The index must point to the start of a
serialized object.

2.

Returns:

The return value, depends on the input type.

If sdata is a file handle then this function returns a Euphoria object that had been stored in the file,
and moves the current file to the first byte after the stored object.

•

If sdata is a sequence then this returns a two-element sequence. The first element is the Euphoria
object that corresponds to the serialized object that begins at index pos, and the second element is the
index position in the input parameter just after the serialized object.

•

Comments:

A serialized object is one that has been returned from the serialize function.

Example 1:

sequence objcache
 objcache = serialize(FirstName) &
 serialize(LastName) &
 serialize(PhoneNumber) &
 serialize(Address)

 sequence res
 integer pos = 1
 res = deserialize(objcache , pos)
 FirstName = res[1] pos = res[2]
 res = deserialize(objcache , pos)
 LastName = res[1] pos = res[2]
 res = deserialize(objcache , pos)
 PhoneNumber = res[1] pos = res[2]
 res = deserialize(objcache , pos)
 Address = res[1] pos = res[2]

Example 2:

sequence objcache
 objcache = serialize({FirstName,
 LastName,
 PhoneNumber,
 Address})

Euphoria v4.0 svn3379

Parameters: 252

 sequence res
 res = deserialize(objcache)
 FirstName = res[1][1]
 LastName = res[1][2]
 PhoneNumber = res[1][3]
 Address = res[1][4]

Example 3:

integer fh
 fh = open("cust.dat", "wb")
 puts(fh, serialize(FirstName))
 puts(fh, serialize(LastName))
 puts(fh, serialize(PhoneNumber))
 puts(fh, serialize(Address))
 close(fh)

 fh = open("cust.dat", "rb")
 FirstName = deserialize(fh)
 LastName = deserialize(fh)
 PhoneNumber = deserialize(fh)
 Address = deserialize(fh)
 close(fh)

Example 4:

integer fh
 fh = open("cust.dat", "wb")
 puts(fh, serialize({FirstName,
 LastName,
 PhoneNumber,
 Address}))
 close(fh)

 sequence res
 fh = open("cust.dat", "rb")
 res = deserialize(fh)
 close(fh)
 FirstName = res[1]
 LastName = res[2]
 PhoneNumber = res[3]
 Address = res[4]

2.0.0.184 diagram_commutes

include std/sets.e
public function diagram_commutes(sequence f12a, sequence f12b, sequence f2a3, sequence f2b3)

Decide whether taking two different paths along a square map diagrams results in the same map.

Euphoria v4.0 svn3379

Parameters: 253

Parameters:

from_base_path_1 : the outgoing map along path 11.
from_base_path_2 : the outgoing map along path 22.
to_target_path_1 : the incoming map along path 13.
to_target_path_2 : the incoming map along path 24.

Returns:

An integer, either 1 if to_target_path_1 o from_base_path_1 = to_target_path_2 o from_base_path_2.

Example 1:

map f12a,f12b,f2a3,f2b3
 f12a={2,3,1,1,2,5,3}
 f2a3={4,8,1,2,6,7,6,9}
 f12b={2,4,2,3,1,5,4}
 f2b3={8,8,4,1,3,5,8}
 ?diagram_commutes(f12a,f12b,f2a3,f2b3) -- prints out 0

See Also:

compose_map

2.0.0.185 diff

include std/datetime.e
public function diff(datetime dt1, datetime dt2)

Compute the difference, in seconds, between two dates.

Parameters:

dt1 : the end datetime1.
dt2 : the start datetime2.

Returns:

An atom, the number of seconds elapsed from dt2 to dt1.

Euphoria v4.0 svn3379

Parameters: 254

Comments:

dt2 is subtracted from dt1, therefore, you can come up with a negative value.

Example 1:

d1 = now()
sleep(15) -- sleep for 15 seconds
d2 = now()

i = diff(d1, d2) -- i is 15

See Also:

add, subtract

Cross platform file operations for Euphoria

2.0.0.186 difference

include std/sets.e
public function difference(set base, set removed)

Returns the set of elements belonging to some set and not to another.

Parameters:

base : the set from which a difference is to be taken1.
removed : the set of elements to remove from base.2.

Returns:

The set, of elements belonging to base but not to removed.

Example 1:

set s0,s1,s2
 s1={1,3,5,7} s2={-1,2,3,7,11}
 s0=difference(s1,s2) -- s0 is now {1,5}.

Euphoria v4.0 svn3379

Parameters: 255

See Also:

remove_from, is_subset, delta

2.0.0.187 dir

include std/filesys.e
public function dir(sequence name)

Return directory information for the specified file or directory.

Parameters:

name : a sequence, the name to be looked up in the file system.1.

Returns:

An object, -1 if no match found, else a sequence of sequence entries

Errors:

The length of name should not exceed 1,024 characters.

Comments:

name can also contain * and ? wildcards to select multiple files.

The returned information is similar to what you would get from the DIR command. A sequence is returned
where each element is a sequence that describes one file or subdirectory.

If name refers to a directory you may have entries for "." and "..", just as with the DIR command. If it refers
to an existing file, and has no wildcards, then the returned sequence will have just one entry, i.e. its length will
be 1. If name contains wildcards you may have multiple entries.

Each entry contains the name, attributes and file size as well as the time of the last modification.

You can refer to the elements of an entry with the following constants:

public constant
 -- File Attributes
 D_NAME = 1,
 D_ATTRIBUTES = 2,
 D_SIZE = 3,
 D_YEAR = 4,

Euphoria v4.0 svn3379

Parameters: 256

 D_MONTH = 5,
 D_DAY = 6,
 D_HOUR = 7,
 D_MINUTE = 8,
 D_SECOND = 9,
 D_MILLISECOND = 10,
 D_ALTNAME = 11

The attributes element is a string sequence containing characters chosen from:

Attribute Description
'd' directory
'r' read only file
'h' hidden file
's' system file
'v' volume-id entry
'a' archive file
'c' compressed file
'e' encrypted file
'N' not indexed
'D' a device name
'O' offline
'R' reparse point or symbolic link
'S' sparse file
'T' temporary file
'V' virtual file
A normal file without special attributes would just have an empty string, "", in this field.

The top level directory, e.g. c:\ does not have "." or ".." entries.

This function is often used just to test if a file or directory exists.

Under WIN32, the argument can have a long file or directory name anywhere in the path.

Under Unix, the only attribute currently available is 'd' and the milliseconds are always zero.

WIN32: The file name returned in [D_NAME] will be a long file name. If [D_ALTNAME] is not zero, it
contains the 'short' name of the file.

Example 1:

d = dir(current_dir())

-- d might have:
-- {
-- {".", "d", 0 1994, 1, 18, 9, 30, 02},

Euphoria v4.0 svn3379

Parameters: 257

-- {"..", "d", 0 1994, 1, 18, 9, 20, 14},
-- {"fred", "ra", 2350, 1994, 1, 22, 17, 22, 40},
-- {"sub", "d" , 0, 1993, 9, 20, 8, 50, 12}
-- }

d[3][D_NAME] would be "fred"

See Also:

walk_dir

2.0.0.188 dir_size

include std/filesys.e
public function dir_size(sequence dir_path, integer count_all = 0)

Returns the amount of space used by a directory.

Parameters:

dir_path : A sequence. This is the path that identifies the directory to inquire upon.1.
count_all : An integer. Used by Windows systems. If zero (the default) it will not include system
or hidden files in the count, otherwise they are included.

2.

Returns:

A sequence, containing four elements; the number of sub-directories [COUNT_DIRS], the number of files
[COUNT_FILES], the total space used by the directory [COUNT_SIZE], and breakdown of the file contents
by file extension [COUNT_TYPES].

Comments:

The total space used by the directory does not include space used by any sub-directories.•
The file breakdown is a sequence of three-element sub-sequences. Each sub-sequence contains the
extension [EXT_NAME], the number of files of this extension [EXT_COUNT], and the space used
by these files [EXT_SIZE]. The sub-sequences are presented in extension name order. On Windows
the extensions are all in lowercase.

•

Example 1:

res = dir_size("/usr/localbin")
printf(1, "Directory %s contains %d files\n", {"/usr/localbin", res[COUNT_FILES]})
for i = 1 to length(res[COUNT_TYPES]) do
 printf(1, " Type: %s (%d files %d bytes)\n", {res[COUNT_TYPES][i][EXT_NAME],
 res[COUNT_TYPES][i][EXT_COUNT],

Euphoria v4.0 svn3379

Parameters: 258

 res[COUNT_TYPES][i][EXT_SIZE]})
end for

2.0.0.189 direct_map

include std/sets.e
public function direct_map(map f, set s1, sequence s0, set s2)

Returns the image of a list by a map, given the input and output sets.

Parameters:

f : the map to apply1.
input : the source set2.
elements : the sequence to map3.
output : the target set.4.

Returns:

A sequence, of elements of output obtained by applying f to the corresponding element of input.

Errors:

This function errors out if f cannot map input to output.

Comments:

If elements has items which are not on input, they are ignored. Items may appear in any order any
number of times.

Example:

sequence s0 = {2,3,4,1,4}
 set t1,t2
 t1={1,2,2.5,3,4} t2={11,13,17,19,23,29}
 map f = {3,1,4,5,3,5,5}
 sequence s2 = direct_map(f,t1,s0,t2)
 -- s2 is now {11,29,17,17,17}.

See Also:

reverse_map

Euphoria v4.0 svn3379

Parameters: 259

2.0.0.190 dirname

include std/filesys.e
public function dirname(sequence path, integer pcd = 0)

Return the directory name of a fully qualified filename

Parameters:

path : the path from which to extract information1.
pcd : If not zero and there is no directory name in path then "." is returned. The default (0) will just
return any directory name in path.

2.

Returns:

A sequence, the full file name part of path.

Comments:

The host operating system path separator is used.

Example 1:

fname = dirname("/opt/euphoria/docs/readme.txt")
-- fname is "/opt/euphoria/docs"

See Also:

driveid, filename, pathinfo

2.0.0.191 disk_metrics

include std/filesys.e
public function disk_metrics(object disk_path)

Returns some information about a disk drive.

Euphoria v4.0 svn3379

Parameters: 260

Parameters:

disk_path : A sequence. This is the path that identifies the disk to inquire upon.1.

Returns:

A sequence, containing SECTORS_PER_CLUSTER, BYTES_PER_SECTOR,
NUMBER_OF_FREE_CLUSTERS, and TOTAL_NUMBER_OF_CLUSTERS

Example 1:

res = disk_metrics("C:\\")
min_file_size = res[SECTORS_PER_CLUSTER] * res[BYTES_PER_SECTOR]

2.0.0.192 disk_size

include std/filesys.e
public function disk_size(object disk_path)

Returns the amount of space for a disk drive.

Parameters:

disk_path : A sequence. This is the path that identifies the disk to inquire upon.1.

Returns:

A sequence, containing TOTAL_BYTES, USED_BYTES, FREE_BYTES, and a string which represents the
filesystem name

Example 1:

res = disk_size("C:\\")
printf(1, "Drive %s has %3.2f%% free space\n", {"C:", res[FREE_BYTES] / res[TOTAL_BYTES]})

2.0.0.193 display

include std/console.e
public procedure display(object data_in, object args = 1, integer finalnl = - 918273645)

Displays the supplied data on the console screen at the current cursor position.

Euphoria v4.0 svn3379

Parameters: 261

Parameters:

data_in : Any object.1.
args : Optional arguments used to format the output. Default is 1.2.
finalnl : Optional. Determines if a new line is output after the data. Default is to output a new line.3.

Comments:

If data_in is an atom or integer, it is simply displayed.•
If data_in is a simple text string, then args can be used to produce a formatted output with
data_in providing the text:format string and args being a sequence containing the data to be
formatted.

If the last character of data_in is an underscore character then it is stripped off and
finalnl is set to zero. Thus ensuring that a new line is not output.

♦

The formatting codes expected in data_in are the ones used by text:format. It is not
mandatory to use formatting codes, and if data_in does not contain any then it is simply
displayed and anything in args is ignored.

♦

•

If data_in is a sequence containing floating-point numbers, sub-sequences or integers that are not
characters, then data_in is forwarded on to the pretty_print() to display.

If args is a non-empty sequence, it is assumed to contain the pretty_print formatting options.♦
if args is an atom or an empty sequence, the assumed pretty_print formatting options are
assumed to be {2}.

♦

•

After the data is displayed, the routine will normally output a New Line. If you want to avoid this, ensure that
the last parameter is a zero. Or to put this another way, if the last parameter is zero then a New Line will not
be output.

Examples:

display("Some plain text") -- Displays this string on the console plus a new line.
display("Your answer:",0) -- Displays this string on the console without a new line.
display("cat")
display("Your answer:",,0) -- Displays this string on the console without a new line.
display("")
display("Your answer:_") -- Displays this string, except the '_', on the console without a new line.
display("dog")
display({"abc", 3.44554}) -- Displays the contents of 'res' on the console.
display("The answer to [1] was [2]", {"'why'", 42}) -- formats these with a new line.
display("",2)
display({51,362,71}, {1})

Output would be ...

Some plain text
Your answer:cat
===== Your answer:
Your answer:dog
{
"abc",
3.44554

Euphoria v4.0 svn3379

Parameters: 262

}
The answer to 'why' was 42
""
{51'3',362,71'G'}

2.0.0.194 display_text_image

include std/console.e
public procedure display_text_image(text_point xy, sequence text)

Display a text image in any text mode.

Parameters:

xy : a pair of 1-based coordinates representing the point at which to start writing1.
text : a list of sequences of alternated character and attribute.2.

Comments:

This routine displays to the active text page, and only works in text modes.

You might use save_text_image()/display_text_image() in a text-mode graphical user interface, to allow
"pop-up" dialog boxes, and drop-down menus to appear and disappear without losing what was previously on
the screen.

Example 1:

clear_screen()
display_text_image({1,1}, {{'A', WHITE, 'B', GREEN},
 {'C', RED+16*WHITE},
 {'D', BLUE}})
-- displays:
-- AB
-- C
-- D
-- at the top left corner of the screen.
-- 'A' will be white with black (0) background color,
-- 'B' will be green on black,
-- 'C' will be red on white, and
-- 'D' will be blue on black.

Euphoria v4.0 svn3379

Parameters: 263

See Also:

save_text_image, put_screen_char

2.0.0.195 distributes_over

include std/sets.e
public function distributes_over(operation product, operation sum, integer transpose = 0)

Determine whether a product map distributes over a sum

Parameters:

product: the operation that may be distributive over sum1.
sum: : the operations over which product might distribute2.
transpose: an integer, nonzero if product is a right operation. Defaults to 0.3.

Returns:

An integer, either of

SIDE_NONE -- product does not distribute either way over sum•
SIDE_LEFT -- product distributes over sum on the left only•
SIDE_RIGHT -- product distributes over sum on the right only•
SIDE_BOTH -- product distributes over sum o(both ways)•

Example 1:

operation sum = {{{1,2,3},{2,3,1},{3,1,2}},{3,3,3}}
 operation product = {{{1,1,1},{1,2,3},{1,3,2}},{3,3,3}}
 ?distributes_right(product,sum,0) -- prints out 1.

2.0.0.196 driveid

include std/filesys.e
public function driveid(sequence path)

Return the drive letter of the path on WIN32 platforms.

Euphoria v4.0 svn3379

Parameters: 264

Parameters:

path : the path from which to extract information1.

Returns:

A sequence, the file extension part of path.

TODO: Test

Example:

letter = driveid("C:\\EUPHORIA\\Readme.txt")
-- letter is "C"

See Also:

pathinfo, dirname, filename

2.0.0.197 dump

include std/serialize.e
public function dump(sequence data, sequence filename)

Saves a Euphoria object to disk in a binary format.

Parameters:

data : any Euphoria object.1.
filename : the name of the file to save it to.2.

Returns:

An integer, 0 if the function fails, otherwise the number of bytes in the created file.

Comments:

If the named file doesn't exist it is created, otherwise it is overwritten.

You can use the load function to recover the data from the file.

Euphoria v4.0 svn3379

Parameters: 265

Example :

include std/serialize.e
integer size = dump(myData, theFileName)
if size = 0 then
 puts(1, "Failed to save data to file\n")
else
 printf(1, "Saved file is %d bytes long\n", size)
end if

2.0.0.198 dup

include std/stack.e
public procedure dup(stack sk)

Repeat the top element of a stack.

Parameters:

sk : the stack.1.

Side effects:

The value of top() is pushed onto the stack, thus the stack size grows by one.

Comments:

For FIFO stacks (queues), the top item is the oldest item in the stack.•
For FILO stacks, the top item is the newest item in the stack.•

Errors:

If the stack has no elements, an error occurs.

Example 1:

stack sk = new(FILO)
push(sk,5)
push(sk,"abc")
push(sk, "")
dup(sk)
? peek_top(sk,1) -- ""
? peek_top(sk,2) -- "abc"
? size(sk) -- 3
dup(sk)
? peek_top(sk,1) -- ""

Euphoria v4.0 svn3379

Parameters: 266

? peek_top(sk,2) -- ""
? peek_top(sk,3) -- "abc"
? size(sk) -- 4

Example 1:

stack sk = new(FIFO)
push(sk,5)
push(sk,"abc")
push(sk, "")
dup(sk)
? peek_top(sk,1) -- 5
? peek_top(sk,2) -- "abc"
? size(sk) -- 3
dup(sk)
? peek_top(sk,1) -- 5
? peek_top(sk,2) -- 5
? peek_top(sk,3) -- "abc"
? size(sk) -- 4

2.0.0.199 edges_only

include std/memory.e
public integer edges_only

2.0.0.200 edges_only

include std/safe.e
public integer edges_only

Determine whether to flag accesses to remote memory areas.

Comments:

If this integer is 1 (the default under WIN32), only check for references to the leader or trailer areas just
outside each registered block, and don't complain about addresses that are far out of bounds (it's probably a
legitimate block from another source)

For a stronger check, set this to 0 if your program will never read/write an unregistered block of memory.

On WIN32 people often use unregistered blocks.

Euphoria v4.0 svn3379

Parameters: 267

2.0.0.201 embed_union

include std/sets.e
public function embed_union(set s1, set s2)

Returns the embedding of a set into its union with another.

Parameters:

S1 : the set to embed1.
S2 : the other set2.

Returns:

A set, of indexes representing S1 inside union(S1,S2). Its length is length(S1), and the values range
from 1 to length(S1) + length(S2).

Example 1:

set s1 = {2, 5, 7}, s2 = {1, 3, 4}
sequence s = embed_union(s1,s2) -- s is now {2, 5, 6}

See Also:

embedding, union

2.0.0.202 embedding

include std/sets.e
public function embedding(set small, set large)

Returns the set of indexes of the elements of a set in a larger set, or 0 if not applicable

Parameters:

small : the set to embed1.
large : the supposedly larger set2.

Returns:

A set, of indexes if small is_subset() large, else 0. Each element is the index in large of the
corresponding element of small. Its length is length(small) and the values range from 1 to
length(large).

Euphoria v4.0 svn3379

Parameters: 268

Example 1:

set s0 = {1,3,5,7}
 set s = embedding({3,5},s0) -- s is now {2,3}

See Also:

subsets, belongs_to, difference, is_subset

2.0.0.203 emovavg

include std/stats.e
public function emovavg(object data_set, atom smoothing_factor)

Returns the exponential moving average of a set of data points.

Parameters:

data_set : a list of 1 or more numbers for which you want a moving average.1.
smoothing_factor : an atom, the smoothing factor, typically between 0 and 1.2.

Returns:

A sequence, made of the requested averages, or {} if data_set is empty or the supplied period is less than
one.

Comments:

A moving average is used to smooth out a set of data points over a period.

The formula used is:

Yi = Yi-1 + F * (Xi - Yi-1)

Note that only atom elements are included and any sub-sequences elements are ignored.

The smoothing factor controls how data is smoothed. 0 smooths everything to 0, and 1 means no smoothing at
all.

Any value for smoothing_factor outside the 0.0..1.0 range causes smoothing_factor to be set to
the periodic factor (2/(N+1)).

Euphoria v4.0 svn3379

Parameters: 269

Example 1:

? emovavg({7,2,8,5,6}, 0.75)
 -- Ans: {6.65,3.1625,6.790625,5.44765625,5.861914063}
? emovavg({7,2,8,5,6}, 0.25)
 -- Ans: {5.95,4.9625,5.721875,5.54140625,5.656054687}
? emovavg({7,2,8,5,6}, -1)
 -- Ans: {6.066666667,4.711111111,5.807407407,5.538271605,5.69218107}

See also:

average

2.0.0.204 encode

include std/net/url.e
public function encode(sequence what, sequence spacecode = "+")

Converts all non-alphanumeric characters in a string to their percent-sign hexadecimal representation, or plus
sign for spaces.

Parameters:

what : the string to encode1.
spacecode : what to insert in place of a space2.

Returns:

A sequence, the encoded string.

Comments:

spacecode defaults to + as it is more correct, however, some sites want %20 as the space encoding.

Example 1:

puts(1, encode("Fred & Ethel"))
-- Prints "Fred+%26+Ethel"

See Also:

decode

Euphoria v4.0 svn3379

Parameters: 270

2.0.0.205 ends

include std/search.e
public function ends(object sub_text, sequence full_text)

Test whether a sequence ends another one.

Parameters:

sub_text : an object to be looked for1.
full_text : a sequence, the tail of which is being inspected.2.

Returns:

An integer, 1 if sub_text ends full_text, else 0.

Example 1:

s = ends("def", "abcdef")
-- s is 1
s = begins("bcd", "abcdef")
-- s is 0

See Also:

begins, tail

2.0.0.206 ensure_in_list

include std/math.e
public function ensure_in_list(object item, sequence list, integer default = 1)

Ensures that the item is in a list of values supplied by list

Parameters:

item : The object to test for.1.
list : A sequence of elements that item should be a member of.2.
default : an integer, the index of the list item to return if item is not found. Defaults to 1.3.

Euphoria v4.0 svn3379

Parameters: 271

Returns:

An object, if item is not in the list, it returns the list item of index default, otherwise it returns item.

Comments:

If default is set to an invalid index, the first item on the list is returned instead when item is not on the
list.

Example 1:

object valid_data = ensure_in_list(user_data, {100, 45, 2, 75, 121})
if not equal(valid_data, user_data) then
 errmsg("Invalid input supplied. Using %d instead.", valid_data)
end if
procA(valid_data)

2.0.0.207 ensure_in_range

include std/math.e
public function ensure_in_range(object item, sequence range_limits)

Ensures that the item is in a range of values supplied by inclusive range_limits

Parameters:

item : The object to test for.1.
range_limits : A sequence of two or more elements. The first is assumed to be the smallest value
and the last is assumed to be the highest value.

2.

Returns:

A object, If item is lower than the first item in the range_limits it returns the first item. If item is
higher than the last element in the range_limits it returns the last item. Otherwise it returns item.

Example 1:

object valid_data = ensure_in_range(user_data, {2, 75})
if not equal(valid_data, user_data) then
 errmsg("Invalid input supplied. Using %d instead.", valid_data)
end if
procA(valid_data)

Euphoria v4.0 svn3379

Parameters: 272

2.0.0.208 equal

<built-in> function equal(object left, object right)

Compare two Euphoria objects to see if they are the same.

Parameters:

left : one of the objects to test1.
right : the other object2.

Returns:

An integer, 1 if the two objects are identical, else 0.

Comments:

This is equivalent to the expression: compare(left, right) = 0.

This routine, like most other built-in routines, is very fast. It does not have any subroutine call overhead.

Example 1:

if equal(PI, 3.14) then
 puts(1, "give me a better value for PI!\n")
end if

Example 2:

if equal(name, "George") or equal(name, "GEORGE") then
 puts(1, "name is George\n")
end if

See Also:

compare

Euphoria v4.0 svn3379

Parameters: 273

2.0.0.209 error_code

include std/socket.e
public function error_code()

Get the error code.

Returns:

Integer OK on no error, otherwise any one of the ERR_ constants to follow.

2.0.0.210 error_message

include std/regex.e
public function error_message(object re)

If new returns an atom, this function will return a text error message as to the reason.

Parameters:

re: Regular expression to get the error message from1.

Returns:

An atom (0) when no error message exists, otherwise a sequence describing the error.

Example 1:

include std/regex.e
object r = regex:new("[A-Z[a-z]*")
if atom(r) then
 printf(1, "Regex failed to compile: %s\n", { regex:error_message(r) })
end if

2.0.0.211 error_names

include std/regex.e
public constant error_names

Euphoria v4.0 svn3379

Parameters: 274

2.0.0.212 error_no

include std/pipeio.e
public function error_no()

Get error no from last call to a pipe function

Comments:

Value returned will be OS-specific, and is not always set on Windows at least

Example 1:

integer error = error_no()

2.0.0.213 error_to_string

include std/regex.e
public function error_to_string(integer i)

Converts an regex error to a string.

This can be useful for debugging and even something rough to give to the user incase of a regex failure. It's
preferable to a number.

See Also:

error_message

2.0.0.214 escape

include std/regex.e
public function escape(string s)

Escape special regular expression characters that may be entered into a search string from user input.

Notes:

Euphoria v4.0 svn3379

Parameters: 275

Special regex characters are:

. \ + * ? [^] $ () { } = ! < > | : -

Parameters:

s: string sequence to escape1.

Returns:

An escaped sequence representing s.

Example 1:

include std/regex.e as re
sequence search_s = re:escape("Payroll is $***15.00")
-- search_s = "Payroll is \\$***15\\.00"

2.0.0.215 escape

include std/text.e
public function escape(sequence s, sequence what = "\"")

Escape special characters in a string

Parameters:

s: string to escape1.
what: sequence of characters to escape defaults to escaping a double quote.2.

Returns:

An escaped sequence representing s.

Example 1:

sequence s = escape("John \"Mc\" Doe")
puts(1, s)
-- output is: John \"Mc\" Doe

Euphoria v4.0 svn3379

Parameters: 276

See Also:

quote

2.0.0.216 et_error_string

include tokenize.e
public function et_error_string(integer err)

return error string from error code

2.0.0.217 et_keep_blanks

include tokenize.e
public procedure et_keep_blanks(integer toggle)

return blank lines as tokens default is FALSE

2.0.0.218 et_keep_comments

include tokenize.e
public procedure et_keep_comments(integer toggle)

return comments as tokens default is FALSE

2.0.0.219 et_string_numbers

include tokenize.e
public procedure et_string_numbers(integer toggle)

return TDATA for all T_NUMBER tokens in "string" format

by default:

T_NUMBER tokens return atoms•
T_CHAR tokens return single integer chars•
T_EOF tokens return undefined data•
all other tokens return strings•

Euphoria v4.0 svn3379

Parameters: 277

2.0.0.220 et_tokenize_file

include tokenize.e
public function et_tokenize_file(sequence fname)

Unit testing is the process of assuring that the smallest programming units are actually delivering functionality
that complies with their specification. The units in question are usually individual routines rather than whole
programs or applications.

The theory is that if the components of a system are working correctly, then there is a high probability that a
system using those components can be made to work correctly.

In Euphoria terms, this framework provides the tools to make testing and reporting on functions and
procedures easy and standardized. It gives us a simple way to write a test case and to report on the findings.
Example:

include std/unittest.e

test_equal("Power function test #1", 4, power(2, 2))
test_equal("Power function test #2", 4, power(16, 0.5))

test_report()

Name your test file in the special manner, t_NAME.e and then simply run eutest in that directory.

C:\Euphoria> eutest
t_math.e:
failed: Bad math, expected: 100 but got: 8
2 tests run, 1 passed, 1 failed, 50.0% success

===== Test failure summary:
FAIL: t_math.e

2 file(s) run 1 file(s) failed, 50.0% success--

In this example, we use the test_equal function to record the result of a test. The first parameter is the
name of the test, which can be anything and is displayed if the test fails. The second parameter is the expected
result -- what we expect the function being tested to return. The third parameter is the actual result returned by
the function being tested. This is usually written as a call to the function itself.

It is typical to provide as many test cases as would be required to give us confidence that the function is being
truly exercised. This includes calling it with typical values and edge-case or exceptional values. It is also
useful to test the function's error handling by calling it with bad parameters.

Euphoria v4.0 svn3379

Parameters: 278

When a test fails, the framework displays a message, showing the test's name, the expected result and the
actual result. You can configure the framework to display each test run, regardless of whether it fails or not.

After running a series of tests, you can get a summary displayed by calling the test_report() procedure.
To get a better feel for unit testing, have a look at the provided test cases for the standard library in the tests
directory.

When included in your program, unittest.e sets a crash handler to log a crash as a failure.

2.0.0.221 et_tokenize_string

include tokenize.e
public function et_tokenize_string(sequence code)

2.0.0.222 euphoria_copyright

include info.e
public function euphoria_copyright()

Get the copyright statement for Euphoria

Returns:

A sequence, containing 2 sequences: product name and copyright message

Example 1:

sequence info = euphoria_copyright()
-- info = {
-- "Euphoria v4.0.0 alpha 3",
-- "Copyright (c) XYZ, ABC\n" &
-- "Copyright (c) ABC, DEF"
-- }

2.0.0.223 exec

include std/pipeio.e
public function exec(sequence cmd, sequence pipe)

Open process with command line cmd

Euphoria v4.0 svn3379

Parameters: 279

Returns:

A handle, process handles { PID, STDIN, STDOUT, STDERR }

Example 1:

object p = exec("dir", create())

2.0.0.224 exp

include std/math.e
public function exp(atom x)

Computes some power of E.

Parameters:

value : an object, all atoms of which will be acted upon, no matter how deeply nested.1.

Returns:

An object, the same shape as value. When value is an atom, its exponential is being returned.

Comments:

This function can be applied to a single atom or to a sequence of any shape.

Due to its rapid growth, the returned values start losing accuracy as soon as values are greater than 10. Values
above 710 will cause an overflow in hardware.

Example 1:

x = exp(5.4)
-- x is 221.4064162

See Also:

log

Euphoria v4.0 svn3379

Parameters: 280

2.0.0.225 extract

include std/sequence.e
public function extract(sequence source, sequence indexes)

Picks out from a sequence a set of elements according to the supplied set of indexes.

Parameters:

source : the sequence from which to extract elements1.
indexes : a sequence of atoms, the indexes of the elements to be fetched in source.2.

Returns:

A sequence, of the same length as indexes.

Example 1:

s = extract({11,13,15,17},{3,1,2,1,4})
-- s is {15,11,13,11,17}

See Also:

slice

2.0.0.226 fetch

include std/sequence.e
public function fetch(sequence source, sequence indexes)

Retrieves an element nested arbitrarily deep into a sequence.

Parameters:

source : the sequence from which to fetch1.
indexes : a sequence of integers, the path to follow to reach the element to return.2.

Euphoria v4.0 svn3379

Parameters: 281

Returns:

An object, which is source[indexes[1]][indexes[2]]...[indexes[$]]

Errors:

If the path cannot be followed to its end, an error about reading a nonexistent element, or subscripting an
atom, will occur.

Comments:

The last element of indexes may be a pair {lower,upper}, in which case a slice of the innermost referenced
sequence is returned.

Example 1:

x = fetch({0,1,2,3,{"abc","def","ghi"},6},{5,2,3})
-- x is 'f', or 102.

See Also:

store, Subscripting of Sequences

2.0.0.227 fib

include std/math.e
public function fib(integer i)

Computes the Nth Fibonacci Number

Parameters:

value : an integer. The starting value to compute a Fibonacci Number from.1.

Returns:

An atom,

The Fibonacci Number specified by value.•

Euphoria v4.0 svn3379

Parameters: 282

Comments:

Note that due to the limitations of the floating point implementation, only 'i' values less than 76 are
accurate on Windows platforms, and 69 on other platforms (due to rounding differences in the native
C runtime libraries).

•

Example 1:

? fib(6)
-- output ...
-- 8

2.0.0.228 fiber_over

include std/sets.e
public function fiber_over(map f, set source, set target)

Given a map between two sets, returns {list of antecedents of elements in target, effective target}.

Parameters:

f : the inspected map1.
source : the source set2.
target : the target set.3.

Returns:

A sequence, which is empty on failure. On success, it has two elements:

A sequence of sets; each of these sets is included in source and is mapped to a single point by f.•
A set, the points in target hit by f.•

Comments:

The listed sets, which are reverse images of points in target, are called fibers of f over points, specially if
they are isomorphic to one another for some extra algebraic or topological structure.

The fibers are enumerated in the same order as the points in the effective target, i.e. the points in target f
hits.

Euphoria v4.0 svn3379

Parameters: 283

Example 1:

set s1,s2
 s1={5,7,9,11} s2={13,17,19,23,29}
 map f = {2,1,4,1,4,5}
 sequence s = fiber_over(f,s1,s2)
 -- s is now {{{7,11},{5},{9}},{13,17,23}}.

See Also:

reverse_map, fiber_product

2.0.0.229 fiber_product

include std/sets.e
public function fiber_product(set first, set second, set base, map from_1_to_base, map from_2_to_base)

Returns the set of all pairs in a product on which two given componentwise maps agree.

Parameters:

first : the first product component1.
second : the second product component2.
base : the base set the fiber product is built on3.
from_1_to_base : the map from first to base.4.
from_2_to_base : the map from second to base.5.

Returns:

The set, of pairs whose coordinates are mapped consistently to base by from_1_to_base and
from_2_to_base respectively.

Example 1:

set s0,s1,s2
 s0={1,2,3} s1={5,7,9,11} s2={13,17,19,23,29}
 map f10,f20
 f10={2,1,2,1,4,3} f20={1,3,3,2,3,5,3}
 set s = fiber_product(s1,s2,s0,f10,f20)
 -- s is now {{5,23},{7,13},{9,23},{11,13}}.

See Also:

reverse_map, amalgamated_sum, fiber_over

Euphoria v4.0 svn3379

Parameters: 284

2.0.0.230 file_exists

include std/filesys.e
public function file_exists(object name)

Check to see if a file exists

Parameters:

name : filename to check existence of1.

Returns:

An integer, 1 on yes, 0 on no

Example 1:

if file_exists("abc.e") then
 puts(1, "abc.e exists already\n")
end if

2.0.0.231 file_length

include std/filesys.e
public function file_length(sequence filename)

Return the size of a file.

Parameters:

filename : the name of the queried file1.

Returns:

An atom, the file size, or -1 if file is not found.

Euphoria v4.0 svn3379

Parameters: 285

Comments:

This function does not compute the total size for a directory, and returns 0 instead.

See Also:

dir

2.0.0.232 file_number

include std/io.e
public type file_number(integer f)

File number type

2.0.0.233 file_position

include std/io.e
public type file_position(atom p)

File position type

2.0.0.234 file_timestamp

include std/filesys.e
public function file_timestamp(sequence fname)

Get the timestamp of the file

Parameters:

name : the filename to get the date of1.

Returns:

A valid datetime type, representing the files date and time or -1 if the file's date and time could not be read.

Euphoria v4.0 svn3379

Parameters: 286

2.0.0.235 file_type

include std/filesys.e
public function file_type(sequence filename)

Get the type of a file.

Parameters:

filename : the name of the file to query. It must not have wildcards.1.

Returns:

An integer,

-1 if file could be multiply defined•
0 if filename does not exist•
1 if filename is a file•
2 if filename is a directory•

See Also:

dir, FILETYPE_DIRECTORY, FILETYPE_FILE, FILETYPE_NOT_FOUND, FILETYPE_UNDEFINED

2.0.0.236 filebase

include std/filesys.e
public function filebase(sequence path)

Return the base filename of path.

Parameters:

path : the path from which to extract information1.

Returns:

A sequence, the base file name part of path.

TODO: Test

Euphoria v4.0 svn3379

Parameters: 287

Example 1:

base = filebase("/opt/euphoria/readme.txt")
-- base is "readme"

See Also:

pathinfo, filename, fileext

2.0.0.237 fileext

include std/filesys.e
public function fileext(sequence path)

Return the file extension of a fully qualified filename

Parameters:

path : the path from which to extract information1.

Returns:

A sequence, the file extension part of path.

Comments:

The host operating system path separator is used.

Example 1:

fname = fileext("/opt/euphoria/docs/readme.txt")
-- fname is "txt"

See Also:

pathinfo, filename, filebase

2.0.0.238 filename

include std/filesys.e
public function filename(sequence path)

Euphoria v4.0 svn3379

Parameters: 288

Return the file name portion of a fully qualified filename

Parameters:

path : the path from which to extract information1.

Returns:

A sequence, the file name part of path.

Comments:

The host operating system path separator is used.

Example 1:

fname = filename("/opt/euphoria/docs/readme.txt")
-- fname is "readme.txt"

See Also:

pathinfo, filebase, fileext

2.0.0.239 filter

include std/sequence.e
public function filter(sequence source, object rid, object userdata = {}, object rangetype = "")

Filter a sequence based on a user supplied comparator function.

Parameters:

source : sequence to filter•
rid : Either a routine_id of function to use as comparator or one of the predefined comparitors.•
userdata : an object passed to each invocation of rid. If omitted, {} is used.•
rangetype: A sequence. Only used when rid is "in" or "out". This is used to let the function know
how to interpret userdata. When rangetype is an empty string (which is the default), then
userdata is treated as a set of zero or more discrete items such that "in" will only return items from
source that are in the set of item in userdata and "out" returns those not in userdata. The
other values for rangetype mean that userdata must be a set of exactly two items, that represent
the lower and upper limits of a range of values.

•

Euphoria v4.0 svn3379

Parameters: 289

Returns:

A sequence, made of the elements in source which passed the comparitor test.

Comments:

The only items from source that are returned are those that pass the test.•
When rid is a routine_id, that user defined routine must be a function. Each item in source, along
with the userdata is passed to the function. The function must return a non-zero atom if the item is
to be included in the result sequence, otherwise it should return zero to exclude it from the result.

•

The predefined comparitors are...•

"<" or "lt" return items in source that are less than userdata
"<=" or "le" return items in source that are less than or equal to userdata
"=" or "==" or "eq" return items in source that are equal to userdata
"!=" or "ne" return items in source that are not equal to userdata
">" or "gt" return items in source that are greater than userdata
">=" or "ge" return items in source that are greater than or equal to userdata
"in" return items in source that are in userdata
"out" return items in source that are not in userdata

Range Type Usage•

Range Type Meaning
"[]" Inclusive range. Lower and upper are in the range.
"[)" Low Inclusive range. Lower is in the range but upper is not.
"(]" High Inclusive range. Lower is not in the range but upper is.
"()" Exclusive range. Lower and upper are not in the range.

Example 1:

function mask_nums(atom a, object t)
 if sequence(t) then
 return 0
 end if
 return and_bits(a, t) != 0
end function

function even_nums(atom a, atom t)
 return and_bits(a,1) = 0
end function

constant data = {5,8,20,19,3,2,10}
filter(data, routine_id("mask_nums"), 1) --> {5,19,3}
filter(data, routine_id("mask_nums"), 2) -->{19, 3, 2, 10}
filter(data, routine_id("even_nums")) -->{8, 20, 2, 10}

-- Using 'in' and 'out' with sets.
filter(data, "in", {3,4,5,6,7,8}) -->{5,8,3}

Euphoria v4.0 svn3379

Parameters: 290

filter(data, "out", {3,4,5,6,7,8}) -->{20,19,2,10}

-- Using 'in' and 'out' with ranges.
filter(data, "in", {3,8}, "[]") --> {5,8,3}
filter(data, "in", {3,8}, "[)") --> {5,3}
filter(data, "in", {3,8}, "(]") --> {5,8}
filter(data, "in", {3,8}, "()") --> {5}
filter(data, "out", {3,8}, "[]") --> {20,19,2,10}
filter(data, "out", {3,8}, "[)") --> {8,20,19,2,10}
filter(data, "out", {3,8}, "(]") --> {20,19,3,2,10}
filter(data, "out", {3,8}, "()") --> {8,20,19,3,2,10}

Example 3:

function quiksort(sequence s)
 if length(s) < 2 then
 return s
 end if
 return quiksort(filter(s[2..$], "<=", s[1])) & s[1] & quiksort(filter(s[2..$], ">", s[1]))
end function
? quiksort({5,4,7,2,4,9,1,0,4,32,7,54,2,5,8,445,67})
--> {0,1,2,2,4,4,4,5,5,7,7,8,9,32,54,67,445}

See Also:

apply

2.0.0.240 find

<built-in> function find(object needle, sequence haystack, integer start)

Find the first occurrence of a "needle" as an element of a "haystack", starting from position "start"..

Parameters:

needle : an object whose presence is being queried1.
haystack : a sequence, which is being looked up for needle2.
start : an integer, the position at which to start searching. Defaults to 1.3.

Returns:

An integer, 0 if needle is not on haystack, else the smallest index of an element of haystack that
equals needle.

Euphoria v4.0 svn3379

Parameters: 291

Comments:

find() and find_from() are identical, but you can omit giving find() a starting point.

Example 1:

location = find(11, {5, 8, 11, 2, 3})
-- location is set to 3

Example 2:

names = {"fred", "rob", "george", "mary", ""}
location = find("mary", names)
-- location is set to 4

See Also:

find_from, match, match_from, compare

2.0.0.241 find

include std/regex.e
public function find(regex re, string haystack, integer from = 1, option_spec options = DEFAULT, integer size = get_ovector_size(re, 30))

Return the first match of re in haystack. You can optionally start at the position from.

Parameters:

re : a regex for a subject to be matched against1.
haystack : a string in which to searched2.
from : an integer setting the starting position to begin searching from. Defaults to 13.
options : defaults to DEFAULT. See Match Time Option Constants. The only options that may be
set when calling find are ANCHORED, NEWLINE_CR, NEWLINE_LF, NEWLINE_CRLF,
NEWLINE_ANY NEWLINE_ANYCRLF NOTBOL, NOTEOL, NOTEMPTY, and
NO_UTF8_CHECK. options can be any match time option or a sequence of valid options or it can
be a value that comes from using or_bits on any two valid option values.

4.

size : internal (how large an array the C backend should allocate). Defaults to 90, in rare cases this
number may need to be increased in order to accomodate complex regex expressions.

5.

Returns:

An object, which is either an atom of 0, meaning nothing matched or a sequence of matched pairs. For the
explanation of the returned sequence, please see the first example.

Euphoria v4.0 svn3379

Parameters: 292

Example 1:

include std/regex.e as re
r = re:new("([A-Za-z]+) ([0-9]+)") -- John 20 or Jane 45
object result = re:find(r, "John 20")

-- The return value will be:
-- {
-- { 1, 7 }, -- Total match
-- { 1, 4 }, -- First grouping "John" ([A-Za-z]+)
-- { 6, 7 } -- Second grouping "20" ([0-9]+)
-- }

2.0.0.242 find_all

include std/regex.e
public function find_all(regex re, string haystack, integer from = 1, option_spec options = DEFAULT)

Return all matches of re in haystack optionally starting at the sequence position from.

Parameters:

re : a regex for a subject to be matched against1.
haystack : a string in which to searched2.
from : an integer setting the starting position to begin searching from. Defaults to 13.
options : defaults to DEFAULT. See Match Time Option Constants.4.

Returns:

A sequence of sequences that were returned by find and in the case of no matches this returns an empty
sequence. Please see find for a detailed description of each member of the return sequence.

Example 1:

include std/regex.e as re
constant re_number = re:new("[0-9]+")
object matches = re:find_all(re_number, "10 20 30")

-- matches is:
-- {
-- {{1, 2}},
-- {{4, 5}},
-- {{7, 8}}
-- }

Euphoria v4.0 svn3379

Parameters: 293

2.0.0.243 find_all

include std/search.e
public function find_all(object needle, sequence haystack, integer start = 1)

Find all occurrences of an object inside a sequence, starting at some specified point.

Parameters:

needle : an object, what to look for1.
haystack : a sequence to search in2.
start : an integer, the starting index position (defaults to 1)3.

Returns:

A sequence, the list of all indexes no less than start of elements of haystack that equal needle. This
sequence is empty if no match found.

Example 1:

s = find_all('A', "ABCABAB")
-- s is {1,4,6}

See Also:

find, match, match_all

2.0.0.244 find_any

include std/search.e
public function find_any(sequence needles, sequence haystack, integer start = 1)

Find any element from a list inside a sequence. Returns the location of the first hit.

Parameters:

needles : a sequence, the list of items to look for1.
haystack : a sequence, in which "needles" are looked for2.
start : an integer, the starting point of the search. Defaults to 1.3.

Euphoria v4.0 svn3379

Parameters: 294

Returns:

An integer, the smallest index in haystack of an element of needles, or 0 if no needle is found.

Comments:

This function may be applied to a string sequence or a complex sequence.

Example 1:

location = find_any("aeiou", "John Smith", 3)
-- location is 8

Example 2:

location = find_any("aeiou", "John Doe")
-- location is 2

See Also:

find, find_from

2.0.0.245 find_each

include std/search.e
public function find_each(sequence needles, sequence haystack, integer start = 1)

Find all instances of any element from the needle sequence that occur in the haystack sequence. Returns a list
of indexes.

Parameters:

needles : a sequence, the list of items to look for1.
haystack : a sequence, in which "needles" are looked for2.
start : an integer, the starting point of the search. Defaults to 1.3.

Returns:

A sequence, the list of indexes into haystack that point to an element that is also in needles.

Euphoria v4.0 svn3379

Parameters: 295

Comments:

This function may be applied to a string sequence or a complex sequence.

Example 1:

location = find_each("aeiou", "John Smith", 3)
-- location is {8}

Example 2:

location = find_each("aeiou", "John Doe")
-- location is {2,7,8}

See Also:

find, find_from, find_any

2.0.0.246 find_from

<built-in> function find_from(object needle, object haystack, integer start)

Find the first occurrence of a "needle" as an element of a "haystack". Search starts at a specified index.

Parameters:

needle : an object whose presence is being queried1.
haystack : a sequence, which is being looked up for needle2.
start : an integer, the index in haystack at which to start searching.3.

Returns:

An integer, 0 if needle is not on haystack past position start, else the smallest index, not less than
start, of an element of haystack that equals needle.

Comments:

start may have any value from 1 to the length of haystack plus 1. (Analogous to the first index of a slice of
haystack).

find() and find_from() are identical, but you can omit giving find() a starting point.

Euphoria v4.0 svn3379

Parameters: 296

Example 1:

location = find_from(11, {11, 8, 11, 2, 3}, 2)
-- location is set to 3

Example 2:

names = {"mary", "rob", "george", "mary", ""}
location = find_from("mary", names, 3)
-- location is set to 4

See Also:

find, match, match_from, compare

2.0.0.247 find_nested

include std/search.e
public function find_nested(object needle, sequence haystack, integer flags = 0, integer rtn_id = NO_ROUTINE_ID)

Find any object (among a list) in a sequence of arbitrary shape at arbitrary nesting.

Parameters:

needle : an object, either what to look up, or a list of items to look up1.
haystack : a sequence, where to look up2.
flags : options to the function, see Comments section. Defaults to 0.3.
routine : an integer, the routine_id of an user supplied equal/find function. Defaults to
types:NO_ROUTINE_ID.

4.

Returns:

A possibly empty sequence, of results, one for each hit.

Comments:

Each item in the returned sequence is either a sequence of indexes, or a pair {sequence of indexes, index in
needle}.

The following flags are available to fine tune the search:

NESTED_BACKWARD -- if on flags, search is performed backward. Default is forward.•
NESTED_ALL -- if on flags, all occurrences are looked for. Default is one hit only.•

Euphoria v4.0 svn3379

Parameters: 297

NESTED_ANY -- if present on flags, needle is a list of items to look for. Not the default.•
NESTED_INDEXES -- if present on flags, an individual result is a pair {position, index in
needle}. Default is just return the position.

•

If s is a single index list, or position, from the returned sequence, then fetch(haystack, s) =
needle.

If a routine id is supplied, the routine must behave like equal() if the NESTED_ANY flag is not supplied, and
like find() if it is. The routine is being passed the current haystack item and needle. The returned integer
is interpreted as if returned by equal() or find().

If the NESTED_ANY flag is specified, and needle is an atom, then the flag is removed.

Example 1:

sequence s = find_nested(3, {5, {4, {3, {2}}}})
-- s is {2 ,2 ,1}

Example 2:

sequence s = find_nested({3, 2}, {1, 3, {2,3}}, NESTED_ANY + NESTED_BACKWARD + NESTED_ALL)
-- s is {{3,2}, {3,1}, {2}}

Example 3:

sequence s = find_nested({3, 2}, {1, 3, {2,3}}, NESTED_ANY + NESTED_INDEXES + NESTED_ALL)
-- s is {{{2}, 1}, {{3, 1}, 2}, {{3, 2}, 1}}

See Also:

find, rfind, find_any, fetch

2.0.0.248 find_replace

include std/regex.e
public function find_replace(regex ex, string text, sequence replacement, integer from = 1, option_spec options = DEFAULT)

Replaces all matches of a regex with the replacement text.

Parameters:

re : a regex which will be used for matching1.
text : a string on which search and replace will apply2.
replacement : a string, used to replace each of the full matches3.

Euphoria v4.0 svn3379

Parameters: 298

from : optional start position4.
options : options, defaults to DEFAULT. See Match Time Option Constants. options can be any
match time option or a sequence of valid options or it can be a value that comes from using or_bits on
any two valid option values.

5.

Returns:

A sequence, the modified text. If there is no match with re the return value will be the same as text when
it was passed in.

Special replacement operators:

\ -- Causes the next character to lose its special meaning.•
\n ~ -- Inserts a 0x0A (LF) character.•
\r -- Inserts a 0x0D (CR) character.•
\t -- Inserts a 0x09 (TAB) character.•
\1 to \9 -- Recalls stored substrings from registers (\1, \2, \3, to \9).•
\0 -- Recalls entire matched pattern.•
\u -- Convert next character to uppercase•
\l -- Convert next character to lowercase•
\U -- Convert to uppercase till \E or \e•
\L -- Convert to lowercase till \E or \e•
\E or \e -- Terminate a \\U or \L conversion•

Example 1:

include std/regex.e
regex r = new(`([A-Za-z]+)\.([A-Za-z]+)`)
sequence details = find_replace(r, "hello.txt", `Filename: \U\1\e Extension: \U\2\e`)
-- details = "Filename: HELLO Extension: TXT"

2.0.0.249 find_replace

include std/search.e
public function find_replace(object needle, sequence haystack, object replacement, integer max = 0)

Finds a "needle" in a "haystack", and replace any, or only the first few, occurrences with a replacement.

Parameters:

needle : an object to search and perhaps replace1.
haystack : a sequence to be inspected2.
replacement : an object to substitute for any (first) instance of needle3.
max : an integer, 0 to replace all occurrences4.

Euphoria v4.0 svn3379

Parameters: 299

Returns:

A sequence, the modified haystack.

Comments:

Replacements will not be made recursively on the part of haystack that was already changed.

If max is 0 or less, any occurrence of needle in haystack will be replaced by replacement.
Otherwise, only the first max occurrences are.

Example 1:

s = find_replace('b', "The batty book was all but in Canada.", 'c', 0)
-- s is "The catty cook was all cut in Canada."

Example 2:

s = find_replace('/', "/euphoria/demo/unix", '\\', 2)
-- s is "\\euphoria\\demo/unix"

Example 3:

s = find_replace("theater", { "the", "theater", "theif" }, "theatre")
-- s is { "the", "theatre", "theif" }

See Also:

find, replace, match_replace

2.0.0.250 find_replace_callback

include std/regex.e
public function find_replace_callback(regex ex, string text, integer rid, integer limit = 0, integer from = 1, option_spec options = DEFAULT)

When limit is positive, this routine replaces up to limit matches of ex in text with the result of the user
defined callback, rid, and when limit is 0, replaces all matches of ex in text with the result of this user
defined callback, rid.

The callback should take one sequence. The first member of this sequence will be a a string representing the
entire match and the subsequent members, if they exist, will be a strings for the captured groups within the
regular expression.

Euphoria v4.0 svn3379

Parameters: 300

Parameters:

re : a regex which will be used for matching1.
text : a string on which search and replace will apply2.
rid : routine id to execute for each match3.
limit : the number of matches to process4.
from : optional start position5.
options : options, defaults to DEFAULT. See Match Time Option Constants. options can be any
match time option or a sequence of valid options or it can be a value that comes from using or_bits on
any two valid option values.

6.

Returns:

A sequence, the modified text.

Example 1:

include std/regex.e as re
function my_convert(sequence params)
 switch params[1] do
 case "1" then
 return "one "
 case "2" then
 return "two "
 case else
 return "unknown "
 end switch
end function

regex r = re:new(`\d`)
sequence result = re:find_replace_callback(r, "125", routine_id("my_convert"))
-- result = "one two unknown "

Page Contents

2.0.0.251 find_replace_limit

include std/regex.e
public function find_replace_limit(regex ex, string text, sequence replacement, integer limit, integer from = 1, option_spec options = DEFAULT)

Replaces up to limit matches of ex in text except when limit is 0. When limit is 0, this routine
replaces all of the matches.

Euphoria v4.0 svn3379

Parameters: 301

This function is identical to find_replace except it allows you to limit the number of replacements to perform.
Please see the documentation for find_replace for all the details.

Parameters:

re : a regex which will be used for matching1.
text : a string on which search and replace will apply2.
replacement : a string, used to replace each of the full matches3.
limit : the number of matches to process4.
from : optional start position5.
options : options, defaults to DEFAULT. See Match Time Option Constants. options can be any
match time option or a sequence of valid options or it can be a value that comes from using or_bits on
any two valid option values.

6.

Returns:

A sequence, the modified text.

See Also:

find_replace

2.0.0.252 flags_to_string

include std/flags.e
public function flags_to_string(object flag_bits, sequence flag_names, integer expand_flags = 0)

Returns a list of strings that represent the human-readable identities of the supplied flag(s).

Parameters:

flag_bits : Either a single 32-bit set of flags (a flag value), or a list of such flag values. The
function returns the names for these flag values.

1.

flag_names : A sequence of two-element sub-sequences. Each sub-sequence is contains
{FlagValue, FlagName}, where FlagName is a string and FlagValue is the set of bits that set the flag
on.

2.

expand_flags: An integer. 0 (the default) means that the flag values in flag_bits are not
broken down to their single-bit values. eg. #0c returns the name of #0c and not the names for #08 and
#04. When expand_flags is non-zero then each bit in the flag_bits parameter is scanned for a
matching name.

3.

Euphoria v4.0 svn3379

Parameters: 302

Returns:

A sequence. This contains the name(s) for each supplied flag value(s).

Comments:

The number of strings in the returned value depends on expand_flags is non-zero and whether
flags_bits is an atom or sequence.

•

When flag_bits is an atom, you get returned a sequence of strings, one for each matching name
(according to expand_flags option).

•

When flag_bits is a sequence, it is assumed to represent a list of atomic flags. That is, {#1, #4} is
a set of two flags for which you want their names. In this case, you get returned a sequence that
contains one sequence for each element in flag_bits, which in turn contain the matching name(s).

•

When a flag's name can not be found in flag_names, this function returns the name of "?".•

Examples:

include std/console.e
sequence s
s = {
 {#00000000, "WS_OVERLAPPED"},
 {#80000000, "WS_POPUP"},
 {#40000000, "WS_CHILD"},
 {#20000000, "WS_MINIMIZE"},
 {#10000000, "WS_VISIBLE"},
 {#08000000, "WS_DISABLED"},
 {#44000000, "WS_CLIPPINGCHILD"},
 {#04000000, "WS_CLIPSIBLINGS"},
 {#02000000, "WS_CLIPCHILDREN"},
 {#01000000, "WS_MAXIMIZE"},
 {#00C00000, "WS_CAPTION"},
 {#00800000, "WS_BORDER"},
 {#00400000, "WS_DLGFRAME"},
 {#00100000, "WS_HSCROLL"},
 {#00200000, "WS_VSCROLL"},
 {#00080000, "WS_SYSMENU"},
 {#00040000, "WS_THICKFRAME"},
 {#00020000, "WS_MINIMIZEBOX"},
 {#00010000, "WS_MAXIMIZEBOX"},
 {#00300000, "WS_SCROLLBARS"},
 {#00CF0000, "WS_OVERLAPPEDWINDOW"},
 $
}
display(flags_to_string({#0C20000,2,9,0}, s,1))
--> {
--> "WS_BORDER",
--> "WS_DLGFRAME",
--> "WS_MINIMIZEBOX"
--> },
--> {
--> "?"
--> },
--> {

Euphoria v4.0 svn3379

Parameters: 303

--> "?"
--> },
--> {
--> "WS_OVERLAPPED"
--> }
--> }
display(flags_to_string(#80000000, s))
--> {
--> "WS_POPUP"
--> }
display(flags_to_string(#00C00000, s))
--> {
--> "WS_CAPTION"
--> }
display(flags_to_string(#44000000, s))
--> {
--> "WS_CLIPPINGCHILD"
--> }
display(flags_to_string(#44000000, s, 1))
--> {
--> "WS_CHILD",
--> "WS_CLIPSIBLINGS"
--> }
display(flags_to_string(#00000000, s))
--> {
--> "WS_OVERLAPPED"
--> }
display(flags_to_string(#00CF0000, s))
--> {
--> "WS_OVERLAPPEDWINDOW"
--> }
display(flags_to_string(#00CF0000, s, 1))
--> {
--> "WS_BORDER",
--> "WS_DLGFRAME",
--> "WS_SYSMENU",
--> "WS_THICKFRAME",
--> "WS_MINIMIZEBOX",
--> "WS_MAXIMIZEBOX"
--> }

A map is a special array, often called an associative array or dictionary, in which the index to the data can be
any Euphoria object and not just an integer. These sort of indexes are also called keys. For example we can
code things like this...

custrec = new() -- Create a new map
 put(custrec, "Name", "Joe Blow")
 put(custrec, "Address", "555 High Street")
 put(custrec, "Phone", 555675632)

This creates three elements in the map, and they are indexed by "Name", "Address" and "Phone", meaning
that to get the data associated with those keys we can code ...

Euphoria v4.0 svn3379

Parameters: 304

object data = get(custrec, "Phone")
 -- data now set to 555675632

Note: Only one instance of a given key can exist in a given map, meaning for example, we couldn't have two
separate "Name" values in the above custrec map.

Maps automatically grow to accommodate all the elements placed into it.

Associative arrays can be implemented in many different ways, depending on what efficiency trade-offs have
been made. This implementation allows you to decide if you want a small map or a large map.

small map
Faster for small numbers of elements. Speed is usually proportional to the number of elements.

large map
Faster for large number of elements. Speed is usually the same regardless of how many elements are
in the map. The speed is often slower than a small map.
Note: If the number of elements placed into a small map take it over the initial size of the map, it is
automatically converted to a large map.

2.0.0.253 flatten

include std/sequence.e
public function flatten(sequence s, object delim = "")

Remove all nesting from a sequence.

Parameters:

s : the sequence to flatten out.1.
delim : An optional delimiter to place after each flattened sub-sequence (except the last one).2.

Returns:

A sequence, of atoms, all the atoms in s enumerated.

Comments:

If you consider a sequence as a tree, then the enumeration is performed by left-right reading of the
tree. The elements are simply read left to right, without any care for braces.

•

Empty sub-sequences are stripped out entirely.•

Euphoria v4.0 svn3379

Parameters: 305

Example 1:

s = flatten({{18, 19}, 45, {18.4, 29.3}})
-- s is {18, 19, 45, 18.4, 29.3}

Example 2:

s = flatten({18,{ 19, {45}}, {18.4, {}, 29.3}})
-- s is {18, 19, 45, 18.4, 29.3}

Example 3:

Using the delimiter argument.
s = flatten({"abc", "def", "ghi"}, ", ")
-- s is "abc, def, ghi"

2.0.0.254 float32_to_atom

include std/convert.e
public function float32_to_atom(sequence_4 ieee32)

Convert a sequence of 4 bytes in IEEE 32-bit format to an atom

Parameters:

ieee32 : the sequence to convert:1.

Returns:

An atom, the same value as the FPU would see by peeking ieee64 from RAM.

Comments:

Any 32-bit IEEE floating-point number can be converted to an atom.

Example 1:

f = repeat(0, 4)
fn = open("numbers.dat", "rb") -- read binary
f[1] = getc(fn)
f[2] = getc(fn)
f[3] = getc(fn)
f[4] = getc(fn)
a = float32_to_atom(f)

Euphoria v4.0 svn3379

Parameters: 306

See Also:

float64_to_atom, bytes_to_int, atom_to_float32

2.0.0.255 float64_to_atom

include std/convert.e
public function float64_to_atom(sequence_8 ieee64)

Convert a sequence of 8 bytes in IEEE 64-bit format to an atom

Parameters:

ieee64 : the sequence to convert:1.

Returns:

An atom, the same value as the FPU would see by peeking ieee64 from RAM.

Comments:

Any 64-bit IEEE floating-point number can be converted to an atom.

Example 1:

f = repeat(0, 8)
fn = open("numbers.dat", "rb") -- read binary
for i = 1 to 8 do
 f[i] = getc(fn)
end for
a = float64_to_atom(f)

See Also:

float32_to_atom, bytes_to_int, atom_to_float64

2.0.0.256 floor

<built-in> function floor(object value)

Rounds value down to the next integer less than or equal to value. It does not simply truncate the
fractional part, but actually rounds towards negative infinity.

Euphoria v4.0 svn3379

Parameters: 307

Parameters:

value : any Euphoria object; each atom in value will be acted upon.1.

Returns:

An object, the same shape as value but with each item guarenteed to be an integer less than or equal to the
corresponding item in value.

Example 1:

y = floor({0.5, -1.6, 9.99, 100})
-- y is {0, -2, 9, 100}

See Also:

ceil, round

2.0.0.257 flush

include std/io.e
public procedure flush(file_number fn)

Force writing any buffered data to an open file or device.

Parameters:

fn : an integer, the handle to the file or device to close.1.

Errors:

The target file or device must be open.

Comments:

When you write data to a file, Euphoria normally stores the data in a memory buffer until a large enough
chunk of data has accumulated. This large chunk can then be written to disk very efficiently. Sometimes you
may want to force, or flush, all data out immediately, even if the memory buffer is not full. To do this you
must call flush(fn), where fn is the file number of a file open for writing or appending.

When a file is closed, (see close()), all buffered data is flushed out. When a program terminates, all open files
are flushed and closed automatically. Use flush() when another process may need to see all of the data written

Euphoria v4.0 svn3379

Parameters: 308

so far, but you are not ready to close the file yet. flush() is also used in crash routines, where files may not be
closed in the cleanest possible way.

Example 1:

f = open("file.log", "w")
puts(f, "Record#1\n")
puts(STDOUT, "Press Enter when ready\n")

flush(f) -- This forces "Record #1" into "file.log" on disk.
 -- Without this, "file.log" will appear to have
 -- 0 characters when we stop for keyboard input.

s = gets(0) -- wait for keyboard input

See Also:

close, crash_routine

2.0.0.258 for_each

include std/map.e
public function for_each(map source_map, integer user_rid, object user_data = 0, integer in_sorted_order = 0, integer signal_boundary = 0)

Calls a user-defined routine for each of the items in a map.

Parameters:

source_map : The map containing the data to process1.
user_rid: The routine_id of a user defined processing function2.
user_data: An object. Optional. This is passed, unchanged to each call of the user defined routine.
By default, zero (0) is used.

3.

in_sorted_order: An integer. Optional. If non-zero the items in the map are processed in
ascending key sequence otherwise the order is undefined. By default they are not sorted.

4.

signal_boundary: A integer; 0 (the default) means that the user routine is not called if the map is
empty and when the last item is passed to the user routine, the Progress Code is not negative.

5.

Returns:

An integer: 0 means that all the items were processed, and anything else is whatever was returned by the user
routine to abort the for_each() process.

Euphoria v4.0 svn3379

Parameters: 309

Comment:

The user defined routine is a function that must accept four parameters.
Object: an Item Key1.
Object: an Item Value2.
Object: The user_data value. This is never used by for_each() itself, merely passed to
the user routine.

3.

Integer: Progress code.
The abs() value of the progress code is the ordinal call number. That is 1 means the
first call, 2 means the second call, etc ...

◊

If the progress code is negative, it is also the last call to the routine.◊
If the progress code is zero, it means that the map is empty and thus the item key and
value cannot be used.

◊

note that if signal_boundary is zero, the Progress Code is never less than 1.◊

4.

•

The user routine must return 0 to get the next map item. Anything else will cause for_each() to
stop running, and is returned to whatever called for_each().

•

Note that any changes that the user routine makes to the map do not affect the order or number of
times the routine is called. for_each() takes a copy of the map keys and data before the first call
to the user routine and uses the copied data to call the user routine.

•

Example 1:

include std/map.e
include std/math.e
include std/io.e
 function Process_A(object k, object v, object d, integer pc)
 writefln("[] = []", {k, v})
 return 0
 end function

 function Process_B(object k, object v, object d, integer pc)
 if pc = 0 then
 writefln("The map is empty")
 else
 integer c
 c = abs(pc)
 if c = 1 then
 writefln("---[]---", {d}) -- Write the report title.
 end if
 writefln("[]: [:15] = []", {c, k, v})
 if pc < 0 then
 writefln(repeat('-', length(d) + 6), {}) -- Write the report end.
 end if
 end if
 return 0
 end function

 map m1 = new()
 map:put(m1, "application", "Euphoria")
 map:put(m1, "version", "4.0")
 map:put(m1, "genre", "programming language")
 map:put(m1, "crc", "4F71AE10")

Euphoria v4.0 svn3379

Parameters: 310

 -- Unsorted
 map:for_each(m1, routine_id("Process_A"))
 -- Sorted
 map:for_each(m1, routine_id("Process_B"), "List of Items", 1)

The output from the first call could be...

application = Euphoria
version = 4.0
genre = programming language
crc = 4F71AE10

The output from the second call should be...

---List of Items---
1: application = Euphoria
2: crc = 4F71AE10
3: genre = programming language
4: version = 4.0

Page Contents

2.0.0.259 format

include std/datetime.e
public function format(datetime d, sequence pattern = "%Y-%m-%d %H:%M:%S")

Format the date according to the format pattern string

Parameters:

d : a datetime which is to be printed out1.
pattern : a format string, similar to the ones sprintf() uses, but with some Unicode encoding. The
default is "%Y-%m-%d %H:%M:%S".

2.

Returns:

A string, with the date d formatted according to the specification in pattern.

Euphoria v4.0 svn3379

Parameters: 311

Comments:

Pattern string can include the following specifiers:

%% -- a literal %•
%a -- locale's abbreviated weekday name (e.g., Sun)•
%A -- locale's full weekday name (e.g., Sunday)•
%b -- locale's abbreviated month name (e.g., Jan)•
%B -- locale's full month name (e.g., January)•
%C -- century; like %Y, except omit last two digits (e.g., 21)•
%d -- day of month (e.g, 01)•
%H -- hour (00..23)•
%I -- hour (01..12)•
%j -- day of year (001..366)•
%k -- hour (0..23)•
%l -- hour (1..12)•
%m -- month (01..12)•
%M -- minute (00..59)•
%p -- locale's equivalent of either AM or PM; blank if not known•
%P -- like %p, but lower case•
%s -- seconds since 1970-01-01 00:00:00 UTC•
%S -- second (00..60)•
%u -- day of week (1..7); 1 is Monday•
%w -- day of week (0..6); 0 is Sunday•
%y -- last two digits of year (00..99)•
%Y -- year•

Example 1:

d = new(2008, 5, 2, 12, 58, 32)
s = format(d, "%Y-%m-%d %H:%M:%S")
-- s is "2008-05-02 12:58:32"

Example 2:

d = new(2008, 5, 2, 12, 58, 32)
s = format(d, "%A, %B %d '%y %H:%M%p")
-- s is "Friday, May 2 '08 12:58PM"

See Also:

to_unix, parse

Euphoria v4.0 svn3379

Parameters: 312

2.0.0.260 format

include std/text.e
public function format(sequence format_pattern, object arg_list = {})

Formats a set of arguments in to a string based on a supplied pattern.

Parameters:

format_pattern : A sequence: the pattern string that contains zero or more tokens.1.
arg_list : An object: Zero or more arguments used in token replacement.2.

Returns:

A string sequence, the original format_pattern but with tokens replaced by corresponding arguments.

Comments:

The format_pattern string contains text and argument tokens. The resulting string is the same as the
format string except that each token is replaced by an item from the argument list.

A token has the form [<Q>], where <Q> is are optional qualifier codes.

The qualifier. <Q> is a set of zero or more codes that modify the default way that the argument is used to
replace the token. The default replacement method is to convert the argument to its shortest string
representation and use that to replace the token. This may be modified by the following codes, which can
occur in any order.

Qualifier Usage
N ('N' is an integer) The index of the argument to use

{id} Uses the argument that begins with "id=" where "id"
is an identifier name.

%envvar% Uses the Environment Symbol 'envar' as an argument

w For string arguments, if capitalizes the first
letter in each word

u For string arguments, it converts it to upper case.
l For string arguments, it converts it to lower case.
< For numeric arguments, it left justifies it.
> For string arguments, it right justifies it.
c Centers the argument.
z For numbers, it zero fills the left side.

:S
('S' is an integer) The maximum size of the
resulting field. Also, if 'S' begins with '0' the
field will be zero-filled if the argument is an integer

Euphoria v4.0 svn3379

Parameters: 313

.N ('N' is an integer) The number of digits after
the decimal point

+ For positive numbers, show a leading plus sign
(For negative numbers, enclose them in parentheses
b For numbers, causes zero to be all blanks

s
If the resulting field would otherwise be zero
length, this ensures that at least one space occurs
between this token's field

t After token replacement, the resulting string up to this point is trimmed.
X Outputs integer arguments using hexadecimal digits.
B Outputs integer arguments using binary digits.

?

The corresponding argument is a set of two strings. This
uses the first string if the previous token's argument is
not the value 1 or a zero-length string, otherwise it
uses the second string.

[Does not use any argument. Outputs a left-square-bracket symbol

,X

Insert thousands separators. The <X> is the character
to use. If this is a dot "." then the decimal point
is rendered using a comma. Does not apply to zero-filled
fields.
N.B. if hex or binary output was specified, the
separators are every 4 digits otherwise they are
every three digits.

Clearly, certain combinations of these qualifier codes do not make sense and in those situations, the rightmost
clashing code is used and the others are ignored.

Any tokens in the format that have no corresponding argument are simply removed from the result. Any
arguments that are not used in the result are ignored.

Any sequence argument that is not a string will be converted to its pretty format before being used in token
replacement.

If a token is going to be replaced by a zero-length argument, all white space following the token until the next
non-whitespace character is not copied to the result string.

Examples:

format("Cannot open file '[]' - code []", {"/usr/temp/work.dat", 32})
-- "Cannot open file '/usr/temp/work.dat' - code 32"

format("Err-[2], Cannot open file '[1]'", {"/usr/temp/work.dat", 32})
-- "Err-32, Cannot open file '/usr/temp/work.dat'"

format("[4w] [3z:2] [6] [5l] [2z:2], [1:4]", {2009,4,21,"DAY","MONTH","of"})
-- "Day 21 of month 04, 2009"

format("The answer is [:6.2]%", {35.22341})
-- "The answer is 35.22%"

Euphoria v4.0 svn3379

Parameters: 314

format("The answer is [.6]", {1.2345})
-- "The answer is 1.234500"

format("The answer is [,,.2]", {1234.56})
-- "The answer is 1,234.56"

format("The answer is [,..2]", {1234.56})
-- "The answer is 1.234,56"

format("The answer is [,:.2]", {1234.56})
-- "The answer is 1:234.56"

format("[] [?]", {5, {"cats", "cat"}})
-- "5 cats"

format("[] [?]", {1, {"cats", "cat"}})
-- "1 cat"

format("[<:4]", {"abcdef"})
-- "abcd"

format("[>:4]", {"abcdef"})
-- "cdef"

format("[>:8]", {"abcdef"})
-- " abcdef"

format("seq is []", {{1.2, 5, "abcdef", {3}}})
-- `seq is {1.2,5,"abcdef",{3}}`

format("Today is [{day}], the [{date}]", {"date=10/Oct/2012", "day=Wednesday"})
-- "Today is Wednesday, the 10/Oct/2012"

See Also:

sprintf

2.0.0.261 frac

include std/math.e
public function frac(object x)

Return the fractional portion of a number.

Parameters:

value : any Euphoria object.1.

Euphoria v4.0 svn3379

Parameters: 315

Returns:

An object, the shape of which depends on values's. Each item in the returned object will be the same
corresponding items in value except with the integer portion removed.

Comments:

Note that trunc(x) + frac(x) = x

Example 1:

a = frac(9.4)
-- a is 0.4

Example 2:

s = frac({81, -3.5, -9.999, 5.5})
-- s is {0, -0.5, -0.999, 0.5}

See Also:

trunc

2.0.0.262 free

include std/eumem.e
export procedure free(atom mem_p)

Deallocate a block of (pseudo) memory

Parameters:

mem_p : The handle to a previously acquired ram_space location.1.

Comments:

This allows the location to be used by other parts of your application. You should no longer access this
location again because it could be acquired by some other process in your application. This routine should
only be called if you passed 0 as cleanup_p to malloc.

Euphoria v4.0 svn3379

Parameters: 316

Example 1:

my_spot = malloc(1,0)
 ram_space[my_spot] = my_data
 -- . . . do some processing . . .
 free(my_spot)

2.0.0.263 free

include std/machine.e
public procedure free(object addr)

Free up a previously allocated block of memory.

2.0.0.264 free_code

include std/machine.e
public procedure free_code(atom addr, integer size, valid_wordsize wordsize = 1)

Frees up allocated code memory

Parameters:

addr : must be an address returned by allocate_code() or allocate_protect(). Do not pass memory
returned from allocate() here!

1.

size : is the length of the sequence passed to alllocate_code() or the size you specified when
you called allocate_protect().

2.

wordsize: valid_wordsize default = 13.

Comments:

Chances are you will not need to call this function because code allocations are typically public scope
operations that you want to have available until your process exits.

See Also: allocate_code, free

Euphoria v4.0 svn3379

Parameters: 317

2.0.0.265 free_code

include std/memory.e
public procedure free_code(atom addr, integer size, valid_wordsize wordsize = 1)

This is a slower DEBUGGING VERSION of machine.e

How To Use This File:

1. If your program doesn't already include machine.e add: include std/machine.e to your main .ex[w][u] file at
the top.

2. To turn debug version on, issue

with define SAFE

in your main program, before the statement including machine.e.

3. If necessary, call register_block(address, length, memory_protection) to add additional "external" blocks of
memory to the safe_address_list. These are blocks of memory that are safe to use but which you did not
acquire through Euphoria's allocate(), allocate_data(), allocate_code() or memory_protect(). Call
unregister_block(address) when you want to prevent further access to an external block.

4. Run your program. It might be 10x slower than normal but it's worth it to catch a nasty bug.

5. If a bug is caught, you will hear some "beep" sounds. Press Enter to clear the screen and see the error
message. There will be a "divide by zero" traceback in ex.err so you can find the statement that is making the
illegal memory access.

6. To switch between normal and debug versions, simply comment in or out the "with define SAFE" directive.
In means debugging and out means normal. Alternatively, you can use -D SAFE as a switch on the command
line (debug) or not (normal).

7. The older method of switching files and renaming them no longer works. machine.e conditionally includes
safe.e.

This file is equivalent to machine.e, but it overrides the built-in

routines:

poke, peek, poke4, peek4s, peek4u, call, mem_copy, and mem_set

Euphoria v4.0 svn3379

Parameters: 318

and it provides alternate versions of:

allocate, free

Your program will only be allowed to read/write areas of memory that it allocated (and hasn't freed), as well
as areas in low memory that you list below, or add dynamically via register_block().

2.0.0.266 free_code

include std/safe.e
public procedure free_code(atom addr, integer size, valid_wordsize wordsize = 1)

2.0.0.267 free_console

include std/console.e
public procedure free_console()

Free (delete) any console window associated with your program.

Comments:

Euphoria will create a console text window for your program the first time that your program prints something
to the screen, reads something from the keyboard, or in some way needs a console. On WIN32 this window
will automatically disappear when your program terminates, but you can call free_console() to make it
disappear sooner. On Linux or FreeBSD, the text mode console is always there, but an xterm window will
disappear after Euphoria issues a "Press Enter" prompt at the end of execution.

On Unix-style systems, free_console() will set the terminal parameters back to normal, undoing the
effect that curses has on the screen.

In an xterm window, a call to free_console(), without any further printing to the screen or reading from
the keyboard, will eliminate the "Press Enter" prompt that Euphoria normally issues at the end of execution.

After freeing the console window, you can create a new console window by printing something to the screen,
or simply calling clear_screen(), position() or any other routine that needs a console.

When you use the trace facility, or when your program has an error, Euphoria will automatically create a
console window to display trace information, error messages etc.

There's a WIN32 API routine, FreeConsole() that does something similar to free_console(). You should use
free_console() instead, because it lets the interpreter know that there is no longer a console to write to or
read from.

Euphoria v4.0 svn3379

Parameters: 319

See Also:

clear_screen

2.0.0.268 free_pointer_array

include std/machine.e
public procedure free_pointer_array(atom pointers_array)

Free a NULL terminated pointers array.

Parameters:

pointers_array : memory address of where the NULL terminated array exists at.1.

Comments:

This is for NULL terminated lists, such as allocated by allocate_pointer_array. Do not call
free_pointer_array() for a pointer that was allocated to be cleaned up automatically. Instead, use
delete.

See Also:

allocate_pointer_array, allocate_string_pointer_array

2.0.0.269 from_date

include std/datetime.e
public function from_date(sequence src)

Convert a sequence formatted according to the built-in date() function to a valid datetime sequence.

Parameters:

src : a sequence which date() might have returned1.

Returns:

A sequence, more precisely a datetime corresponding to the same moment in time.

Euphoria v4.0 svn3379

Parameters: 320

Example 1:

d = from_date(date())
-- d is the current date and time

See Also:

date, from_unix, now, new

2.0.0.270 from_unix

include std/datetime.e
public function from_unix(atom unix)

Create a datetime value from the unix numeric format (seconds since EPOCH)

Parameters:

unix : an atom, counting seconds elapsed since EPOCH.1.

Returns:

A sequence, more precisely a datetime representing the same moment in time.

Example 1:

d = from_unix(0)
-- d is 1970-01-01 00:00:00 (zero seconds since EPOCH)

See Also:

to_unix, from_date, now, new

2.0.0.271 gcd

include std/math.e
public function gcd(atom p, atom q)

Returns the greater common divisor of to atoms

Euphoria v4.0 svn3379

Parameters: 321

Parameters:

p : one of the atoms to consider1.
q : the other atom.2.

Returns:

A positive atom, without a fractional part, evenly dividing both parameters, and is the greatest value with
those properties.

Comments:

Signs are ignored. Atoms are rounded down to integers.

Any zero parameter causes 0 to be returned.

Parameters and return value are atoms so as to take mathematical integers up to power(2,53).

Example 1:

? gcd(76.3, -114) -- prints out gcd(76,114), which is 38

Floating Point

2.0.0.272 geomean

include std/stats.e
public function geomean(object data_set, object subseq_opt = ST_ALLNUM)

Returns the geometric mean of the atoms in a sequence.

Parameters:

data_set : the values to take the geometric mean of.1.
subseq_opt : an object. When this is ST_ALLNUM (the default) it means that data_set is
assumed to contain no sub-sequences otherwise this gives instructions about how to treat
sub-sequences. See comments for details.

2.

Returns:

An atom, the geometric mean of the atoms in data_set. If there is no atom to take the mean of, 1 is
returned.

Euphoria v4.0 svn3379

Parameters: 322

Comments:

The geometric mean of N atoms is the N-th root of their product. Signs are ignored.

This is useful to compute average growth rates.

If the data can contain sub-sequences, such as strings, you need to let the the function know about this
otherwise it assumes every value in data_set is an number. If that is not the case then the function will
crash. So it is important that if it can possibly contain sub-sequences that you tell this function what to do with
them. Your choices are to ignore them or assume they have the value zero. To ignore them, use ST_IGNSTR
as the subseq_opt parameter value otherwise use ST_ZEROSTR. However, if you know that data_set
only contains numbers use the default subseq_opt value, ST_ALLNUM. Note It is faster if the data only
contains numbers.

Example 1:

? geomean({3, "abc", -2, 6}, ST_IGNSTR) -- prints out power(36,1/3) = 3,30192724889462669
? geomean({1,2,3,4,5,6,7,8,9,10}) -- = 4.528728688

See Also:

average

2.0.0.273 get

include std/locale.e
public function get()

Get current locale string

Returns:

A sequence, a locale string.

See Also:

set

2.0.0.274 get

include std/map.e
public function get(map the_map_p, object the_key_p, object default_value_p = 0)

Euphoria v4.0 svn3379

Parameters: 323

Retrieves the value associated to a key in a map.

Parameters:

the_map_p : the map to inspect1.
the_key_p : an object, the the_key_p being looked tp2.
default_value_p : an object, a default value returned if the_key_p not found. The default is
0.

3.

Returns:

An object, the value that corresponds to the_key_p in the_map_p. If the_key_p is not in
the_map_p, default_value_p is returned instead.

Example 1:

map ages
ages = new()
put(ages, "Andy", 12)
put(ages, "Budi", 13)

integer age
age = get(ages, "Budi", -1)
if age = -1 then
 puts(1, "Age unknown")
else
 printf(1, "The age is %d", age)
end if

See Also:

has

2.0.0.275 get

include std/get.e
public function get(integer file, integer offset = 0, integer answer = GET_SHORT_ANSWER)

Input, from an open file, a human-readable string of characters representing a Euphoria object. Convert the
string into the numeric value of that object.

Parameters:

file : an integer, the handle to an open file from which to read1.
offset : an integer, an offset to apply to file position before reading. Defaults to 0.2.

Euphoria v4.0 svn3379

Parameters: 324

answer : an integer, either GET_SHORT_ANSWER (the default) or GET_LONG_ANSWER.3.

Returns:

A sequence, of length 2 (GET_SHORT_ANSWER) or 4 (GET_LONG_ANSWER), made of

an integer, the return status. This is any of:
GET_SUCCESS -- object was read successfully♦
GET_EOF -- end of file before object was read completely♦
GET_FAIL -- object is not syntactically correct♦
GET_NOTHING -- nothing was read, even a partial object string, before end of input♦

•

an object, the value that was read. This is valid only if return status is GET_SUCCESS.•
an integer, the number of characters read. On an error, this is the point at which the error was
detected.

•

an integer, the amount of initial whitespace read before the first active character was found•

Comments:

When answer is not specified, or explicitly GET_SHORT_ANSWER, only the first two elements in the
returned sequence are actually returned.

The GET_NOTHING return status will not be returned if answer is GET_SHORT_ANSWER.

get() can read arbitrarily complicated Euphoria objects. You could have a long sequence of values in braces
and separated by commas and comments, e.g. {23, {49, 57}, 0.5, -1, 99, 'A', "john"}. A
single call to get() will read in this entire sequence and return its value as a result, as well as complementary
information.

If a nonzero offset is supplied, it is interpreted as an offset to the current file position, and the file will be
seek()ed there first.

get() returns a 2 or 4 element sequence, like value() does:

a status code (success/error/end of file/no value at all)•
the value just read (meaningful only when the status code is GET_SUCCESS) (optionally)•
the total number of characters read•
the amount of initial whitespace read.•

Using the default value for answer, or setting it to GET_SHORT_ANSWER, returns 2 elements. Setting it to
GET_LONG_ANSWER causes 4 elements to be returned.

Each call to get() picks up where the previous call left off. For instance, a series of 5 calls to get() would
be needed to read in

"99 5.2 {1, 2, 3} "Hello" -1"

On the sixth and any subsequent call to get() you would see a GET_EOF status. If you had something like

Euphoria v4.0 svn3379

Parameters: 325

{1, 2, xxx}

in the input stream you would see a GET_FAIL error status because xxx is not a Euphoria object. And seeing

-- something\nBut no value

and the input stream stops right there, you'll receive a status code of GET_NOTHING, because nothing but
whitespace or comments was read. If you had opted for a short answer, you'd get GET_EOF instead.

Multiple "top-level" objects in the input stream must be separated from each other with one or more
"whitespace" characters (blank, tab, \r or \n). At the very least, a top level number must be followed by a
white space from the following object. Whitespace is not necessary within a top-level object. Comments,
terminated by either '\n' or '\r', are allowed anywhere inside sequences, and ignored if at the top level. A call to
get() will read one entire top-level object, plus possibly one additional (whitespace) character, after a top
level number, even though the next object may have an identifiable starting point.

The combination of print() and get() can be used to save a Euphoria object to disk and later read it
back. This technique could be used to implement a database as one or more large Euphoria sequences stored
in disk files. The sequences could be read into memory, updated and then written back to disk after each series
of transactions is complete. Remember to write out a whitespace character (using puts()) after each call to
print(), at least when a top level number was just printed.

The value returned is not meaningful unless you have a GET_SUCCESS status.

Example 1:

-- If he types 77.5, get(0) would return:
{GET_SUCCESS, 77.5}

-- whereas gets(0) would return:
"77.5\n"

Example 2:

See bin\mydata.ex

See Also:

value

2.0.0.276 get_active_id

include std/win32/msgbox.e
public constant get_active_id

Euphoria v4.0 svn3379

Parameters: 326

2.0.0.277 get_bytes

include std/io.e
public function get_bytes(integer fn, integer n)

Read the next bytes from a file.

Parameters:

fn : an integer, the handle to an open file to read from.1.
n : a positive integer, the number of bytes to read.2.

Returns:

A sequence, of length at most n, made of the bytes that could be read from the file.

Comments:

When n > 0 and the function returns a sequence of length less than n you know you've reached the end of file.
Eventually, an empty sequence will be returned.

This function is normally used with files opened in binary mode, "rb". This avoids the confusing situation in
text mode where Windows will convert CR LF pairs to LF.

Example 1:

integer fn
fn = open("temp", "rb") -- an existing file

sequence whole_file
whole_file = {}

sequence chunk

while 1 do
 chunk = get_bytes(fn, 100) -- read 100 bytes at a time
 whole_file &= chunk -- chunk might be empty, that's ok
 if length(chunk) < 100 then
 exit
 end if
end while

close(fn)
? length(whole_file) -- should match DIR size of "temp"

Euphoria v4.0 svn3379

Parameters: 327

See Also:

getc, gets, get_integer32, get_dstring

2.0.0.278 get_charsets

include std/types.e
public function get_charsets()

Gets the definition for each of the defined character sets.

Returns:

A sequence, of pairs. The first element of each pair is the character set id , eg. CS_Whitespace, and the
second is the definition of that character set.

Comments:

This is the same format required for the set_charsets() routine.

Example 1:

sequence sets
sets = get_charsets()

See Also:

set_charsets, set_default_charsets

2.0.0.279 get_def_lang

include std/locale.e
public function get_def_lang()

Gets the default language (translation) map

Parameters:

none.

Euphoria v4.0 svn3379

Parameters: 328

Returns:

An object, a language map, or zero if there is no default language map yet.

Example:

object langmap = get_def_lang()

2.0.0.280 get_dstring

include std/io.e
public function get_dstring(integer fh, integer delim = 0)

Read a delimited byte string from an opened file .

Parameters:

fh : an integer, the handle to an open file to read from.1.
delim : an integer, the delimiter that marks the end of a byte string. If omitted, a zero is assumed.2.

Returns:

An sequence, made of the bytes that could be read from the file.

Comments:

If the end-of-file is found before the delimiter, the delimiter is appended to the returned string.•

Example 1:

integer fn
fn = open("temp", "rb") -- an existing file

sequence text
text = get_dstring(fn) -- Get a zero-delimited string
text = get_dstring(fn, '$') -- Get a '$'-delimited string

See Also:

getc, gets, get_bytes, get_integer32

Euphoria v4.0 svn3379

Parameters: 329

2.0.0.281 get_encoding_properties

include std/text.e
public function get_encoding_properties()

Gets the table of lowercase and uppercase characters that is used by lower and upper

Parameters:

none

Returns:

A sequence, containing three items.
{Encoding_Name, LowerCase_Set, UpperCase_Set}

Example 1:

encode_sets = get_encoding_properties()

See Also:

lower, upper, set_encoding_properties

2.0.0.282 get_http

include std/net/http.e
public function get_http(sequence inet_addr, sequence hostname, sequence file, integer timeout = 300, integer port = 80)

Returns data from an http internet site.

Parameters:

inet_addr : a sequence holding an address1.
hostname : a string, the name for the host2.
file : a file name to transmit3.

Returns:

A sequence, empty sequence on error, of length 2 on success, like {sequence header, sequence
data}.

Euphoria v4.0 svn3379

Parameters: 330

2.0.0.283 get_http_use_cookie

include std/net/http.e
public function get_http_use_cookie(sequence inet_addr, sequence hostname, sequence file)

Works the same as get_url(), but maintains an internal state register based on cookies received.

Warning:

This function is not yet implemented.

Parameters:

inet_addr : a sequence holding an address1.
hostname : a string, the name for the host2.
file : a file name to transmit3.

Returns:

A sequence, {header, body} on success, or an empty sequence on error.

Example 1:

addrinfo = getaddrinfo("www.yahoo.com","http",0)
if atom(addrinfo) or length(addrinfo) < 1 or
 length(addrinfo[1]) < 5 then
 puts(1,"Uh, oh")
 return {}
else
 inet_addr = addrinfo[1][5]
end if
data = get_http_use_cookie(inet_addr,"www.yahoo.com","")

See also:

get_url

2.0.0.284 get_integer16

include std/io.e
public function get_integer16(integer fh)

Read the next two bytes from a file and returns them as a single integer.

Euphoria v4.0 svn3379

Parameters: 331

Parameters:

fh : an integer, the handle to an open file to read from.1.

Returns:

An atom, made of the bytes that could be read from the file.

Comments:

This function is normally used with files opened in binary mode, "rb".•
Assumes that there at least two bytes available to be read.•

Example 1:

integer fn
fn = open("temp", "rb") -- an existing file

atom file_type_code
file_type_code = get_integer16(fn)

See Also:

getc, gets, get_bytes, get_dstring

2.0.0.285 get_integer32

include std/io.e
public function get_integer32(integer fh)

Read the next four bytes from a file and returns them as a single integer.

Parameters:

fh : an integer, the handle to an open file to read from.1.

Returns:

An atom, made of the bytes that could be read from the file.

Euphoria v4.0 svn3379

Parameters: 332

Comments:

This function is normally used with files opened in binary mode, "rb".•
Assumes that there at least four bytes available to be read.•

Example 1:

integer fn
fn = open("temp", "rb") -- an existing file

atom file_type_code
file_type_code = get_integer32(fn)

See Also:

getc, gets, get_bytes, get_dstring

2.0.0.286 get_key

<built-in> function get_key()

Get the next keystroke without waiting for it or echoing it on the console.

Parameters:

None.1.

Returns:

An integer, the code number for the key pressed. If there is no key press waiting, then this returns -1.

See Also:

gets, getc

2.0.0.287 get_key

<built-in> function get_key()

Return the key that was pressed by the user, without waiting. Special codes are returned for the function keys,
arrow keys etc.

Euphoria v4.0 svn3379

Parameters: 333

Returns:

An integer, either -1 if no key waiting, or the code of the next key waiting in keyboard buffer.

Comments:

The operating system can hold a small number of key-hits in its keyboard buffer. get_key() will return the
next one from the buffer, or -1 if the buffer is empty.

Run the key.bat program to see what key code is generated for each key on your keyboard.

Example 1:

integer n = get_key()
if n=-1 then
 puts(1, "No key waiting.\n")
end if

See Also:

wait_key

2.0.0.288 get_lang_path

include std/locale.e
public function get_lang_path()

Get the language path.

Returns:

An object, the current language path.

See Also:

get_lang_path

2.0.0.289 get_mouse

include std/mouse.e
public function get_mouse()

Euphoria v4.0 svn3379

Parameters: 334

Queries the last mouse event.

Returns:

An object, either -1 if there has not been a mouse event since the last time get_mouse() was called.
Otherwise, returns a triple {event, x, y}.

Constants have been defined in mouse.e for the possible mouse events (the values for event):

public constant
 MOVE = 1,
 LEFT_DOWN = 2,
 LEFT_UP = 4,
 RIGHT_DOWN = 8,
 RIGHT_UP = 16,
 MIDDLE_DOWN = 32,
 MIDDLE_UP = 64

x and y are the coordinates of the mouse pointer at the time that the event occurred.

Comments:

get_mouse() returns immediately with either a -1 or a mouse event, without waiting for an event to occur.
So, you must check it frequently enough to avoid missing an event: when the next event occurs, the current
event will be lost, if you haven't read it. In practice it is not hard to catch almost all events. Losing a MOVE
event is generally not too serious, as the next MOVE will tell you where the mouse pointer is.

Sometimes multiple events will be reported. For example, if the mouse is moving when the left button is
clicked, get_mouse() will report an event value of LEFT_DOWN+MOVE, i.e. 2+1 or 3. For this reason
you should test for a particular event using and_bits(). See examples below. Further, you can determine which
events will be reported using mouse_events.

In Linux, no scaling is required - x and y correspond to the line and column on the screen, with (1,1) at the top
left.

In Linux, mouse movement events are not reported in an xterm window, only in the text console.

In Linux, LEFT_UP, RIGHT_UP and MIDDLE_UP are not distinguishable from one another.

The first call that you make to get_mouse() will turn on a mouse pointer, or a highlighted character.

The x,y coordinate returned could be that of the very tip of the mouse pointer or might refer to the pixel
pointed-to by the mouse pointer.

Euphoria v4.0 svn3379

Parameters: 335

Example 1:

a return value of:

{2, 100, 50} would indicate that the left button was pressed down when the mouse pointer was at
location x=100, y=50 on the screen.

Example 2:

To test for LEFT_DOWN, write something like the following:

while 1 do
 object event = get_mouse()
 if sequence(event) then
 if and_bits(event[1], LEFT_DOWN) then
 -- left button was pressed
 exit
 end if
 end if
end while

See Also:

mouse_events, mouse_pointer

2.0.0.290 get_option

include std/socket.e
public function get_option(socket sock, integer level, integer optname)

Get options for a socket.

Parameters:

sock : the socket1.
level : an integer, the option level2.
optname : requested option (See Socket Options)3.

Returns:

An object, either:

On error, {"ERROR",error_code}.•
On success, either an atom or a sequence containing the option value, depending on the option.•

Euphoria v4.0 svn3379

Parameters: 336

Comments:

Primarily for use in multicast or more advanced socket applications. Level is the option level, and
option_name is the option for which values are being sought. Level is usually SOL_SOCKET.

Returns:

An atom, On error, an atom indicating the error code.
A sequence or atom, On success, either an atom or a sequence containing the option value.

See also:

get_option

2.0.0.291 get_ovector_size

include std/regex.e
public function get_ovector_size(regex ex, integer maxsize = 0)

Returns the number of capturing subpatterns (the ovector size) for a regex

Parameters:

ex : a regex1.
maxsize : optional maximum number of named groups to get data from2.

Returns:

An integer

2.0.0.292 get_page_size

include std/unix/mmap.e
public function get_page_size()

2.0.0.293 get_pid

include std/os.e
public function get_pid()

Euphoria v4.0 svn3379

Parameters: 337

Return the ID of the current Process (pid)

Returns:

An atom: The current process' id.

Example:

mypid = get_pid()

2.0.0.294 get_position

include std/graphics.e
public function get_position()

Return the current line and column position of the cursor

Returns:

A sequence, {line, column}, the current position of the text mode cursor.

Comments:

The coordinate system for displaying text is different from the one for displaying pixels. Pixels are displayed
such that the top-left is (x=0,y=0) and the first coordinate controls the horizontal, left-right location. In
pixel-graphics modes you can display both text and pixels. get_position() returns the current line and
column for the text that you are displaying, not the pixels that you may be plotting. There is no corresponding
routine for getting the current pixel position, because there is not such a thing.

See Also:

position

2.0.0.295 get_recvheader

include std/net/http.e
public function get_recvheader(object field)

Return the value of a named field in the received http header as returned by the most recent call to get_http.

Euphoria v4.0 svn3379

Parameters: 338

Parameters:

field : an object, either a string holding a field name (case insensitive), 0 to return the whole
header, or a numerical index.

1.

Returns:

An object,

-1 on error•
a sequence in the form, {field name, field value} on success.•

2.0.0.296 get_screen_char

include std/console.e
public function get_screen_char(positive_atom line, positive_atom column, integer fgbg = 0)

Get the value and attribute of the character at a given screen location.

Parameters:

line : the 1-base line number of the location1.
column : the 1-base column number of the location2.
fgbg : an integer, if 0 (the default) you get an attribute_code returned otherwise you get a foreground
and background color number returned.

3.

Returns:

If fgbg is zero then a sequence of two elements, {character, attribute_code} for the
specified location.

•

If fgbg is not zero then a sequence of three elements, {characterfg_color, bg_color}•

Comments:

This function inspects a single character on the active page.•
The attribute_code is an atom that contains the foreground and background color of the character, and
possibly other operating-system dependant information describing the appearance of the character on
the screen.

•

The fg_color and bg_color are integers in the range 0 to 15, which correspond to...•

color number name
0 black

Euphoria v4.0 svn3379

Parameters: 339

1 dark blue
2 green
3 cyan
4 crimson
5 purple
6 brown
7 light gray
8 dark gray
9 blue
10 bright green
11 light blue
12 red
13 magenta
14 yellow
15 white

With get_screen_char() and put_screen_char() you can save and restore a character on the screen
along with its attribute_code.

•

Example 1:

-- read character and attributes at top left corner
s = get_screen_char(1,1)
-- s could be {'A', 92}
-- store character and attributes at line 25, column 10
put_screen_char(25, 10, s)

Example 2:

-- read character and colors at line 25, column 10.
s = get_screen_char(25,10, 1)
-- s could be {'A', 12, 5}

See Also:

put_screen_char, save_text_image

2.0.0.297 get_sendheader

include std/net/http.e
public function get_sendheader(object field)

Retrieve either the whole sendheader sequence, or just a single field.

Euphoria v4.0 svn3379

Parameters: 340

Parameters:

field : an object indicating which part is being requested, see Comments section.1.

Returns:

An object, either:

-1 if the field cannot be found,•
{{"label","delimiter","value"},...} for the whole sendheader sequence•
a three-element sequence in the form {"label","delimiter","value"} when only a single
field is selected.

•

Comments:

field can be either an HTTP_HEADER_xxx access constant, the number 0 to retrieve the whole sendheader
sequence, or a string matching one of the header field labels. The string is not case sensitive.

2.0.0.298 get_text

include std/text.e
public function get_text(integer MsgNum, sequence LocalQuals = {}, sequence DBBase = "teksto")

Get the text associated with the message number in the requested locale.

Parameters:

MsgNum : An integer. The message number whose text you are trying to get.1.
LocalQuals : A sequence. Zero or more locale codes. Default is {}.2.
DBBase: A sequence. The base name for the database files containing the locale text strings. The
default is "teksto".

3.

Returns:

A string sequence, the text associated with the message number and locale.
An integer, if not associated text can be found.

Comments:

This first scans the database(s) linked to the locale codes supplied.•
The database name for each locale takes the format of "<DBBase>_<Locale>.edb" so if the default
DBBase is used, and the locales supplied are {"enus", "enau"} the databases scanned are
"teksto_enus.edb" and "teksto_enau.edb". The database table name searched is "1" with the key being

•

Euphoria v4.0 svn3379

Parameters: 341

the message number, and the text is the record data.
If the message is not found in these databases (or the databases don't exist) a database called
"<DBBase>.edb" is searched. Again the table name is "1" but it first looks for keys with the format
{<locale>,msgnum} and failing that it looks for keys in the format {"", msgnum}, and if that fails it
looks for a key of just the msgnum.

•

2.0.0.299 get_url

include std/net/http.e
public function get_url(sequence url, sequence post_data = "")

Returns data from an http internet site.

Parameters:

url: URL to access1.
post_data: Optional post data2.

Returns:

A sequence {header, body} on success, or an empty sequence on error.

Comments:

If post_data is empty, then a normal GET request is done. If post_data is non-empty then get_url
will perform a POST request and supply post_data during the request.

Example 1:

url = "http://banners.wunderground.com/weathersticker/mini" &
 "Weather2_metric_cond/language/www/US/PA/Philadelphia.gif"

temp = get_url(url)
if length(temp)>=2 and length(temp[2])>0 then
 tempfp = open(TEMPDIR&"current_weather.gif","wb")
 puts(tempfp,temp[2])
 close(tempfp)
end if

Euphoria v4.0 svn3379

Parameters: 342

2.0.0.300 getc

<built-in> function getc(integer fn)

Get the next character (byte) from a file or device fn.

Parameters:

fn : an integer, the handle of the file or device to read from.1.

Returns:

An integer, the character read from the file, in the 0..255 range. If no character is left to read, EOF is returned
instead.

Errors:

The target file or device must be open.

Comments:

File input using getc() is buffered, i.e. getc() does not actually go out to the disk for each character.
Instead, a large block of characters will be read in at one time and returned to you one by one from a memory
buffer.

When getc() reads from the keyboard, it will not see any characters until the user presses Enter. Note that
the user can type CTRL+Z, which the operating system treats as "end of file". EOF will be returned.

See Also:

gets, get_key

2.0.0.301 getenv

<built-in> function getenv(sequence var_name)

Return the value of an environment variable.

Euphoria v4.0 svn3379

Parameters: 343

Parameters:

var_name : a string, the name of the variable being queried.1.

Returns:

An object, -1 if the variable does not exist, else a sequence holding its value.

Comments:

Both the argument and the return value, may, or may not be, case sensitive. You might need to test this on
your own system.

Example:

e = getenv("EUDIR")
-- e will be "C:\EUPHORIA" -- or perhaps D:, E: etc.

See Also:

setenv, command_line

2.0.0.302 gets

<built-in> function gets(integer fn)

Get the next sequence (one line, including '\n') of characters from a file or device.

Parameters:

fn : an integer, the handle of the file or device to read from.1.

Returns:

An object, either EOF on end of file, or the next line of text from the file.

Errors:

The file or device must be open.

Euphoria v4.0 svn3379

Parameters: 344

Comments:

The characters will have values from 0 to 255.

If the line had an end of line marker, a ~'\n' terminates the line. The last line of a file needs not have an end of
line marker.

After reading a line of text from the keyboard, you should normally output a \n character, e.g. puts(1, '\n'),
before printing something. Only on the last line of the screen does the operating system automatically scroll
the screen and advance to the next line.

When your program reads from the keyboard, the user can type control-Z, which the operating system treats
as "end of file". EOF will be returned.

Example 1:

sequence buffer
object line
integer fn

-- read a text file into a sequence
fn = open("my_file.txt", "r")
if fn = -1 then
 puts(1, "Couldn't open my_file.txt\n")
 abort(1)
end if

buffer = {}
while 1 do
 line = gets(fn)
 if atom(line) then
 exit -- EOF is returned at end of file
 end if
 buffer = append(buffer, line)
end while

Example 2:

object line

puts(1, "What is your name?\n")
line = gets(0) -- read standard input (keyboard)
line = line[1..$-1] -- get rid of \n character at end
puts(1, '\n') -- necessary
puts(1, line & " is a nice name.\n")

See Also:

getc, read_lines

Euphoria v4.0 svn3379

Parameters: 345

2.0.0.303 graphics_mode

include std/graphics.e
public function graphics_mode(mode m = - 1)

Attempt to set up a new graphics mode.

Parameters:

m : an integer, ignored.1.

Returns:

An integer, always returns zero.

Comments:

This has no effect on Unix platforms.•
On Windows, it causes a console to be shown if one has not already been created.•

See Also:

video_config

2.0.0.304 graphics_point

include std/image.e
public type graphics_point(sequence p)

2.0.0.305 harmean

include std/stats.e
public function harmean(sequence data_set, object subseq_opt = ST_ALLNUM)

Returns the harmonic mean of the atoms in a sequence.

Euphoria v4.0 svn3379

Parameters: 346

Parameters:

data_set : the values to take the harmonic mean of.1.
subseq_opt : an object. When this is ST_ALLNUM (the default) it means that data_set is
assumed to contain no sub-sequences otherwise this gives instructions about how to treat
sub-sequences. See comments for details.

2.

Returns:

An atom, the harmonic mean of the atoms in data_set.

Comments:

The harmonic mean is the inverse of the average of their inverses.

This is useful in engineering to compute equivalent capacities and resistances.

If the data can contain sub-sequences, such as strings, you need to let the the function know about this
otherwise it assumes every value in data_set is an number. If that is not the case then the function will
crash. So it is important that if it can possibly contain sub-sequences that you tell this function what to do with
them. Your choices are to ignore them or assume they have the value zero. To ignore them, use ST_IGNSTR
as the subseq_opt parameter value otherwise use ST_ZEROSTR. However, if you know that data_set
only contains numbers use the default subseq_opt value, ST_ALLNUM. Note It is faster if the data only
contains numbers.

Example 1:

? harmean({3, "abc", -2, 6}, ST_IGNSTR) -- = 0.
? harmean({{2, 3, 4}) -- 3 / (1/2 + 1/3 + 1/4) = 2.769230769

See Also:

average

2.0.0.306 has

include std/map.e
public function has(map the_map_p, object the_key_p)

Check whether map has a given key.

Euphoria v4.0 svn3379

Parameters: 347

Parameters:

the_map_p : the map to inspect1.
the_key_p : an object to be looked up2.

Returns:

An integer, 0 if not present, 1 if present.

Example 1:

map the_map_p
the_map_p = new()
put(the_map_p, "name", "John")
? has(the_map_p, "name") -- 1
? has(the_map_p, "age") -- 0

See Also:

get

2.0.0.307 has_inverse

include std/sets.e
public function has_inverse(integer x, operation f)

Returns the bilateral inverse of an element by a operation if it exists and the operation has a unit.

Parameters:

x : the element to test1.
f : the operation involved.2.

Returns:

If f, has a bilateral unit e and there is a (necessarily unique) y such that f(x,y)=e, y is returned.
Otherwise, 0 is returned..

Example 1:

operation f = {{{1, 2, 3}, {2, 3, 1}, {3, 1, 2}}, {3, 3, 3}}
 ? has_inverse(3, f) -- prints out 2.

Euphoria v4.0 svn3379

Parameters: 348

See Also:

has_unit

2.0.0.308 has_match

include std/regex.e
public function has_match(regex re, string haystack, integer from = 1, option_spec options = DEFAULT)

Determine if re matches any portion of haystack.

Parameters:

re : a regex for a subject to be matched against1.
haystack : a string in which to searched2.
from : an integer setting the starting position to begin searching from. Defaults to 13.
options : defaults to DEFAULT. See Match Time Option Constants. options can be any match
time option or a sequence of valid options or it can be a value that comes from using or_bits on any
two valid option values.

4.

Returns:

An atom, 1 if re matches any portion of haystack or 0 if not.

2.0.0.309 has_unit

include std/sets.e
public function has_unit(operation f, integer flags = SIDE_BOTH)

Returns an unit of a given kind for an operation if there is any, else 0.

Parameters:

f : the operation to test.1.
flags : an integer, which says whether one or two sided units are looked for. Defaults to
SIDE_BOTH.

2.

Returns:

An integer, if f has a unit of the requested type, it is returned. Otherwise, 0 is returned..

Euphoria v4.0 svn3379

Parameters: 349

Comments:

If there is a two sided inverse, it is unique.

Only the two lower bits of flags matter. They must be SIDE_LEFT to check for left units, SIDE_RIGHT
for right units. Otherwise, two sided units are determined.

Example 1:

operation f = {{{1,2,3},{2,3,1},{3,1,2}},{3,3,3}}
 ? has_unit(f) -- prints out 1.

See Also:

all_left_units, all_right_units,is_unit

2.0.0.310 hash

<built-in> function hash(object source, atom algo)

Calculates a hash value from key using the algorithm algo

Parameters:

source : Any Euphoria object1.
algo : A code indicating which algorithm to use.

-5 uses Hsieh. Fastest and good dispersion♦
-4 uses Fletcher. Very fast and good dispersion♦
-3 uses Adler. Very fast and reasonable dispersion, especially for small strings♦
-2 uses MD5 (not implemented yet) Slower but very good dispersion. Suitable for signatures.♦
-1 uses SHA256 (not implemented yet) Slow but excellent dispersion. Suitable for signatures.
More secure than MD5.

♦

0 and above (integers and decimals) and non-integers less than zero use the cyclic variant
(hash = hash * algo + c). This is a fast and good to excellent dispersion depending on the
value of algo. Decimals give better dispersion but are slightly slower.

♦

2.

Returns:

An integer, Except for the MD5 and SHA256 algorithms, this is a 32-bit integer.
A sequence, MD5 returns a 4-element sequence of integers
SHA256 returns a 8-element sequence of integers.

Euphoria v4.0 svn3379

Parameters: 350

Comments:

For algo values from zero to less than 1, that actual value used is (algo + 69096).•

Example 1:

x = hash("The quick brown fox jumps over the lazy dog", 0)
-- x is 242399616
x = hash("The quick brown fox jumps over the lazy dog", 99.94)
-- x is 723158
x = hash("The quick brown fox jumps over the lazy dog", -99.94)
-- x is 4175585990
x = hash("The quick brown fox jumps over the lazy dog", -4)
-- x is 467406810

2.0.0.311 head

<built-in> function head(sequence source, atom size=1)

Return the first size item(s) of a sequence.

Parameters:

source : the sequence from which elements will be returned1.
size : an integer; how many elements, at most, will be returned. Defaults to 1.2.

Returns:

A sequence, source if its length is not greater than size, or the size first elements of source otherwise.

Example 1:

s2 = head("John Doe", 4)
-- s2 is John

Example 2:

s2 = head("John Doe", 50)
-- s2 is John Doe

Euphoria v4.0 svn3379

Parameters: 351

Example 3:

s2 = head({1, 5.4, "John", 30}, 3)
-- s2 is {1, 5.4, "John"}

See Also:

tail, mid, slice

2.0.0.312 hex_text

include std/convert.e
public function hex_text(sequence text)

Convert a text representation of a hexadecimal number to an atom

Parameters:

text : the text to convert.1.

Returns:

An atom, the numeric equivalent to text

Comments:

The text can optionally begin with '#' which is ignored.•
The text can have any number of underscores, all of which are ignored.•
The text can have one leading '-', indicating a negative number.•
The text can have any number of underscores, all of which are ignored.•
Any other characters in the text stops the parsing and returns the value thus far.•

Example 1:

atom h = hex_text("-#3_4FA.00E_1BD")
 -- h is now -13562.003444492816925
 atom h = hex_text("DEADBEEF")
 -- h is now 3735928559

See Also:

value

Euphoria v4.0 svn3379

Parameters: 352

2.0.0.313 host_by_addr

include std/net/dns.e
public function host_by_addr(sequence address)

Get the host information by address.

Parameters:

address : host address1.

Returns:

A sequence, containing

{
 official name,
 { alias1, alias2, ... },
 { ip1, ip2, ... },
 address_type
}

Example 1:

object data = host_by_addr("74.125.93.147")
-- data = {
-- "www.l.google.com",
-- {
-- "www.google.com"
-- },
-- {
-- "74.125.93.104",
-- "74.125.93.147",
-- ...
-- },
-- 2
-- }

Euphoria v4.0 svn3379

Parameters: 353

2.0.0.314 host_by_name

include std/net/dns.e
public function host_by_name(sequence name)

Get the host information by name.

Parameters:

name : host name1.

Returns:

A sequence, containing

{
 official name,
 { alias1, alias2, ... },
 { ip1, ip2, ... },
 address_type
}

Example 1:

object data = host_by_name("www.google.com")
-- data = {
-- "www.l.google.com",
-- {
-- "www.google.com"
-- },
-- {
-- "74.125.93.104",
-- "74.125.93.147",
-- ...
-- },
-- 2
-- }

2.0.0.315 iff

include std/utils.e
public function iff(atom test, object ifTrue, object ifFalse)

Used to embed an 'if' test inside an expression.

Euphoria v4.0 svn3379

Parameters: 354

Parameters:

test : an atom, the result of a boolean expression1.
ifTrue : an object, returned if test is non-zero2.
ifFalse : an object, returned if test is zero3.

Returns:

An object. Either ifTrue or ifFalse is returned depending on the value of test.

Example 1:

msg = sprintf("%s: %s", {
iff(ErrType = 'E', "Fatal error", "Warning"),
 errortext })

2.0.0.316 image

include std/sets.e
public function image(map f, object x, set input, set output)

If an object is in some input set, returns how it is mapped to a set.

Parameters:

f : the map to apply1.
x : the object to apply f to2.
input : the source set3.
output : the target set.4.

Returns:

An object, f(x) if it can be reckoned.

Errors:

x must belong to input for f(x) to be computed. f must not map to sets larger than output; otherwise, it
cannot be defined from input to output.

Euphoria v4.0 svn3379

Parameters: 355

Example 1:

map f={3,1,2,2,4,3}
set s1,s2
s1={"Albert","Beatrix","Conrad","Doris"} s2={13,17,19}
object x = image(f,"Conrad",s1,s2}
-- x is now 17.

See Also:

direct_map

2.0.0.317 include_paths

<built-in> function include_paths(integer convert)

Returns the list of include paths, in the order in which they are searched

Parameters:

convert : an integer, nonzero to include converted path entries that were not validated yet.1.

Returns:

A sequence, of strings, each holding a fully qualified include path.

Comments:

convert is checked only under Windows. If a path has accented characters in it, then it may or may not be
valid to convert those to the OEM code page. Setting convert to a nonzero value will force conversion for
path entries that have accents and which have not been checked to be valid yet. The extra entries, if any, are
returned at the end of the returned sequence.

The paths are ordered in the order they are searched:

current directory1.
configuration file,2.
command line switches,3.
EUINC4.
a default based on EUDIR.5.

Euphoria v4.0 svn3379

Parameters: 356

Example 1:

sequence s = include_paths(0)
-- s might contain
{
 "/usr/euphoria/tests",
 "/usr/euphoria/include",
 "./include",
 "../include"
}

See Also:

eu.cfg, include, option_switches

2.0.0.318 Notes

Due to a bug, Euphoria does not handle STDERR properly STDERR cannot captured for Euphoria programs
(other programs will work fully) The IO functions currently work with file handles, a future version might
wrap them in streams so that they can be used directly alongside other file/socket/other-streams with a
stream_select() function.

2.0.0.319 info

include std/safe.e
public function info()

2.0.0.320 init_class

include syncolor.e
public procedure init_class()

2.0.0.321 init_curdir

include std/filesys.e
public function init_curdir()

Returns the original current directory

Euphoria v4.0 svn3379

Parameters: 357

Parameters:

None.1.

Returns:

A sequence, the current directory at the time the program started running.

Comment:

You would use this if the program might change the current directory during its processing and you wanted to
return to the original directory.

Note:

This always ensures that the returned value has a trailing SLASH character.

Example 1:

res = init_curdir() -- Find the original current directory.

2.0.0.322 insert

<built-in> function insert(sequence target, object what, integer index)

Insert an object into a sequence as a new element at a given location.

Parameters:

target : the sequence to insert into1.
what : the object to insert2.
index : an integer, the position in target where what should appear3.

Returns:

A sequence, which is target with one more element at index, which is what.

Comments:

target can be a sequence of any shape, and what any kind of object.

Euphoria v4.0 svn3379

Parameters: 358

The length of the returned sequence is always length(target) + 1.

insert()ing a sequence into a string returns a sequence which is no longer a string.

Example 1:

s = insert("John Doe", " Middle", 5)
-- s is {'J','o','h','n'," Middle ",'D','o','e'}

Example 2:

s = insert({10,30,40}, 20, 2)
-- s is {10,20,30,40}

See Also:

remove, splice, append, prepend

2.0.0.323 insertion_sort

include std/sort.e
public function insertion_sort(sequence s, object e = "", integer compfunc = - 1, object userdata = "")

Sort a sequence, and optionally another object together.

Parameters:

s : a sequence, holding data to be sorted.1.
e : an object. If this is an atom, it is sorted in with s. If this is a non-empty sequence then s and e are
both sorted independantly using this insertion_sort function and then the results are merged
and returned.

2.

compfunc : an integer, either -1 or the routine id of a user-defined comparision function.3.

Returns:

A sequence, consisting of s and e sorted together.

Comments:

This routine is usually a lot faster than the standard sort when s and e are (mostly) sorted before
calling the function. For example, you can use this routine to quickly add to a sorted list.

•

The input sequences do not have to be the same size.•

Euphoria v4.0 svn3379

Parameters: 359

The user-defined comparision function must accept two objects and return an integer. It returns -1 if
the first object must appear before the second one, and 1 if the first object must after before the
second one, and 0 if the order doesn't matter.

•

Example 1:

sequence X = {}
while true do
 newdata = get_data()
 if compare(-1, newdata) then
 exit
 end if
 X = insertion_sort(X, newdata)
 process(new_data)
end while

See Also:

compare, sort, merge

2.0.0.324 instance

include std/os.e
public function instance()

Return hInstance on Windows and Process ID (pid) on Unix.

Comments:

On Windows the hInstance can be passed around to various Windows routines.

2.0.0.325 int_to_bits

include std/convert.e
public function int_to_bits(atom x, integer nbits = 32)

Extracts the lower bits from an integer.

Euphoria v4.0 svn3379

Parameters: 360

Parameters:

x : the atom to convert1.
nbits : the number of bits requested. The default is 32.2.

Returns:

A sequence, of length nbits, made of 1's and 0's.

Comments:

x should have no fractional part. If it does, then the first "bit" will be an atom between 0 and 2.

The bits are returned lowest first.

For negative numbers the two's complement bit pattern is returned.

You can use subscripting, slicing, and/or/xor/not of entire sequences etc. to manipulate sequences of bits.
Shifting of bits and rotating of bits are easy to perform.

Example 1:

s = int_to_bits(177, 8)
-- s is {1,0,0,0,1,1,0,1} -- "reverse" order

See Also:

bits_to_int, int_to_bytes, Relational operators, operations on sequences

2.0.0.326 int_to_bytes

include std/convert.e
public function int_to_bytes(atom x)

Converts an atom that represents an integer to a sequence of 4 bytes.

Parameters:

x : an atom, the value to convert.1.

Euphoria v4.0 svn3379

Parameters: 361

Returns:

A sequence, of 4 bytes, lowest significant byte first.

Comments:

If the atom does not fit into a 32-bit integer, things may still work right:

If there is a fractional part, the first element in the returned value will carry it. If you poke the
sequence to RAM, that fraction will be discarded anyway.

•

If x is simply too big, the first three bytes will still be correct, and the 4th element will be
floor(x/power(2,24)). If this is not a byte sized integer, some truncation may occur, but
usually no error.

•

The integer can be negative. Negative byte-values will be returned, but after poking them into memory you
will have the correct (two's complement) representation for the 386+.

Example 1:

s = int_to_bytes(999)
-- s is {231, 3, 0, 0}

Example 2:

s = int_to_bytes(-999)
-- s is {-231, -4, -1, -1}

See Also:

bytes_to_int, int_to_bits, atom_to_float64, poke4

2.0.0.327 intdiv

include std/math.e
public function intdiv(object a, object b)

Return an integral division of two objects.

Parameters:

divided : any Euphoria object.1.
divisor : any Euphoria object.2.

Euphoria v4.0 svn3379

Parameters: 362

Returns:

An object, which will be a sequence if either dividend or divisor is a sequence.

Comments:

This calculates how many non-empty sets when dividend is divided by divisor.•
The result's sign is the same as the dividend's sign.•

Example 1:

object Tokens = 101
object MaxPerEnvelope = 5
integer Envelopes = intdiv(Tokens, MaxPerEnvelope) --> 21

2.0.0.328 integer

<built-in> function integer(object x)

Tests the supplied argument x to see if it is an integer or not.

Returns:

An integer.
1 if x is an integer.♦
0 if x is not an integer.♦

1.

Example 1:

? integer(1) --> 1
? integer(1.1) --> 0
? integer("1") --> 0

See Also:

sequence(), object(), atom()

2.0.0.329 integer_array

include std/types.e
public type integer_array(object x)

Euphoria v4.0 svn3379

Parameters: 363

Returns:

TRUE if argument is a sequence that only contains zero or more integers.

Example 1:

integer_array(-1) -- FALSE (not a sequence)
integer_array("abc") -- TRUE (all single characters)
integer_array({1, 2, "abc"}) -- FALSE (contains a sequence)
integer_array({1, 2, 9.7}) -- FALSE (contains a non-integer)
integer_array({1, 2, 'a'}) -- TRUE
integer_array({}) -- TRUE

2.0.0.330 intersection

include std/sets.e
public function intersection(set S1, set S2)

Returns the set of elements belonging to both s1 and s2.

Parameters:

S1 : One of the sets to intersect1.
S2 : the other set.2.

Returns:

A set, made of all elements belonging to both S1 and S2.

Example 1:

set s0,s1,s2
s1={1,3,5,7} s2={-1,2,3,7,11}
s0=intersection(s1,s2) -- s0 is now {3,7}.

See Also:

is_subset, subsets, belongs_to

Euphoria v4.0 svn3379

Parameters: 364

2.0.0.331 is_DEP_supported

include std/machine.e
public function is_DEP_supported()

2.0.0.332 is_associative

include std/sets.e
public function is_associative(operation f)

Determine whether the identity f(f(x,y),z)=f(x,f(y,z)) always makes sense and holds.

Parameters:

f : the operation to test.1.

Returns:

An integer, 1 if f is an internal operation on a set and is associative, else 0.

Comments:

Being associative is equivalent to not depending on parentheses for defining iterated execution.

Example 1:

operation f = {{{1, 2, 3}, {2, 3, 1}, {3, 1, 2}}, {3, 3, 3}}
-- f is the addition modulo 3 from {0, 1, 2} x {0, 1, 2} to {0, 1, 2}.
? is_symmetric(f) -- prints out 1.

See Also:

operation, has_unit

2.0.0.333 is_bijective

include std/sets.e
public function is_bijective(map f)

Determine whether a map is one-to-one.

Euphoria v4.0 svn3379

Parameters: 365

Parameters:

f : the map to test.1.

Returns:

An integer, 1 if f is one-to-one, else 0.

Example 1:

map f = {2,3,1,1,2,5,3}
 ? is_surjective(f) -- prints out 0

See Also:

is_surjective, is_bijective, direct_map, has_inverse

2.0.0.334 is_empty

include std/stack.e
public function is_empty(stack sk)

Determine whether a stack is empty.

Parameters:

sk : the stack being queried.1.

Returns:

An integer, 1 if the stack is empty, else 0.

See Also:

size

Euphoria v4.0 svn3379

Parameters: 366

2.0.0.335 is_even

include std/math.e
public function is_even(integer test_integer)

Test if the supplied integer is a even or odd number.

Parameters:

test_integer : an integer. The item to test.1.

Returns:

An integer,

1 if its even.•
0 if its odd.•

Example 1:

for i = 1 to 10 do
 ? {i, is_even(i)}
end for
-- output ...
-- {1,0}
-- {2,1}
-- {3,0}
-- {4,1}
-- {5,0}
-- {6,1}
-- {7,0}
-- {8,1}
-- {9,0}
-- {10,1}

2.0.0.336 is_even_obj

include std/math.e
public function is_even_obj(object test_object)

Test if the supplied Euphoria object is even or odd.

Parameters:

test_object : any Euphoria object. The item to test.1.

Euphoria v4.0 svn3379

Parameters: 367

Returns:

An object,

If test_object is an integer...
1 if its even.♦
0 if its odd.♦

•

Otherwise if test_object is an atom this always returns 0•
otherwise if test_object is an sequence it tests each element recursively, returning a sequence of
the same structure containing ones and zeros for each element. A 1 means that the element at this
position was even otherwise it was odd.

•

Example 1:

for i = 1 to 5 do
 ? {i, is_even_obj(i)}
end for
-- output ...
-- {1,0}
-- {2,1}
-- {3,0}
-- {4,1}
-- {5,0}

Example 2:

? is_even_obj(3.4) --> 0

Example 3:

? is_even_obj({{1,2,3}, {{4,5},6,{7,8}},9}) --> {{0,1,0},{{1,0},1,{0,1}},0}

2.0.0.337 is_in_list

include std/search.e
public function is_in_list(object item, sequence list)

Tests to see if the item is in a list of values supplied by list

Euphoria v4.0 svn3379

Parameters: 368

Parameters:

item : The object to test for.1.
list : A sequence of elements that item could be a member of.2.

Returns:

An integer, 0 if item is not in the list, otherwise it returns 1.

Example 1:

if is_in_list(user_data, {100, 45, 2, 75, 121}) then
 procA(user_data)
end if

2.0.0.338 is_in_range

include std/search.e
public function is_in_range(object item, sequence range_limits, sequence boundries = "[]")

Tests to see if the item is in a range of values supplied by range_limits

Parameters:

item : The object to test for.1.
range_limits : A sequence of two or more elements. The first is assumed to be the smallest value
and the last is assumed to be the highest value.

2.

boundries: a sequence. This determines if the range limits are inclusive or not. Must be one of "[]"
(the default), "[)", "(]", or "()".

3.

Returns:

An integer, 0 if item is not in the range_limits otherwise it returns 1.

Comments:

In boundries#, square brackets mean inclusive and round brackets mean exclusive. Thus "[]"
includes both limits in the range, while "()" excludes both limits. And, "[)" includes the lower limit
and excludes the upper limits while "(]" does the reverse.

•

Euphoria v4.0 svn3379

Parameters: 369

Example 1:

if is_in_range(2, {2, 75}) then
 procA(user_data) -- Gets run (both limits included)
end if
if is_in_range(2, {2, 75}, "(]") then
 procA(user_data) -- Does not get run
end if

2.0.0.339 is_inetaddr

include std/net/common.e
public function is_inetaddr(sequence address)

Checks if x is an IP address in the form (#.#.#.#[:#])

Parameters:

address : the address to check1.

Returns:

An integer, 1 if x is an inetaddr, 0 if it is not

Comments:

Some ip validation algorithms do not allow 0.0.0.0. We do here because many times you will want to bind to
0.0.0.0. However, you cannot connect to 0.0.0.0 of course.

With sockets, normally binding to 0.0.0.0 means bind to all interfaces that the computer has.

2.0.0.340 is_injective

include std/sets.e
public function is_injective(map f)

Determines whether there is a point in an output set hit twice or more by a map.

Parameters:

f : the map being queried.1.

Euphoria v4.0 svn3379

Parameters: 370

Returns:

An integer, 0 if f ever maps two points to the same element, else 1.

Example 1:

map f = {2,3,1,1,2,5,3}
 ?is_injective(f) -- prints out 0

See Also:

is_surjective, is_bijective, reverse_map, fiber_over

2.0.0.341 is_leap_year

include std/datetime.e
public function is_leap_year(datetime dt)

Determine if dt falls within leap year.

Parameters:

dt : a datetime to be queried.1.

Returns:

An integer, of 1 if leap year, otherwise 0.

Example 1:

d = new(2008, 1, 1, 0, 0, 0)
? is_leap_year(d) -- prints 1
d = new(2005, 1, 1, 0, 0, 0)
? is_leap_year(d) -- prints 0

See Also:

days_in_month

Euphoria v4.0 svn3379

Parameters: 371

2.0.0.342 is_match

include std/regex.e
public function is_match(regex re, string haystack, integer from = 1, option_spec options = DEFAULT)

Determine if the entire haystack matches re.

Parameters:

re : a regex for a subject to be matched against1.
haystack : a string in which to searched2.
from : an integer setting the starting position to begin searching from. Defaults to 13.
options : defaults to DEFAULT. See Match Time Option Constants. options can be any match
time option or a sequence of valid options or it can be a value that comes from using or_bits on any
two valid option values.

4.

Returns:

An atom, 1 if re matches the entire haystack or 0 if not.

2.0.0.343 is_match

include std/wildcard.e
public function is_match(sequence pattern, sequence string)

Determine whether a string matches a pattern. The pattern may contain * and ? wildcards.

Parameters:

pattern : a string, the pattern to match1.
string : the string to be matched against2.

Returns:

An integer, TRUE if string matches pattern, else FALSE.

Comments:

Character comparisons are case sensitive. If you want case insensitive comparisons, pass both pattern and
string through upper(), or both through lower(), before calling is_match().

If you want to detect a pattern anywhere within a string, add * to each end of the pattern:

Euphoria v4.0 svn3379

Parameters: 372

i = is_match('*' & pattern & '*', string)

There is currently no way to treat * or ? literally in a pattern.

Example 1:

i = is_match("A?B*", "AQBXXYY")
-- i is 1 (TRUE)

Example 2:

i = is_match("*xyz*", "AAAbbbxyz")
-- i is 1 (TRUE)

Example 3:

i = is_match("A*B*C", "a111b222c")
-- i is 0 (FALSE) because upper/lower case doesn't match

Example 4:

bin/search.ex

See Also:

wildcard_file, upper, lower, Regular Expressions

2.0.0.344 is_page_aligned_address

include std/unix/mmap.e
public function is_page_aligned_address(atom a)

2.0.0.345 is_subset

include std/sets.e
public function is_subset(set small, set large)

Checks whether a set is a subset of another.

Euphoria v4.0 svn3379

Parameters: 373

Parameters:

small : the set to test1.
large : the supposedly larger set.2.

Returns:

An integer, 1 if small is a subset of large, else 0.

Example 1:

set s0 = {1,3,5,7}
 ? is_subset({3,5},s0) -- prints out 1

See Also:

subsets, belongs_to, difference, embedding, embed_union

2.0.0.346 is_surjective

include std/sets.e
public function is_surjective(map f)

Determine whether all points in the output set are hit by a map.

Parameters:

f : the map to test.1.

Returns:

An integer, 0 if f ever misses some point in the target set, else 1.

Example 1:

map f = {2,3,1,1,2,5,3}
 ?is_surjective(f) -- prints out 1

See Also:

is_surjective, is_bijective, direct_map, section

Euphoria v4.0 svn3379

Parameters: 374

2.0.0.347 is_symmetric

include std/sets.e
public function is_symmetric(operation f)

Determine whether f(x,y) always equals f(y,x).

Parameters:

f : the operation to test.1.

Returns:

An integer, 1 if exchanging operands makes sense and has no effect, else 0.

Example 1:

operation f = {{{1,2,3},{2,3,4},{3,4,5}},{3,3,5}}
-- f is the addition from {0,1,2}x{0,1,2} to {0,1,2,3,4}.
? is_symmetric(f) -- prints out 1.

See Also:

operation, has_unit

2.0.0.348 is_unit

include std/sets.e
public function is_unit(integer x, operation f)

Determines if an element is a (one sided) unit for an operation.

Parameters:

x : an integer, the element to test1.
f : the operation involved2.

Returns:

An integer, either SIDE_NONE, SIDE_LEFT, SIDE_RIGHT or SIDE_BOTH.

Euphoria v4.0 svn3379

Parameters: 375

Example 1:

operation f = {{{1, 2, 3}, {1, 2, 3}, {3, 1, 2}}, {3, 3,3 }}
? is_left_unit(3, f) -- prints out 0.

See Also:

all_left_units, has_unit

2.0.0.349 is_using_DEP

include std/machine.e
public function is_using_DEP()

2.0.0.350 is_valid_memory_protection_constant

include std/unix/mmap.e
public function is_valid_memory_protection_constant(integer x)

2.0.0.351 is_win_nt

include std/os.e
public function is_win_nt()

Decides whether the host system is a newer Windows version (NT/2K/XP/Vista).

Returns:

An integer, 1 if host system is a newer Windows (NT/2K/XP/Vista), else 0.

2.0.0.352 join

include std/sequence.e
public function join(sequence items, object delim = " ")

Join sequences together using a delimiter.

Euphoria v4.0 svn3379

Parameters: 376

Parameters:

items : the sequence of items to join.1.
delim : an object, the delimiter to join by. Defaults to " ".2.

Comments:

This function may be applied to a string sequence or a complex sequence

Example 1:

result = join({"John", "Middle", "Doe"})
-- result is "John Middle Doe"

Example 2:

result = join({"John", "Middle", "Doe"}, ",")
-- result is "John,Middle,Doe"

See Also:

split, split_any, breakup

2.0.0.353 kernel_dll

include std/memconst.e
export atom kernel_dll

2.0.0.354 keys

include std/map.e
public function keys(map the_map_p, integer sorted_result = 0)

Return all keys in a map.

Parameters;

the_map_p: the map being queried1.
sorted_result: optional integer. 0 [default] means do not sort the output and 1 means to sort the
output before returning.

2.

Euphoria v4.0 svn3379

Parameters: 377

Returns:

A sequence made of all the keys in the map.

Comments:

If sorted_result is not used, the order of the keys returned is not predicable.

Example 1:

map the_map_p
the_map_p = new()
put(the_map_p, 10, "ten")
put(the_map_p, 20, "twenty")
put(the_map_p, 30, "thirty")
put(the_map_p, 40, "forty")

sequence keys
keys = keys(the_map_p) -- keys might be {20,40,10,30} or some other order
keys = keys(the_map_p, 1) -- keys will be {10,20,30,40}

See Also:

has, values, pairs

2.0.0.355 keyvalues

include std/text.e
public function keyvalues(sequence source, object pair_delim = ";,", object kv_delim = ":=", object quotes = "\"'`", object whitespace = " \t\n\r", integer haskeys = 1)

Converts a string containing Key/Value pairs into a set of sequences, one per K/V pair.

Parameters:

source : a text sequence, containing the representation of the key/values.1.
pair_delim : an object containing a list of elements that delimit one key/value pair from the next.
The defaults are semi-colon (;) and comma (,).

2.

kv_delim : an object containing a list of elements that delimit the key from its value. The defaults
are colon (:) and equal (=).

3.

quotes : an object containing a list of elements that can be used to enclose either keys or values that
contain delimiters or whitespace. The defaults are double-quote ("), single-quote (') and back-quote (`)

4.

whitespace : an object containing a list of elements that are regarded as whitespace characters.
The defaults are space, tab, new-line, and carriage-return.

5.

haskeys : an integer containing true or false. The default is true. When true, the kv_delim
values are used to separate keys from values, but when false it is assumed that each 'pair' is actually

6.

Euphoria v4.0 svn3379

Parameters: 378

just a value.

Returns:

A sequence, of pairs. Each pair is in the form {key, value}.

Comments:

String representations of atoms are not converted, either in the key or value part, but returned as any regular
string instead.

If haskeys is true, but a substring only holds what appears to be a value, the key is synthesized as p[n],
where n is the number of the pair. See example #2.

By default, pairs can be delimited by either a comma or semi-colon ",;" and a key is delimited from its value
by either an equal or a colon "=:". Whitespace between pairs, and between delimiters is ignored.

If you need to have one of the delimiters in the value data, enclose it in quotation marks. You can use any of
single, double and back quotes, which also means you can quote quotation marks themselves. See example #3.

It is possible that the value data itself is a nested set of pairs. To do this enclose the value in parentheses.
Nested sets can nested to any level. See example #4.

If a sub-list has only data values and not keys, enclose it in either braces or square brackets. See example #5.
If you need to have a bracket as the first character in a data value, prefix it with a tilde. Actually a leading
tilde will always just be stripped off regardless of what it prefixes. See example #6.

Example 1:

s = keyvalues("foo=bar, qwe=1234, asdf='contains space, comma, and equal(=)'")
-- s is { {"foo", "bar"}, {"qwe", "1234"}, {"asdf", "contains space, comma, and equal(=)"}}

Example 2:

s = keyvalues("abc fgh=ijk def")
-- s is { {"p[1]", "abc"}, {"fgh", "ijk"}, {"p[3]", "def"} }

Example 3:

s = keyvalues("abc=`'quoted'`")
-- s is { {"abc", "'quoted'"} }

Euphoria v4.0 svn3379

Parameters: 379

Example 4:

s = keyvalues("colors=(a=black, b=blue, c=red)")
-- s is { {"colors", {{"a", "black"}, {"b", "blue"},{"c", "red"}} } }
s = keyvalues("colors=(black=[0,0,0], blue=[0,0,FF], red=[FF,0,0])")
-- s is { {"colors", {{"black",{"0", "0", "0"}}, {"blue",{"0", "0", "FF"}},{"red", {"FF","0","0"}}}} }

Example 5:

s = keyvalues("colors=[black, blue, red]")
-- s is { {"colors", { "black", "blue", "red"} } }

Example 6:

s = keyvalues("colors=~[black, blue, red]")
-- s is { {"colors", "[black, blue, red]"} } }
-- The following is another way to do the same.
s = keyvalues("colors=`[black, blue, red]`")
-- s is { {"colors", "[black, blue, red]"} } }

2.0.0.356 keywords

include keywords.e
public constant keywords

Sequence of Euphoria keywords

2.0.0.357 kill

include std/pipeio.e
public procedure kill(process p, atom signal = 15)

Close pipes and kill process p with signal signal (default 15)

Comments:

Signal is ignored on Windows.

Example 1:

kill(p)

Euphoria v4.0 svn3379

Parameters: 380

2.0.0.358 kurtosis

include std/stats.e
public function kurtosis(object data_set, object subseq_opt = ST_ALLNUM)

Returns a measure of the spread of values in a dataset when compared to a normal probability curve.

Parameters:

data_set : a list of 1 or more numbers whose kurtosis is required.1.
subseq_opt : an object. When this is ST_ALLNUM (the default) it means that data_set is
assumed to contain no sub-sequences otherwise this gives instructions about how to treat
sub-sequences. See comments for details.

2.

Returns:

An object. If this is an atom it is the kurtosis measure of the data set. Othewise it is a sequence containing an
error integer. The return value {0} indicates that an empty dataset was passed, {1} indicates that the standard
deviation is zero (all values are the same).

Comments:

Generally speaking, a negative return indicates that most of the values are further from the mean, while
positive values indicate that most values are nearer to the mean.

The larger the magnitude of the returned value, the more the data is 'peaked' or 'flatter' in that direction.

If the data can contain sub-sequences, such as strings, you need to let the the function know about this
otherwise it assumes every value in data_set is an number. If that is not the case then the function will
crash. So it is important that if it can possibly contain sub-sequences that you tell this function what to do with
them. Your choices are to ignore them or assume they have the value zero. To ignore them, use ST_IGNSTR
as the subseq_opt parameter value otherwise use ST_ZEROSTR. However, if you know that data_set
only contains numbers use the default subseq_opt value, ST_ALLNUM. Note It is faster if the data only
contains numbers.

Example 1:

kurtosis("thecatisthehatter") --> -1.737889192

See also:

skewness

Euphoria v4.0 svn3379

Parameters: 381

For a complete overview of the task system, please see the mini-guide Multitasking in Euphoria.

The task system does not yet function in a shared library. Task routine calls that are compiled into a shared
library are emitted as a NOP (no operation) and will therefore have no effect.

It is planned to allow the task system to function in shared libraries in future versions of OpenEuphoria.

2.0.0.359 lang_load

include std/locale.e
public function lang_load(sequence filename)

Load a language file.

Parameters:

filename : a sequence, the name of the file to load. If no file extension is supplied, then ".lng" is
used.

1.

Returns:

A language map, if successful. This is to be used when calling translate().

If the load fails it returns a zero.

Comments:

The language file must be made of lines which are either comments, empty lines or translations. Note that
leading whitespace is ignored on all lines except continuation lines.

Comments are lines that begin with a # character and extend to the end of the line.•
Empty Lines are ignored.•
Translations have two forms ...•

keyword translation_text

In which the 'keyword' is a word that must not have any spaces in it.

keyphrase = translation_text

In which the 'keyphrase' is anything up to the first '=' symbol.

Euphoria v4.0 svn3379

Parameters: 382

It is possible to have the translation text span multiple lines. You do this by having '&' as the last character of
the line. These are placed by newline characters when loading.

Example:

Example translation file
#

hello Hola
world Mundo
greeting %s, %s!

help text = &
This is an example of some &
translation text that spans &
multiple lines.

End of example PO #2

See Also:

translate

2.0.0.360 largest

include std/stats.e
public function largest(object data_set)

Returns the largest of the data points that are atoms.

Parameters:

data_set : a list of 1 or more numbers among which you want the largest.1.

Returns:

An object, either of:

an atom (the largest value) if there is at least one atom item in the set•
{} if there is no largest value.•

Euphoria v4.0 svn3379

Parameters: 383

Comments:

Any data_set element which is not an atom is ignored.

Example 1:

? largest({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,"text"}) -- Ans: 8
? largest({"just","text"}) -- Ans: {}

See also:

range

2.0.0.361 last

include std/stack.e
public function last(stack sk)

Retrieve the end element on a stack.

Parameters:

sk : the stack to inspect.1.

Returns:

An object, the end element on a stack.

Comments:

This call is equivalent to at(sk,0).

Example 1:

stack sk = new(FILO)
push(sk,5)
push(sk,"abc")
push(sk, 2.3)
? last(sk) -- 5

Euphoria v4.0 svn3379

Parameters: 384

Example 2:

stack sk = new(FIFO)
push(sk,5)
push(sk,"abc")
push(sk, 2.3)
? last(sk) -- 2.3

See Also:

at, pop, peek_end, top

2.0.0.362 length

<built-in> function length(object target)

Return the length of an object.

Parameters:

target : the object being queried1.

Returns:

An integer, the number of elements involved with target.

Comments:

An atom only ever has a length of 1.•
The length of a sequence is the number of elements in the sequence.•
The length of each sequence is stored internally by the interpreter for fast access. In some other
languages this operation requires a search through memory for an end marker.

•

Example 1:

length({{1,2}, {3,4}, {5,6}}) -- 3
length("") -- 0
length({}) -- 0
length(7) -- 1
length(3.14) -- 1

Euphoria v4.0 svn3379

Parameters: 385

See Also:

append, prepend, &

2.0.0.363 linear

include std/sequence.e
public function linear(object start, object increment, integer count)

Returns a sequence in arithmetic progression.

Parameters:

start : the initial value from which to start1.
increment : the value to recursively add to start to get new elements2.
count : an integer, the number of additions to perform.3.

Returns:

An object, either 0 on failure or {start, start+increment,...,start+count*increment}

Comments:

If count is negative, or if adding start to increment would prove to be impossible, then 0 is returned.
Otherwise, a sequence, of length count+1, staring with start and whose adjacent elements differ exactly
by increment, is returned.

Example 1:

s = linear({1,2,3},4,3)
-- s is {{1,2,3},{5,6,7},{9,10,11}}

See Also:

repeat_pattern

2.0.0.364 listen

include std/socket.e
public function listen(socket sock, integer backlog)

Euphoria v4.0 svn3379

Parameters: 386

Start monitoring a connection. Only works with TCP sockets.

Parameters:

sock : the socket1.
backlog : the number of connection requests that can be kept waiting before the OS refuses to hear
any more.

2.

Returns:

An integer, 0 on success and an error code on failure.

Comments:

Once the socket is created and bound, this will indicate to the operating system that you are ready to being
listening for connections.

The value of backlog is strongly dependent on both the hardware and the amount of time it takes the
program to process each connection request.

This function must be executed after bind().

2.0.0.365 load

include std/serialize.e
public function load(sequence filename)

Restores a Euphoria object that has been saved to disk by dump.

Parameters:

filename : the name of the file to restore it from.1.

Returns:

A sequence, the first element is the result code. If the result code is 0 then it means that the function failed,
otherwise the restored data is in the second element.

Comments:

This is used to load back data from a file created by the dump function.

Euphoria v4.0 svn3379

Parameters: 387

Example :

include std/serialize.e
sequence mydata = load(theFileName)
if mydata[1] = 0 then
 puts(1, "Failed to load data from file\n")
else
 mydata = mydata[2] -- Restored data is in second element.
end if

2.0.0.366 load_map

include std/map.e
public function load_map(object file_name_p)

Loads a map from a file

Parameters:

file_name_p : The file to load from. This file may have been created by the save_map function.
This can either be a name of a file or an already opened file handle.

1.

Returns:

Either a map, with all the entries found in file_name_p, or -1 if the file failed to open, or -2 if the file is
incorrectly formatted.

Comments:

If file_name_p is an already opened file handle, this routine will write to that file and not close it.
Otherwise, the named file will be created and closed by this routine.

The input file can be either one created by the save_map function or a manually created/edited text file. See
save_map for details about the required layout of the text file.

Example 1:

object loaded
 map AppOptions
 sequence SavedMap = "c:\myapp\options.txt"
 loaded = load_map(SavedMap)

Euphoria v4.0 svn3379

Parameters: 388

 if equal(loaded, -1) then
 crash("Map '%s' failed to open", SavedMap)
 end if
 -- By now we know that it was loaded and a new map created,
 -- so we can assign it to a 'map' variable.
 AppOptions = loaded
 if get(AppOptions, "verbose", 1) = 3 then
 ShowIntructions()
 end if

See Also:

new, save_map

2.0.0.367 locale_canonical

include std/localeconv.e
public constant locale_canonical

2.0.0.368 locate_file

include std/filesys.e
public function locate_file(sequence filename, sequence search_list = {}, sequence subdir = {})

Locates a file by looking in a set of directories for it.

Parameters:

filename : a sequence, the name of the file to search for.1.
search_list : a sequence, the list of directories to look in. By default this is "", meaning that a
predefined set of directories is scanned. See comments below.

2.

subdir : a sequence, the sub directory within the search directories to check. This is optional.3.

Returns:

A sequence, the located file path if found, else the original file name.

Comments:

If filename is an absolute path, it is just returned and no searching takes place.

If filename is located, the full path of the file is returned.

Euphoria v4.0 svn3379

Parameters: 389

If search_list is supplied, it can be either a sequence of directory names, of a string of directory names
delimited by ':' in UNIX and ';' in Windows.

If the search_list is omitted or "", this will look in the following places...

The current directory•
The directory that the program is run from.•
The directory in $HOME ($HOMEDRIVE & $HOMEPATH in Windows)•
The parent directory of the current directory•
The directories returned by include_paths()•
$EUDIR/bin•
$EUDIR/docs•
$EUDIST/•
$EUDIST/etc•
$EUDIST/data•
The directories listed in $USERPATH•
The directories listed in $PATH•

If the subdir is supplied, the function looks in this sub directory for each of the directories in the search list.

Example 1:

res = locate_file("abc.def", {"/usr/bin", "/u2/someapp", "/etc"})
 res = locate_file("abc.def", "/usr/bin:/u2/someapp:/etc")
 res = locate_file("abc.def") -- Scan default locations.
 res = locate_file("abc.def", , "app") -- Scan the 'app' sub directory in the default locations.

2.0.0.369 lock_file

include std/io.e
public function lock_file(file_number fn, lock_type t, byte_range r = {})

When multiple processes can simultaneously access a file, some kind of locking mechanism may be needed to
avoid mangling the contents of the file, or causing erroneous data to be read from the file.

Parameters:

fn : an integer, the handle to the file or device to (partially) lock.1.
t : an integer which defines the kind of lock to apply.2.
r : a sequence, defining a section of the file to be locked, or {} for the whole file (the default).3.

Returns:

An integer, 0 on failure, 1 on success.

Euphoria v4.0 svn3379

Parameters: 390

Errors:

The target file or device must be open.

Comments:

lock_file() attempts to place a lock on an open file, fn, to stop other processes from using the file while
your program is reading it or writing it.

Under Unix, there are two types of locks that you can request using the t parameter. (Under WIN32 the
parameter t is ignored, but should be an integer.) Ask for a shared lock when you intend to read a file, and
you want to temporarily block other processes from writing it. Ask for an exclusive lock when you intend to
write to a file and you want to temporarily block other processes from reading or writing it. It's ok for many
processes to simultaneously have shared locks on the same file, but only one process can have an exclusive
lock, and that can happen only when no other process has any kind of lock on the file. io.e contains the
following declarations:

public enum
 LOCK_SHARED,
 LOCK_EXCLUSIVE

On /WIN32 you can lock a specified portion of a file using the r parameter. r is a sequence of the form:
{first_byte, last_byte}. It indicates the first byte and last byte in the file, that the lock applies to.
Specify the empty sequence {}, if you want to lock the whole file, or don't specify it at all, as this is the
default. In the current release for Unix, locks always apply to the whole file, and you should use this default
value.

lock_file() does not wait for other processes to relinquish their locks. You may have to call it repeatedly,
before the lock request is granted.

On Unix, these locks are called advisory locks, which means they aren't enforced by the operating system. It is
up to the processes that use a particular file to cooperate with each other. A process can access a file without
first obtaining a lock on it. On WIN32 locks are enforced by the operating system.

Example 1:

include std/io.e
integer v
atom t
v = open("visitor_log", "a") -- open for append
t = time()
while not lock_file(v, LOCK_EXCLUSIVE, {}) do
 if time() > t + 60 then
 puts(STDOUT, "One minute already ... I can't wait forever!\n")
 abort(1)
 end if
 sleep(5) -- let other processes run
end while
puts(v, "Yet another visitor\n")
unlock_file(v, {})

Euphoria v4.0 svn3379

Parameters: 391

close(v)

See Also:

unlock_file

2.0.0.370 lock_type

include std/io.e
public type lock_type(integer t)

Lock Type

2.0.0.371 log

<built-in> function log(object value)

Return the natural logarithm of a positive number.

Parameters:

value : an object, any atom of which log() acts upon.1.

Returns:

An object, the same shape as value. For an atom, the returned atom is its logarithm of base E.

Errors:

If any atom in value is not greater than zero, an error occurs as its logarithm is not defined.

Comments:

This function may be applied to an atom or to all elements of a sequence.

To compute the inverse, you can use power(E, x) where E is 2.7182818284590452, or equivalently exp(x).
Beware that the logarithm grows very slowly with x, so that exp() grows very fast.

Euphoria v4.0 svn3379

Parameters: 392

Example 1:

a = log(100)
-- a is 4.60517

See Also:

E, exp, log10

2.0.0.372 log10

include std/math.e
public function log10(object x1)

Return the base 10 logarithm of a number.

Parameters:

value : an object, each atom of which will be converted, no matter how deeply nested.1.

Returns:

An object, the same shape as value. When value is an atom, raising 10 to the returned atom yields value
back.

Errors:

If any atom in value is not greater than zero, its logarithm is not a real number and an error occurs.

Comments:

This function may be applied to an atom or to all elements of a sequence.

log10() is proportional to log() by a factor of 1/log(10), which is about 0.435 .

Example 1:

a = log10(12)
-- a is 2.48490665

Euphoria v4.0 svn3379

Parameters: 393

See Also:

log

2.0.0.373 lookup

include std/search.e
public function lookup(object find_item, sequence source_list, sequence target_list, object def_value = 0)

If the supplied item is in the source list, this returns the corresponding element from the target list.

Parameters:

find_item: an object that might exist in source_list.1.
source_list: a sequence that might contain pITem.2.
target_list: a sequence from which the corresponding item will be returned.3.
def_value: an object (defaults to zero). This is returned when find_item is not in
source_list and target_list is not longer than source_list.

4.

Returns:

an object

If find_item is found in source_list then this is the corresponding element from
target_list

•

If find_item is not in source_list then if target_list is longer than source_list then
the last item in target_list is returned otherwise def_value is returned.

•

Examples:

lookup('a', "cat", "dog") --> 'o'
lookup('d', "cat", "dogx") --> 'x'
lookup('d', "cat", "dog") --> 0
lookup('d', "cat", "dog", -1) --> -1
lookup("ant", {"ant","bear","cat"}, {"spider","seal","dog","unknown"}) --> "spider"
lookup("dog", {"ant","bear","cat"}, {"spider","seal","dog","unknown"}) --> "unknown"

2.0.0.374 lower

include std/text.e
public function lower(object x)

Convert an atom or sequence to lower case.

Euphoria v4.0 svn3379

Parameters: 394

Parameters:

x : Any Euphoria object.1.

Returns:

A sequence, the lowercase version of x

Comments:

For Windows systems, this uses the current code page for conversion•
For non-Windows, this only works on ASCII characters. It alters characters in the 'a'..'z' range. If you
need to do case conversion with other encodings use the set_encoding_properties first.

•

x may be a sequence of any shape, all atoms of which will be acted upon.•

WARNING, When using ASCII encoding, this can also affect floating point numbers in the range 65 to 90.

Example 1:

s = lower("Euphoria")
-- s is "euphoria"

a = lower('B')
-- a is 'b'

s = lower({"Euphoria", "Programming"})
-- s is {"euphoria", "programming"}

See Also:

upper, proper, set_encoding_properties, get_encoding_properties

2.0.0.375 machine_addr

include std/memory.e
public type machine_addr(object a)

Machine address type

2.0.0.376 machine_addr

include std/safe.e
public type machine_addr(atom a)

Euphoria v4.0 svn3379

Parameters: 395

2.0.0.377 machine_func

<built-in> function machine_func(integer machine_id, object args={})

Perform a machine-specific operation that returns a value.

Returns:

Depends on the called internal facility.

Comments:

This function us mainly used by the standard library files to implement machine dependent operations such as
graphics and sound effects. This routine should normally be called indirectly via one of the library routines in
a Euphoria include file. User programs normally do not need to call machine_func.

A direct call might cause a machine exception if done incorrectly.

See Also:

machine_proc

2.0.0.378 machine_proc

<built-in> procedure machine_proc(integer machine_id, object args={})

Perform a machine-specific operation that does not return a value.

Comments:

This procedure us mainly used by the standard library files to implement machine dependent operations such
as graphics and sound effects. This routine should normally be called indirectly via one of the library routines
in a Euphoria include file. User programs normally do not need to call machine_proc.

A direct call might cause a machine exception if done incorrectly.

Euphoria v4.0 svn3379

Parameters: 396

See Also:

machine_func

2.0.0.379 malloc

include std/eumem.e
export function malloc(object mem_struct_p = 1, integer cleanup_p = 1)

Allocate a block of (pseudo) memory

Parameters:

mem_struct_p : The initial structure (sequence) to occupy the allocated block. If this is an integer,
a sequence of zero this long is used. The default is the number 1, meaning that the default initial
structure is {0}

1.

cleanup_p : Identifies whether the memory should be released automatically when the reference
count for the handle for the allocated block drops to zero, or when passed to delete(). If 0, then
the block must be freed using the free procedure.

2.

Returns:

A handle, to the acquired block. Once you acquire this, you can use it as you need to. Note that if
cleanup_p is 1, then the variable holding the handle must be capable of storing an atom as a double
floating point value (i.e., not an integer).

Example 1:

my_spot = malloc()
 ram_space[my_spot] = my_data

2.0.0.380 map

include std/map.e
public type map(object obj_p)

Defines the datatype 'map'

Comments:

Used when declaring a map variable.

Euphoria v4.0 svn3379

Parameters: 397

Example:

map SymbolTable = new() -- Create a new map to hold the symbol table.

2.0.0.381 map

include std/sets.e
public type map(object s)

Returns 1 if a sequence of integers is a valid map descriptor, else 0.

Comments:

A map is a sequence of indexes. Each index is between 1 and the maximum allowed for the particular map.

Actually, what is being called a map is a class of maps, as the elements of the input sequence, except for the
last two, are ordinals rather than set elements. A map contains the information required to map as expected the
elements of a set, given by index, to another set, where the images are indexes again. Technically, those are
maps of the category of finite sets quotiented by equality of cardinal.

The objects that map.e handle are completely unrelated to these.

Example 1:

sequence s0 = {2, 3, 4, 1, 4, 2, 6, 4}
? map(s0) -- prints out 1.

See Also:

define_map, fiber_over, restrict, direct_map, reverse_map, is_injective, is_surjective, is_bijective

2.0.0.382 mapping

include std/sequence.e
public function mapping(object source_arg, sequence from_set, sequence to_set, integer one_level = 0)

Each item from source_arg found in from_set is changed into the corresponding item in to_set

Euphoria v4.0 svn3379

Parameters: 398

Parameters:

source_arg : Any Euphoria object to be transformed.1.
from_set : A sequence of objects representing the only items from source_arg that are actually
transformed.

2.

to_set : A sequence of objects representing the transformed equivalents of those found in
from_set.

3.

one_level : An integer. 0 (the default) means that mapping applies to every atom in every level of
sub-sequences. 1 means that mapping only applies to the items at the first level in source_arg.

4.

Returns:

An object, The transformed version of source_arg.

Comments:

When one_level is zero or omitted, for each item in source_arg,
if it is an atom then it may be transformed♦
if it is a sequence, then the mapping is performed recursively on the sequence.♦
This option required from_set to only contain atoms and contain no sub-sequences.♦

•

When one_level is not zero, for each item in source_arg,
regardless of whether it is an atom or sequence, if it is found in from_set then it is mapped
to the corresponding object in to_set..

♦
•

Mapping occurs when an item in source_arg is found in from_set, then it is replaced by the
corresponding object in to_set.

•

Example 1:

res = mapping("The Cat in the Hat", "aeiou", "AEIOU")
-- res is now "ThE CAt In thE HAt"

2.0.0.383 match

<built-in> function match(sequence needle, sequence haystack, integer start)

Try to match a "needle" against some slice of a "haystack", starting at position "start".

Parameters:

needle : a sequence whose presence as a "substring" is being queried1.
haystack : a sequence, which is being looked up for needle as a sub-sequence2.
start : an integer, the point from which matching is attempted. Defaults to 1.3.

Euphoria v4.0 svn3379

Parameters: 399

Returns:

An integer, 0 if no slice of haystack is needle, else the smallest index at which such a slice starts.

Comments:

match() and match_from() are identical, but you can omit giving match() a starting point.

Example 1:

location = match("pho", "Euphoria")
-- location is set to 3

See Also:

find, find_from, compare, match_from, wildcard:is_match

2.0.0.384 match_all

include std/search.e
public function match_all(sequence needle, sequence haystack, integer start = 1)

Match all items of haystack in needle.

Parameters:

needle : a sequence, what to look for1.
haystack : a sequence to search in2.
start : an integer, the starting index position (defaults to 1)3.

Returns:

A sequence, of integers, the list of all lower indexes, not less than start, of all slices in haystack that
equal needle. The list may be empty.

Example 1:

s = match_all("the", "the dog chased the cat under the table.")
-- s is {1,16,30}

Euphoria v4.0 svn3379

Parameters: 400

See Also:

match, regex:find_all find, find_all

2.0.0.385 match_any

include std/search.e
public function match_any(sequence needles, sequence haystack, integer start = 1)

Determines if any element from needles is in haystack.

Parameters:

needles : a sequence, the list of items to look for1.
haystack : a sequence, in which "needles" are looked for2.
start : an integer, the starting point of the search. Defaults to 1.3.

Returns:

An integer, 0 if no matches, 1 if any matches.

Comments:

This function may be applied to a string sequence or a complex sequence.

Example 1:

ok = match_any("aeiou", "John Smith")
-- okay is 1
ok = match_any("xyz", "John Smith")
-- okay is 0

See Also:

find_any

2.0.0.386 match_from

<built-in> function match_from(sequence needle, sequence haystack, integer start)

Try to match a "needle" against some slice of a "haystack", starting from some index.

Euphoria v4.0 svn3379

Parameters: 401

Parameters:

needle : an sequence whose presence as a sub-sequence is being queried1.
haystack : a sequence, which is being looked up for needle as a sub-sequence2.
start : an integer, the index in haystack at which to start searching.3.

Returns:

An integer, 0 if no slice of haystack with lower index at least start is needle, else the smallest such
index.

Comments:

start may have any value from 1 to the length of haystack plus 1. (Just like the first index of a slice of
haystack.)

match() and match_from() are identical, but you can omit giving match() a starting point.

Example 1:

location = match_from("pho", "phoEuphoria", 4)
-- location is set to 6

See Also:

find, find_from, match, compare, wildcard:is_match, regex:find

2.0.0.387 match_replace

include std/search.e
public function match_replace(object needle, sequence haystack, object replacement, integer max = 0)

Finds a "needle" in a "haystack", and replace any, or only the first few, occurrences with a replacement.

Parameters:

needle : an object to search and perhaps replace1.
haystack : a sequence to be inspected2.
replacement : an object to substitute for any (first) instance of needle3.
max : an integer, 0 to replace all occurrences4.

Euphoria v4.0 svn3379

Parameters: 402

Returns:

A sequence, the modified haystack.

Comments:

Replacements will not be made recursively on the part of haystack that was already changed.

If max is 0 or less, any occurrence of needle in haystack will be replaced by replacement.
Otherwise, only the first max occurrences are.

If either needle or replacement are atoms they will be treated as if you had passed in a length-1
sequence containing the said atom.

Example 1:

s = match_replace("the", "the cat ate the food under the table", "THE", 0)
-- s is "THE cat ate THE food under THE table"

Example 2:

s = match_replace("the", "the cat ate the food under the table", "THE", 2)
-- s is "THE cat ate THE food under the table"

Example 3:

s = match_replace('/', "/euphoria/demo/unix", '\\', 2)
-- s is "\\euphoria\\demo/unix"

See Also:

find, replace, regex:find_replace, find_replace

2.0.0.388 matches

include std/regex.e
public function matches(regex re, string haystack, integer from = 1, option_spec options = DEFAULT)

Get the matched text only.

Euphoria v4.0 svn3379

Parameters: 403

Parameters:

re : a regex for a subject to be matched against1.
haystack : a string in which to searched2.
from : an integer setting the starting position to begin searching from. Defaults to 13.
options : defaults to DEFAULT. See Match Time Option Constants. options can be any match
time option or STRING_OFFSETS or a sequence of valid options or it can be a value that comes from
using or_bits on any two valid option values.

4.

Returns:

Returns a sequence of strings, the first being the entire match and subsequent items being each of the captured
groups or ERROR_NOMATCH of there is no match. The size of the sequence is the number of groups in the
expression plus one (for the entire match).

If options contains the bit STRING_OFFSETS, then the result is different. For each item, a sequence is
returned containing the matched text, the starting index in haystack and the ending index in haystack.

Example 1:

include std/regex.e as re
constant re_name = re:new("([A-Z][a-z]+) ([A-Z][a-z]+)")

object matches = re:matches(re_name, "John Doe and Jane Doe")
-- matches is:
-- {
-- "John Doe", -- full match data
-- "John", -- first group
-- "Doe" -- second group
-- }

matches = re:matches(re_name, "John Doe and Jane Doe", re:STRING_OFFSETS)
-- matches is:
-- {
-- { "John Doe", 1, 8 }, -- full match data
-- { "John", 1, 4 }, -- first group
-- { "Doe", 6, 8 } -- second group
-- }

See Also:

all_matches

2.0.0.389 max

include std/math.e
public function max(object a)

Euphoria v4.0 svn3379

Parameters: 404

Computes the maximum value among all the argument's elements

Parameters:

values : an object, all atoms of which will be inspected, no matter how deeply nested.1.

Returns:

An atom, the maximum of all atoms in flatten(values).

Comments:

This function may be applied to an atom or to a sequence of any shape.

Example 1:

a = max({10,15.4,3})
-- a is 15.4

See Also:

min, compare, flatten

2.0.0.390 maybe_any_key

include std/console.e
public procedure maybe_any_key(sequence prompt = "Press Any Key to continue...", integer con = 1)

Display a prompt to the user and wait for any key only if the user is running under a GUI environment.

Parameters:

prompt : Prompt to display, defaults to "Press Any Key to continue..."1.
con : Either 1 (stdout), or 2 (stderr). Defaults to 1.2.

Comments:

This wraps wait_key by giving a clue that the user should press a key, and perhaps do some other things as
well.

Euphoria v4.0 svn3379

Parameters: 405

Example 1:

any_key() -- "Press Any Key to continue..."

Example 2:

any_key("Press Any Key to quit")

See Also:

wait_key

2.0.0.391 median

include std/stats.e
public function median(object data_set, object subseq_opt = ST_ALLNUM)

Returns the mid point of the data points.

Parameters:

data_set : a list of 1 or more numbers for which you want the mean.1.
subseq_opt : an object. When this is ST_ALLNUM (the default) it means that data_set is
assumed to contain no sub-sequences otherwise this gives instructions about how to treat
sub-sequences. See comments for details.

2.

Returns:

An object, either {} if there are no items in the set, or an atom (the median) otherwise.

Comments:

median() is the item for which half the items are below it and half are above it.

All elements are included; any sequence elements are assumed to have the value zero.

The equation for average is:

median(X) ==> sort(X)[N/2]

If the data can contain sub-sequences, such as strings, you need to let the the function know about this
otherwise it assumes every value in data_set is an number. If that is not the case then the function will
crash. So it is important that if it can possibly contain sub-sequences that you tell this function what to do with

Euphoria v4.0 svn3379

Parameters: 406

them. Your choices are to ignore them or assume they have the value zero. To ignore them, use ST_IGNSTR
as the subseq_opt parameter value otherwise use ST_ZEROSTR. However, if you know that data_set
only contains numbers use the default subseq_opt value, ST_ALLNUM. Note It is faster if the data only
contains numbers.

Example 1:

? median({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,4}) -- Ans: 5

See also:

average, geomean, harmean, movavg, emovavg

2.0.0.392 memDLL_id

include std/memconst.e
export atom memDLL_id

2.0.0.393 mem_copy

<built-in> procedure mem_copy(atom destination, atom origin, integer len)

Copy a block of memory from an address to another.

Parameters:

destination : an atom, the address at which data is to be copied1.
origin : an atom, the address from which data is to be copied2.
len : an integer, how many bytes are to be copied.3.

Comments:

The bytes of memory will be copied correctly even if the block of memory at destination overlaps with
the block of memory at origin.

mem_copy(destination, origin, len) is equivalent to: poke(destination, peek({origin, len})) but is much faster.

Example 1:

dest = allocate(50)
src = allocate(100)
poke(src, {1,2,3,4,5,6,7,8,9})

Euphoria v4.0 svn3379

Parameters: 407

mem_copy(dest, src, 9)

See Also:

mem_set, peek, poke, allocate, free

2.0.0.394 mem_copy

include std/safe.e
override procedure mem_copy(machine_addr

2.0.0.395 mem_set

<built-in> procedure mem_set(atom destination, integer byte_value, integer how_many))

Sets a contiguous range of memory locations to a single value.

Parameters:

destination : an atom, the address starting the range to set.1.
byte_value : an integer, the value to copy at all addresses in the range.2.
how_many : an integer, how many bytes are to be set.3.

Comments:

The low order 8 bits of byte_value are actually stored in each byte. mem_set(destination, byte_value,
how_many) is equivalent to: poke(destination, repeat(byte_value, how_many)) but is much faster.

Example 1:

destination = allocate(1000)
mem_set(destination, ' ', 1000)
-- 1000 consecutive bytes in memory will be set to 32
-- (the ASCII code for ' ')

See Also:

peek, poke, allocate, free, mem_copy

Euphoria v4.0 svn3379

Parameters: 408

2.0.0.396 mem_set

include std/safe.e
override procedure mem_set(machine_addr

2.0.0.397 memory_used

include std/safe.e
public function memory_used()

2.0.0.398 merge

include std/sort.e
public function merge(sequence a, sequence b, integer compfunc = - 1, object userdata = "")

Merge two pre-sorted sequences into a single sequence.

Parameters:

a : a sequence, holding pre-sorted data.1.
b : a sequence, holding pre-sorted data.2.
compfunc : an integer, either -1 or the routine id of a user-defined comparision function.3.

Returns:

A sequence, consisting of a and b merged together.

Comments:

If a or b is not already sorted, the resulting sequence might not be sorted either.•
The input sequences do not have to be the same size.•
The user-defined comparision function must accept two objects and return an integer. It returns -1 if
the first object must appear before the second one, and 1 if the first object must after before the
second one, and 0 if the order doesn't matter.

•

Example 1:

sequence X,Y
X = sort({5,3,7,1,9,0}) --> {0,1,3,5,7,9}
Y = sort({6,8,10,2}) --> {2,6,8,10}
? merge(X,Y) --> {0,1,2,3,5,6,7,8,9,10}

Euphoria v4.0 svn3379

Parameters: 409

See Also:

compare, sort

2.0.0.399 message_box

include std/win32/msgbox.e
public function message_box(sequence text, sequence title, object style)

Displays a window with a title, message, buttons and an icon, usually known as a message box.

Parameters:

text: a sequence, the message to be displayed1.
title: a sequence, the title the box should have2.
style: an object which defines which,icon should be displayed, if any, and which buttons will be
presented.

3.

Returns:

An integer, the button which was clicked to close the message box, or 0 on failure.

Comments:

See Style Constants above for a complete list of possible values for style and Return Value Constants for
the returned value. If style is a sequence, its elements will be or'ed together.

2.0.0.400 mid

include std/sequence.e
public function mid(sequence source, atom start, atom len)

Returns a slice of a sequence, given by a starting point and a length.

Parameters:

source : the sequence some elements of which will be returned1.
start : an integer, the lower index of the slice to return2.

Euphoria v4.0 svn3379

Parameters: 410

len : an integer, the length of the slice to return3.

Returns:

A sequence, made of at most len elements of source. These elements are at contiguous positions in
source starting at start.

Errors:

If len is less than -length(source), an error occurs.

Comments:

len may be negative, in which case it is added length(source) once.

Example 1:

s2 = mid("John Middle Doe", 6, 6)
-- s2 is Middle

Example 2:

s2 = mid("John Middle Doe", 6, 50)
-- s2 is Middle Doe

Example 3:

s2 = mid({1, 5.4, "John", 30}, 2, 2)
-- s2 is {5.4, "John"}

Example 4:

s2 = mid({1, 5.4, "John", 30}, 2, -1)
-- s2 is {5.4, "John", 30}

See Also:

head, tail, slice

Euphoria v4.0 svn3379

Parameters: 411

2.0.0.401 min

include std/math.e
public function min(object a)

Computes the minimum value among all the argument's elements

Parameters:

values : an object, all atoms of which will be inspected, no matter how deeply nested.1.

Returns:

An atom, the minimum of all atoms in flatten(values).

Comments:

This function may be applied to an atom or to a sequence of any shape.

Example 1:

a = min({10,15.4,3})
-- a is 3

2.0.0.402 minsize

include std/sequence.e
public function minsize(sequence source_data, integer min_size, object new_data)

Ensures that the supplied sequence is at least the supplied minimum length.

Parameters:

source_data : A sequence that might need extending.1.
min_size: An integer. The minimum length that source_data must be.2.
new_data: An object. This used to when source_data needs to be extended, in which case it is
appended as many times as required to make the length equal to min_size.

3.

Returns:

A sequence.

Euphoria v4.0 svn3379

Parameters: 412

Example:

sequence s
s = minsize({4,3,6,2,7,1,2}, 10, -1) --> {4,3,6,2,7,1,2,-1,-1,-1}
s = minsize({4,3,6,2,7,1,2}, 5, -1) --> {4,3,6,2,7,1,2}

2.0.0.403 mixture

include std/graphcst.e
public type mixture(sequence s)

Mixture Type

Comments:

A mixture is a {red, green, blue} triple of intensities, which enables you to define custom colors.
Intensities must be from 0 (weakest) to 63 (strongest). Thus, the brightest white is {63, 63, 63}.

2.0.0.404 mlock

include std/unix/mmap.e
public function mlock(atom addr, integer length)

2.0.0.405 mmap

include std/unix/mmap.e
public function mmap(object start, integer length, valid_memory_protection_constant protection, integer flags, integer fd, integer offset)

2.0.0.406 mod

include std/math.e
public function mod(object x, object y)

Compute the remainder of the division of two objects using floored division.

Euphoria v4.0 svn3379

Parameters: 413

Parameters:

dividend : any Euphoria object.1.
divisor : any Euphoria object.2.

Returns:

An object, the shape of which depends on dividend's and divisor's. For two atoms, this is the remainder
of dividing dividend by divisor, with divisor's sign.

Comments:

There is a integer N such that dividend = N * divisor + result.•
The result is non-negative and has lesser magnitude than divisor. n needs not fit in an Euphoria
integer.

•

The result has the same sign as the dividend.•
The arguments to this function may be atoms or sequences. The rules for operations on sequences
apply, and determine the shape of the returned object.

•

When both arguments have the same sign, mod() and remainder() return the same result.•
This differs from remainder() in that when the operands' signs are different this function rounds
dividend/divisior away from zero whereas remainder() rounds towards zero.

•

Example 1:

a = mod(9, 4)
-- a is 1

Example 2:

s = mod({81, -3.5, -9, 5.5}, {8, -1.7, 2, -4})
-- s is {1,-0.1,1,-2.5}

Example 3:

s = mod({17, 12, 34}, 16)
-- s is {1, 12, 2}

Example 4:

s = mod(16, {2, 3, 5})
-- s is {0, 1, 1}

Euphoria v4.0 svn3379

Parameters: 414

See Also:

remainder, Relational operators, Operations on sequences

2.0.0.407 mode

include std/stats.e
public function mode(sequence data_set, object subseq_opt = ST_ALLNUM)

Returns the most frequent point(s) of the data set.

Parameters:

data_set : a list of 1 or more numbers for which you want the mode.1.
subseq_opt : an object. When this is ST_ALLNUM (the default) it means that data_set is
assumed to contain no sub-sequences otherwise this gives instructions about how to treat
sub-sequences. See comments for details.

2.

Returns:

A sequence. The list of modal items in the data set.

Comments:

It is possible for the mode() to return more than one item when more than one item in the set has the same
highest frequency count.

If the data can contain sub-sequences, such as strings, you need to let the the function know about this
otherwise it assumes every value in data_set is an number. If that is not the case then the function will
crash. So it is important that if it can possibly contain sub-sequences that you tell this function what to do with
them. Your choices are to ignore them or assume they have the value zero. To ignore them, use ST_IGNSTR
as the subseq_opt parameter value otherwise use ST_ZEROSTR. However, if you know that data_set
only contains numbers use the default subseq_opt value, ST_ALLNUM. Note It is faster if the data only
contains numbers.

Example 1:

mode({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,4}) -- Ans: {6}
mode({8,2,8,5,6,6,4,8,6,6,3,3,4,1,8,4}) -- Ans: {8,6}

Euphoria v4.0 svn3379

Parameters: 415

See also:

average, geomean, harmean, movavg, emovavg

2.0.0.408 money

include std/locale.e
public function money(object amount)

Converts an amount of currency into a string representing that amount.

Parameters:

amount : an atom, the value to write out.1.

Returns:

A sequence, a string that writes out amount of current currency.

Example 1:

-- Assuming an en_US locale
? money(1020.5) -- returns"$1,020.50"

See Also:

set, number

2.0.0.409 month_abbrs

include std/datetime.e
public sequence month_abbrs

Abbreviations of month names

2.0.0.410 month_names

include std/datetime.e
public sequence month_names

Euphoria v4.0 svn3379

Parameters: 416

Names of the months

2.0.0.411 mouse_events

include std/mouse.e
public procedure mouse_events(integer events)

Select the mouse events get_mouse() is to report.

Parameters:

events: an integer, all requested event codes or'ed together.1.

Comments:

By default, get_mouse() will report all events. mouse_events() can be called at various stages of the
execution of your program, as the need to detect events changes. Under Unix, mouse_events() currently
has no effect.

It is good practice to ignore events that you are not interested in, particularly the very frequent MOVE event,
in order to reduce the chance that you will miss a significant event.

The first call that you make to mouse_events() will turn on a mouse pointer, or a highlighted character.

Example 1:

mouse_events(LEFT_DOWN + LEFT_UP + RIGHT_DOWN)

will restrict get_mouse() to reporting the left button being pressed down or released, and the right button being
pressed down. All other events will be ignored.

See Also:

get_mouse, mouse_pointer

2.0.0.412 mouse_pointer

include std/mouse.e
public procedure mouse_pointer(integer show_it)

Turn mouse pointer on or off.

Euphoria v4.0 svn3379

Parameters: 417

Parameters:

show_it : an integer, 0 to hide and 1 to show.1.

Comments:

Multiple calls to hide the pointer will require multiple calls to turn it back on. The first call to either
get_mouse() or mouse_events() will also turn the pointer on (once).

Under Linux, mouse_pointer() currently has no effect

It may be necessary to hide the mouse pointer temporarily when you update the screen.

After a call to text_rows() you may have to call mouse_pointer(1) to see the mouse pointer again.

See Also:

get_mouse, mouse_pointer

2.0.0.413 movavg

include std/stats.e
public function movavg(object data_set, object period_delta)

Returns the average (mean) of the data points for overlaping periods. This can be either a simple or weighted
moving average.

Parameters:

data_set : a list of 1 or more numbers for which you want a moving average.1.
period_delta : an object, either2.

an integer representing the size of the period, or•
a list of weightings to apply to the respective period positions.•

Returns:

A sequence, either the requested averages or {} if the Data sequence is empty or the supplied period is less
than one.

Euphoria v4.0 svn3379

Parameters: 418

If a list of weights was supplied, the result is a weighted average; otherwise, it is a simple average.

Comments:

A moving average is used to smooth out a set of data points over a period.
For example, given a period of 5:

the first returned element is the average of the first five data points [1..5],1.
the second returned element is the average of the second five data points [2..6],
and so on
until the last returned value is the average of the last 5 data points [$-4 .. $].

2.

When period_delta is an atom, it is rounded down to the width of the average. When it is a sequence, the
width is its length. If there are not enough data points, zeroes are inserted.

Note that only atom elements are included and any sub-sequence elements are ignored.

Example 1:

? movavg({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8}, 10)
 -- Ans: {5.8, 5.4, 5.5, 5.1, 4.7, 4.9}
? movavg({7,2,8,5,6}, 2)
 -- Ans: {4.5, 5, 6.5, 5.5}
? movavg({7,2,8,5,6}, {0.5, 1.5})
 -- Ans: {3.25, 6.5, 5.75, 5.75}

See also:

average

2.0.0.414 move_file

include std/filesys.e
public function move_file(sequence src, sequence dest, integer overwrite = 0)

Move a file to another location.

Parameters:

src : a sequence, the name of the file or directory to move1.
dest : a sequence, the new location for the file2.
overwrite : an integer, 0 (the default) to prevent overwriting an existing destination file, 1 to
overwrite existing destination file

3.

Euphoria v4.0 svn3379

Parameters: 419

Returns:

An integer, 0 on failure, 1 on success.

Comments:

If overwrite was requested but the move fails, any existing destination file is preserved.•

See Also:

rename_file, copy_file

2.0.0.415 mprotect

include std/unix/mmap.e
public function mprotect(atom addr, integer length, valid_memory_protection_constant protection)

2.0.0.416 munlock

include std/unix/mmap.e
public function munlock(atom addr, integer length)

2.0.0.417 munmap

include std/unix/mmap.e
public function munmap(atom addr, integer length)

2.0.0.418 my_dir

include std/filesys.e
public integer my_dir

Deprecated, so therefore not documented.

2.0.0.419 nested_get

include std/map.e
public function nested_get(map the_map_p, sequence the_keys_p, object default_value_p = 0)

Euphoria v4.0 svn3379

Parameters: 420

Returns the value that corresponds to the object the_keys_p in the nested map the_map_p. the_keys_p
is a sequence of keys. If any key is not in the map, the object default_value_p is returned instead.

2.0.0.420 nested_put

include std/map.e
public procedure nested_put(map the_map_p, sequence the_keys_p, object the_value_p, integer operation_p = PUT, integer trigger_p = 51)

Adds or updates an entry on a map.

Parameters:

the_map_p : the map where an entry is being added or updated1.
the_keys_p : a sequence of keys for the nested maps2.
the_value_p : an object, the value to add, or to use for updating.3.
operation_p : an integer, indicating what is to be done with value. Defaults to PUT.4.
trigger_p : an integer. Default is 51. See Comments for details.5.

Valid operations are:

PUT -- This is the default, and it replaces any value in there already•
ADD -- Equivalent to using the += operator•
SUBTRACT -- Equivalent to using the -= operator•
MULTIPLY -- Equivalent to using the *= operator•
DIVIDE -- Equivalent to using the /= operator•
APPEND -- Appends the value to the existing data•
CONCAT -- Equivalent to using the &= operator•

Comments:

If existing entry with the same key is already in the map, the value of the entry is updated.•
The trigger parameter is used when you need to keep the average number of keys in a hash bucket to
a specific maximum. The trigger value is the maximum allowed. Each time a put operation increases
the hash table's average bucket size to be more than the trigger value the table is expanded by a factor
3.5 and the keys are rehashed into the enlarged table. This can be a time intensive action so set the
value to one that is appropriate to your application.

By keeping the average bucket size to a certain maximum, it can speed up lookup times.♦
If you set the trigger to zero, it will not check to see if the table needs reorganizing. You
might do this if you created the original bucket size to an optimal value. See new on how to
do this.

♦

•

Euphoria v4.0 svn3379

Parameters: 421

Example 1:

map city_population
city_population = new()
nested_put(city_population, {"United States", "California", "Los Angeles"}, 3819951)
nested_put(city_population, {"Canada", "Ontario", "Toronto"}, 2503281)

See also: put

2.0.0.421 new

include std/datetime.e
public function new(integer year = 0, integer month = 0, integer day = 0, integer hour = 0, integer minute = 0, atom second = 0)

Create a new datetime value.

Parameters:

year -- the full year.1.
month -- the month (1-12).2.
day -- the day of the month (1-31).3.
hour -- the hour (0-23) (defaults to 0)4.
minute -- the minute (0-59) (defaults to 0)5.
second -- the second (0-59) (defaults to 0)6.

Example 1:

dt = new(2010, 1, 1, 0, 0, 0)
-- dt is Jan 1st, 2010

See Also:

from_date, from_unix, now, new_time

2.0.0.422 new

include std/map.e
public function new(integer initial_size_p = 690)

Create a new map data structure

Euphoria v4.0 svn3379

Parameters: 422

Parameters:

initial_size_p : An estimate of how many initial elements will be stored in the map. If this
value is less than the threshold value, the map will initially be a small map otherwise it will be a large
map.

1.

Returns:

An empty map.

Comments:

A new object of type map is created. The resources allocated for the map will be automatically cleaned up if
the reference count of the returned value drops to zero, or if passed in a call to delete.

Example 1:

map m = new() -- m is now an empty map
map x = new(threshold()) -- Forces a small map to be initialized
x = new() -- the resources for the map previously stored in x are released automatically
delete(m) -- the resources for the map are released

2.0.0.423 new

include std/regex.e
public function new(string pattern, option_spec options = DEFAULT)

Return an allocated regular expression

Parameters:

pattern : a sequence representing a human readable regular expression1.
options : defaults to DEFAULT. See Compile Time Option Constants.2.

Returns:

A regex, which other regular expression routines can work on or an atom to indicate an error. If an error, you
can call error_message to get a detailed error message.

Comments:

This is the only routine that accepts a human readable regular expression. The string is compiled and a regex
is returned. Analyzing and compiling a regular expression is a costly operation and should not be done more

Euphoria v4.0 svn3379

Parameters: 423

than necessary. For instance, if your application looks for an email address among text frequently, you should
create the regular expression as a constant accessible to your source code and any files that may use it, thus,
the regular expression is analyzed and compiled only once per run of your application.

-- Bad Example
include std/regex.e as re

while sequence(line) do
 re:regex proper_name = re:new("[A-Z][a-z]+ [A-Z][a-z]+")
 if re:find(proper_name, line) then
 -- code
 end if
end while

-- Good Example
include std/regex.e as re
constant re_proper_name = re:new("[A-Z][a-z]+ [A-Z][a-z]+")
while sequence(line) do
 if re:find(re_proper_name, line) then
 -- code
 end if
end while

Example 1:

include std/regex.e as re
re:regex number = re:new("[0-9]+")

Note:

For simple matches, the built-in Euphoria routine eu:match and the library routine wildcard:is_match are often
times easier to use and a little faster. Regular expressions are faster for complex searching/matching.

See Also:

error_message, find, find_all

2.0.0.424 new

include std/stack.e
public function new(integer typ = FILO)

Create a new stack.

Euphoria v4.0 svn3379

Parameters: 424

Parameters:

stack_type : an integer, defining the semantics of the stack. The default is FILO.1.

Returns:

An empty stack, note that the variable storing the stack must not be an integer. The resources allocated for the
stack will be automatically cleaned up if the reference count of the returned value drops to zero, or if passed in
a call to delete.

Comments:

There are two sorts of stacks, designated by the types FIFO and FILO:

A FIFO stack is one where the first item to be pushed is popped first. People standing in queue form
a FIFO stack.

•

A FILO stack is one where the item pushed last is popped first. A column of coins is of the FILO
kind.

•

See Also:

is_empty

2.0.0.425 new

include std/wildcard.e
public function new(sequence s)

Return a text pattern

Parameters:

pattern : a sequence representing a text string pattern1.

Returns:

A the same pattern.

Comments:

You might wonder why this function even exists. If you use it and is_match you can easily change to the
routines found in std/regex.e. And if using std/regex.e and you restrict yourself to only using regex:new and

Euphoria v4.0 svn3379

Parameters: 425

regex:is_match, you can change to using std/wildcards.e with very little modification to your source code.

Suppose you work for a hotel and you set up a system for looking up guests.

-- The user can use regular expressions to find guests at a hotel...
include std/regex.e as uip -- user input patterns 'uip'
puts(1,"Enter a person to find. You may use regular expressions:")

sequence person_to_find
object pattern
person_to_find = gets(0)
person_to_find_pattern = uip:new(person_to_find[1..$-1])
while sequence(line) do
 line = line[1..$-1]
 if uip:is_match(person_to_find_pattern, line) then
 -- code for telling users the person is there.
 end if
 -- code loads next name into 'line'
end while
close(dbfd)

Later the hotel manager tells you that the users would rather use wildcard matching you need only change the
include line and the prompt for the pattern.

-- This will make things simpler...
include std/wildcard.e as uip -- user input patterns 'uip'.
puts(1,"Enter a person to find. You may use '*' and '?' wildcards:")

See Also: is_match

2.0.0.426 new_extra

include std/map.e
public function new_extra(object the_map_p, integer initial_size_p = 690)

Returns either the supplied map or a new map.

Parameters:

the_map_p : An object, that could be an existing map1.
initial_size_p : An estimate of how many initial elements will be stored in a new map.2.

Returns:

A map, If m is an existing map then it is returned otherwise this returns a new empty map.

Euphoria v4.0 svn3379

Parameters: 426

Comments:

This is used to return a new map if the supplied variable isn't already a map.

Example 1:

map m = new_extra(foo()) -- If foo() returns a map it is used, otherwise
 -- a new map is created.

2.0.0.427 new_from_kvpairs

include std/map.e
public function new_from_kvpairs(sequence kv_pairs)

Converts a set of Key-Value pairs to a map.

Parameters:

kv_pairs : A seqeuence containing any number of subsequences that have the format {KEY,
VALUE}. These are loaded into a new map which is then returned by this function.

1.

Returns:

A map, containing the data from kv_pairs

Example 1:

map m1 = new_from_kvpairs({
 {"application", "Euphoria"},
 {"version", "4.0"},
 {"genre", "programming language"},
 {"crc", 0x4F71AE10}
 })

v = map:get(m1, "application") --> "Euphoria"

2.0.0.428 new_from_string

include std/map.e
public function new_from_string(sequence kv_string)

Converts a set of Key-Value pairs contained in a string to a map.

Euphoria v4.0 svn3379

Parameters: 427

Parameters:

kv_string : A string containing any number of lines that have the format KEY=VALUE. These
are loaded into a new map which is then returned by this function.

1.

Returns:

A map, containing the data from kv_string

Comment:

This function actually calls keyvalues() to convert the string to key-value pairs, which are then used to
create the map.

Example 1:

Given that a file called "xyz.config" contains the lines ...

application = Euphoria,
version = 4.0,
genre = "programming language",
crc = 4F71AE10

map m1 = new_from_string(read_file("xyz.config", TEXT_MODE))

printf(1, "%s\n", {map:get(m1, "application")}) --> "Euphoria"
printf(1, "%s\n", {map:get(m1, "genre")}) --> "programming language"
printf(1, "%s\n", {map:get(m1, "version")}) --> "4.0"
printf(1, "%s\n", {map:get(m1, "crc")}) --> "4F71AE10"

2.0.0.429 new_time

include std/datetime.e
public function new_time(integer hour, integer minute, atom second)

Create a new datetime value with a date of zeros.

Parameters:

hour : is the hour (0-23)1.
minute : is the minute (0-59)2.
second : is the second (0-59)3.

Euphoria v4.0 svn3379

Parameters: 428

Example 1:

dt = new_time(10, 30, 55)
dt is 10:30:55 AM

See Also:

from_date, from_unix, now, new

2.0.0.430 next_prime

include std/primes.e
public function next_prime(integer n, object fail_signal_p = - 1, atom time_out_p = 1)

Return the next prime number on or after the supplied number

Parameters:

n : an integer, the starting point for the search1.
fail_signal_p : an integer, used to signal error. Defaults to -1.2.

Returns:

An integer, which is prime only if it took less than 1 second to determine the next prime greater or equal to n.

Comments:

The default value of -1 will alert you about an invalid returned value, since a prime not less than n is
expected. However, you can pass another value for this parameter.

Example 1:

? next_prime(997)
-- On a very slow computer, you might get -997, but 1003 is expected.

See Also:

calc_primes

Euphoria v4.0 svn3379

Parameters: 429

2.0.0.431 not_bits

<built-in> function not_bits(object a)

Perform the logical NOT operation on each bit in an object. A bit in the result will be 1 when the
corresponding bit in x1 is 0, and will be 0 when the corresponding bit in x1 is 1.

Parameters:

a : the object to invert the bits of.1.

Returns:

An object, the same shape as a. Each bit in an atom of the result is the reverse of the corresponding bit inside
a.

Comments:

The argument to this function may be an atom or a sequence.

The argument must be representable as a 32-bit number, either signed or unsigned.

If you intend to manipulate full 32-bit values, you should declare your variables as atom, rather than integer.
Euphoria's integer type is limited to 31-bits.

Results are treated as signed numbers. They will be negative when the highest-order bit is 1.

A simple equality holds for an atom a: a + not_bits(a) = -1.

Example 1:

a = not_bits(#000000F7)
-- a is -248 (i.e. FFFFFF08 interpreted as a negative number)

See Also:

and_bits, or_bits, xor_bits, int_to_bits

2.0.0.432 now

include std/datetime.e
public function now()

Euphoria v4.0 svn3379

Parameters: 430

Create a new datetime value initialized with the current date and time

Returns:

A sequence, more precisely a datetime corresponding to the current moment in time.

Example 1:

dt = now()
-- dt is the current date and time

See Also:

from_date, from_unix, new, new_time, now_gmt

2.0.0.433 now_gmt

include std/datetime.e
public function now_gmt()

Create a new datetime value that falls into the Greenwich Mean Time (GMT) timezone. This function will
return a datetime that is GMT, no matter what timezone the system is running under.

Example 1:

dt = now_gmt()
-- If local time was July 16th, 2008 at 10:34pm CST
-- dt would be July 17th, 2008 at 03:34pm GMT

See Also:

now

2.0.0.434 number

include std/locale.e
public function number(object num)

Converts a number into a string representing that number.

Euphoria v4.0 svn3379

Parameters: 431

Parameters:

num : an atom, the value to write out.1.

Returns:

A sequence, a string that writes out num.

Example 1:

-- Assuming an en_US locale
? number(1020.5) -- returns "1,020.50"

See Also:

set, money

2.0.0.435 number_array

include std/types.e
public type number_array(object x)

Returns:

TRUE if argument is a sequence that only contains zero or more numbers.

Example 1:

number_array(-1) -- FALSE (not a sequence)
number_array("abc") -- TRUE (all single characters)
number_array({1, 2, "abc"}) -- FALSE (contains a sequence)
number_array(1, 2, 9.7}) -- TRUE
number_array(1, 2, 'a'}) -- TRUE
number_array({}) -- TRUE

2.0.0.436 object

<built-in> function object(object x)

Returns information about the object type of the supplied argument x.

Euphoria v4.0 svn3379

Parameters: 432

Returns:

An integer.
OBJ_UNASSIGNED if x has not been assigned anything yet.♦
OBJ_INTEGER if x holds an integer value.♦
OBJ_ATOM if x holds a number that is not an integer.♦
OBJ_SEQUENCE if x holds a sequence value.♦

1.

Example 1:

? object(1) --> OBJ_INTEGER
? object(1.1) --> OBJ_ATOM
? object("1") --> OBJ_SEQUENCE
object x
? object(x) --> OBJ_UNASSIGNED

See Also:

sequence(), integer(), atom()

2.0.0.437 open

<built-in> function open(sequence path, sequence mode, integer cleanup = 0)

Open a file or device, to get the file number.

Parameters:

path : a string, the path to the file or device to open.1.
mode : a string, the mode being used o open the file.2.
cleanup : an integer, if 0, then the file must be manually closed by the coder. If 1, then the file will
be closed when either the file handle's references goes to 0, or if called as a parameter to delete().

3.

Returns:

A small integer, -1 on failure, else 0 or more.

Errors:

There is a limit on the number of files that can be simultaneously opened, currently 40. If this limit is reached,
the next attempt to open() a file will error out.

The length of path should not exceed 1,024 characters.

Euphoria v4.0 svn3379

Parameters: 433

Comments:

Possible modes are:

"r" -- open text file for reading•
"rb" -- open binary file for reading•
"w" -- create text file for writing•
"wb" -- create binary file for writing•
"u" -- open text file for update (reading and writing)•
"ub" -- open binary file for update•
"a" -- open text file for appending•
"ab" -- open binary file for appending•

Files opened for read or update must already exist. Files opened for write or append will be created if
necessary. A file opened for write will be set to 0 bytes. Output to a file opened for append will start at the end
of file.

On Windows, output to text files will have carriage-return characters automatically added before linefeed
characters. On input, these carriage-return characters are removed. A control-Z character (ASCII 26) will
signal an immediate end of file.

I/O to binary files is not modified in any way. Any byte values from 0 to 255 can be read or written. On Unix,
all files are binary files, so "r" mode and "rb" mode are equivalent, as are "w" and "wb", "u" and "ub", and "a"
and "ab".

Some typical devices that you can open on Windows are:

"CON" -- the console (screen)•
"AUX" -- the serial auxiliary port•
"COM1" -- serial port 1•
"COM2" -- serial port 2•
"PRN" -- the printer on the parallel port•
"NUL" -- a non-existent device that accepts and discards output•

Close a file or device when done with it, flushing out any still-buffered characters prior.

WIN32 and Unix: Long filenames are fully supported for reading and writing and creating.

WIN32: Be careful not to use the special device names in a file name, even if you add an extension. e.g.
CON.TXT, CON.DAT, CON.JPG etc. all refer to the CON device, not a file.

Example 1:

integer file_num, file_num95
sequence first_line
constant ERROR = 2

Euphoria v4.0 svn3379

Parameters: 434

file_num = open("my_file", "r")
if file_num = -1 then
 puts(ERROR, "couldn't open my_file\n")
else
 first_line = gets(file_num)
end if

file_num = open("PRN", "w") -- open printer for output

-- on Windows 95:
file_num95 = open("big_directory_name\\very_long_file_name.abcdefg",
 "r")
if file_num95 != -1 then
 puts(STDOUT, "it worked!\n")
end if

2.0.0.438 open_dll

include std/dll.e
public function open_dll(sequence file_name)

Open a Windows dynamic link library (.dll) file, or a Unix shared library (.so) file.

Parameters:

file_name : a sequence, the name of the shared library to open or a sequence of filename's to try to
open.

1.

Returns:

An atom, actually a 32-bit address. 0 is returned if the .dll can't be found.

Errors:

The length of file_name (or any filename contained therein) should not exceed 1,024 characters.

Comments:

file_name can be a relative or an absolute file name. Most operating systems will use the normal search
path for locating non-relative files.

file_name can be a list of file names to try. On different Linux platforms especially, the filename will not
always be the same. For instance, you may wish to try opening libmylib.so, libmylib.so.1, libmylib.so.1.0,
libmylib.so.1.0.0. If given a sequence of file names to try, the first successful library loaded will be returned.
If no library could be loaded, 0 will be returned after exhausting the entire list of file names.

Euphoria v4.0 svn3379

Parameters: 435

The value returned by open_dll() can be passed to define_c_proc(), define_c_func(), or
define_c_var().

You can open the same .dll or .so file multiple times. No extra memory is used and you'll get the same number
returned each time.

Euphoria will close the .dll/.so for you automatically at the end of execution.

Example 1:

atom user32
user32 = open_dll("user32.dll")
if user32 = 0 then
 puts(1, "Couldn't open user32.dll!\n")
end if

Example 2:

atom mysql_lib
mysql_lib = open_dll({"libmysqlclient.so", "libmysqlclient.so.15", "libmysqlclient.so.15.0"})
if mysql_lib = 0 then
 puts(1, "Couldn't find the mysql client library\n")
end if

See Also:

define_c_func, define_c_proc, define_c_var, c_func, c_proc

2.0.0.439 operation

include std/sets.e
public type operation(object s)

Returns 1 if the data represents a map from the product of two sets to a third one.

Comments:

An operation from FxG to H is defined as a sequence of mappings from G to H, plus the cardinals of the sets
F, G and H. If the input data is consistent with this description, 1 is returned, else 0.

Example 1:

sequence s = {{{2, 3}, {3, 1}, {1, 2}, {2, 3}, {3, 1}}, {5,2,3}}
-- s represents the addition modulo 3 from {0, 1, 2, 3, 4} x {1, 2} to {0, 1, 2}
? operation(s) -- prints out 1.

Euphoria v4.0 svn3379

Parameters: 436

2.0.0.440 optimize

include std/map.e
public procedure optimize(map the_map_p, integer max_p = 25, atom grow_p = 1.333)

Widens a map to increase performance.

Parameters:

the_map_p : the map being optimized1.
max_p : an integer, the maximum desired size of a bucket. Default is 25. This must be 3 or higher.2.
grow_p : an atom, the factor to grow the number of buckets for each iteration of rehashing. Default
is 1.333. This must be greater than 1.

3.

Comments:

This rehashes the map until either the maximum bucket size is less than the desired maximum or the
maximum bucket size is less than the largest size statistically expected (mean + 3 standard deviations).

See Also:

statistics, rehash

2.0.0.441 option_spec

include std/regex.e
public type option_spec(object o)

Regular expression option specification type

Although the functions do not use this type (they return an error instead), you can use this to check if your
routine is receiving something sane.

2.0.0.442 option_spec_to_string

include std/regex.e
public function option_spec_to_string(option_spec o)

Converts an option spec to a string.

Euphoria v4.0 svn3379

Parameters: 437

This can be useful for debugging what options were passed in. Without it you have to convert a number to hex
and lookup the constants in the source code.

2.0.0.443 option_switches

<built-in> function option_switches()

Retrieves the list of switches passed to the interpreter on the command line.

Returns:

A sequence, of strings, each containing a word related to switches.

Comments:

All switches are recorded in upper case.

Example 1:

euiw -d helLo
-- will result in
-- option_switches() being {"-D","helLo"}

See Also:

Command line switches

2.0.0.444 or_all

include std/math.e
public function or_all(object a)

Or's together all atoms in the argument, no matter how deeply nested.

Parameters:

values : an object, all atoms of which will be added up, no matter how nested.1.

Euphoria v4.0 svn3379

Parameters: 438

Returns:

An atom, the result of or'ing all atoms in flatten(values).

Comments:

This function may be applied to an atom or to all elements of a sequence. It performs or_bits() operations
repeatedly.

Example 1:

a = sum({10, 7, 35})
-- a is 47

See Also:

can_add, sum, product, or_bits

2.0.0.445 or_bits

<built-in> function or_bits(object a, object b)

Perform the logical OR operation on corresponding bits in two objects. A bit in the result will be 1 only if the
corresponding bits in both arguments are both 0.

Parameters:

a : one of the objects involved1.
b : the second object2.

Returns:

An object, whose shape depends on the shape of both arguments. Each atom in this object is obtained by
logical XOR between atoms on both objects.

Comments:

The arguments must be representable as 32-bit numbers, either signed or unsigned.

If you intend to manipulate full 32-bit values, you should declare your variables as atom, rather than integer.
Euphoria's integer type is limited to 31-bits.

Euphoria v4.0 svn3379

Parameters: 439

Results are treated as signed numbers. They will be negative when the highest-order bit is 1.

Example 1:

a = or_bits(#0F0F0000, #12345678)
-- a is #1F3F5678

Example 2:

a = or_bits(#FF, {#123456, #876543, #2211})
-- a is {#1234FF, #8765FF, #22FF}

See Also:

and_bits, xor_bits, not_bits, int_to_bits

2.0.0.446 pad_head

include std/sequence.e
public function pad_head(sequence target, integer size, object ch = ' ')

Pad the beginning of a sequence with an object so as to meet a minimum length condition.

Parameters:

target : the sequence to pad.1.
size : an integer, the target minimum size for target2.
padding : an object, usually the character to pad to (defaults to ' ').3.

Returns:

A sequence, either target if it was long enough, or a sequence of length size whose last elements are
those of target and whose first few head elements all equal padding.

Comments:

pad_head() will not remove characters. If length(target) is greater than size, this function simply
returns target. See head() if you wish to truncate long sequences.

Euphoria v4.0 svn3379

Parameters: 440

Example 1:

s = pad_head("ABC", 6)
-- s is " ABC"

s = pad_head("ABC", 6, '-')
-- s is "---ABC"

See Also:

trim_head, pad_tail, head

2.0.0.447 pad_tail

include std/sequence.e
public function pad_tail(sequence target, integer size, object ch = ' ')

Pad the end of a sequence with an object so as to meet a minimum length condition.

Parameters:

target : the sequence to pad.1.
size : an integer, the target minimum size for target2.
padding : an object, usually the character to pad to (defaults to ' ').3.

Returns:

A sequence, either target if it was long enough, or a sequence of length size whose first elements are
those of target and whose last few head elements all equal padding.

Comments:

pad_tail() will not remove characters. If length(target) is greater than size, this function simply
returns target. See tail() if you wish to truncate long sequences.

Comments:

pad_tail() will not remove characters. If length(str) is greater than params, this function simply
returns str. see tail() if you wish to truncate long sequences.

Euphoria v4.0 svn3379

Parameters: 441

Example 1:

s = pad_tail("ABC", 6)
-- s is "ABC "

s = pad_tail("ABC", 6, '-')
-- s is "ABC---"

See Also:

trim_tail, pad_head, tail

2.0.0.448 page_aligned_address

include std/machine.e
public type page_aligned_address(atom a)

page aligned address type

2.0.0.449 pairs

include std/map.e
public function pairs(map the_map_p, integer sorted_result = 0)

Return all key/value pairs in a map.

Parameters:

the_map_p : the map to get the data from1.
sorted_result : optional integer. 0 [default] means do not sort the output and 1 means to sort the
output before returning.

2.

Returns:

A sequence, of all key/value pairs stored in the_map_p. Each pair is a sub-sequence in the form {key,
value}

Comments:

If sorted_result is not used, the order of the values returned is not predicable.

Euphoria v4.0 svn3379

Parameters: 442

Example 1:

map the_map_p
the_map_p = new()
put(the_map_p, 10, "ten")
put(the_map_p, 20, "twenty")
put(the_map_p, 30, "thirty")
put(the_map_p, 40, "forty")

sequence keyvals
keyvals = pairs(the_map_p) -- might be {{20,"twenty"},{40,"forty"},{10,"ten"},{30,"thirty"}}
keyvals = pairs(the_map_p, 1) -- will be {{10,"ten"},{20,"twenty"},{30,"thirty"},{40,"forty"}}

See Also:

get, keys, values

2.0.0.450 parse

include std/datetime.e
public function parse(sequence val, sequence fmt = "%Y-%m-%d %H:%M:%S")

Parse a datetime string according to the given format.

Parameters:

val : string datetime value1.
fmt : datetime format. Default is "%Y-%m-%d %H:%M:%S"2.

Returns:

A datetime, value.

Comments:

Only a subset of the format specification is currently supported:

%d -- day of month (e.g, 01)•
%H -- hour (00..23)•
%m -- month (01..12)•
%M -- minute (00..59)•
%S -- second (00..60)•
%Y -- year•

More format codes will be added in future versions.

Euphoria v4.0 svn3379

Parameters: 443

All non-format characters in the format string are ignored and are not matched against the input string.

All non-digits in the input string are ignored.

Example 1:

datetime d = parse("05/01/2009 10:20:30", "%m/%d/%Y %H:%M:%S")

See Also:

format

2.0.0.451 parse

include std/net/url.e
public function parse(sequence url, integer querystring_also = 0)

Parse a URL returning its various elements.

Parameters:

url: URL to parse1.
querystring_also: Parse the query string into a map also?2.

Returns:

A multi-element sequence containing:

protocol1.
host name2.
port3.
path4.
user name5.
password6.
query string7.

Or, zero if the URL could not be parsed.

Notes:

If the host name, port, path, username, password or query string are not part of the URL they will be returned
as an integer value of zero.

Euphoria v4.0 svn3379

Parameters: 444

Example 1:

sequence parsed = parse("http://user:pass@www.debian.org:80/index.html?name=John&age=39")
-- parsed is
-- {
-- "http",
-- "www.debian.org",
-- 80,
-- "/index.html",
-- "user",
-- "pass",
-- "name=John&age=39"
-- }

2.0.0.452 parse_commandline

include std/cmdline.e
public function parse_commandline(sequence cmdline)

Parse a command line string breaking it into a sequence of command line options.

Parameters:

cmdline : Command line sequence (string)1.

Returns:

A sequence, of command line options

Example 1:

sequence opts = parse_commandline("-v -f '%Y-%m-%d %H:%M')
-- opts = { "-v", "-f", "%Y-%m-%d %H:%M" }

See Also:

build_commandline

In the cursor constants below, the second and fourth hex digits (from the left) determine the top and bottom
row of pixels in the cursor. The first digit controls whether the cursor will be visible or not. For example,
#0407 turns on the 4th through 7th rows.

Euphoria v4.0 svn3379

Parameters: 445

See Also:

cursor

2.0.0.453 parse_ip_address

include std/net/common.e
public function parse_ip_address(sequence address, integer port = - 1)

Converts a text "address:port" into {"address", port} format.

Parameters:

address : ip address to connect, optionally with :PORT at the end1.
port : optional, if not specified you may include :PORT in the address parameter otherwise the
default port 80 is used.

2.

Comments:

If port is supplied, it overrides any ":PORT" value in the input address.

Returns:

A sequence, of two elements: "address" and integer port number.

Example 1:

addr = parse_ip_address("11.1.1.1") --> {"11.1.1.1", 80} -- default port
addr = parse_ip_address("11.1.1.1:110") --> {"11.1.1.1", 110}
addr = parse_ip_address("11.1.1.1", 345) --> {"11.1.1.1", 345}

2.0.0.454 parse_querystring

include std/net/url.e
public function parse_querystring(object query_string)

Parse a query string into a map

Euphoria v4.0 svn3379

Parameters: 446

Parameters:

query_string: Query string to parse1.

Returns:

map containing the key/value pairs

Example 1:

map qs = parse_querystring("name=John&age=18")
printf(1, "%s is %s years old\n", { map:get(qs, "name"), map:get(qs, "age) })

2.0.0.455 parse_recvheader

include std/net/http.e
public procedure parse_recvheader(sequence header)

Populates the internal sequence recvheader from the flat string header.

Parameters:

header : a string, the header data1.

Comments:

This must be called prior to calling get_recvheader().

2.0.0.456 parse_url

include std/net/common.e
public function parse_url(sequence url)

Parse a common URL. Currently supported URLs are http(s), ftp(s), gopher(s) and mailto.

Parameters:

url : url to be parsed1.

Euphoria v4.0 svn3379

Parameters: 447

Returns:

A sequence, containing the URL details. You should use the URL_ constants to access the values of the
returned sequence. You should first check the protocol (URL_PROTOCOL) that was returned as the data
contained in the return value can be of different lengths.

On a parse error, -1 will be returned.

Example 1:

object url_data = parse_url("http://john.com/index.html?name=jeff")
-- url_data = {
-- "http://john.com/index.html?name=jeff", -- URL_ENTIRE
-- "http", -- URL_PROTOCOL
-- "john.com", -- URL_DOMAIN
-- "/index.html", -- URL_PATH
-- "?name=jeff" -- URL_QUERY
-- }

url_data = parse_url("mailto:john@mail.doe.com?subject=Hello%20John%20Doe")
-- url_data = {
-- "mailto:john@mail.doe.com?subject=Hello%20John%20Doe",
-- "mailto",
-- "john@mail.doe.com",
-- "john",
-- "mail.doe.com",
-- "?subject=Hello%20John%20Doe"
-- }

Based on EuNet project, version 1.3.2 at SourceForge.

2.0.0.457 patch

include std/sequence.e
public function patch(sequence target, sequence source, integer start, object filler = ' ')

Changes a sequence slice, possibly with padding

Parameters:

target : a sequence, a modified copy of which will be returned1.
source : a sequence, to be patched inside or outside target2.
start : an integer, the position at which to patch3.
filler : an object, used for filling gaps. Defaults to ' '4.

Euphoria v4.0 svn3379

Parameters: 448

Returns:

A sequence, which looks like target, but a slice starting at start equals source.

Comments:

In some cases, this call will result in the same result as replace().

If source doesn't fit into target because of the lengths and the supplied start value, gaps will be
created, and filler is used to fill them in.

Notionally, target has an infinite amount of filler on both sides, and start counts position relative to
where target actually starts. Then, notionally, a replace() operation is performed.

Example 1:

sequence source = "abc", target = "John Doe"
sequence s = patch(target, source, 11,'0')
-- s is now "John Doe00abc"

Example 2:

sequence source = "abc", target = "John Doe"
sequence s = patch(target, source, -1)
-- s is now "abcohn Doe"
Note that there was no gap to fill.
Since -1 = 1 - 2, the patching started 2 positions before the initial 'J'.

Example 3:

sequence source = "abc", target = "John Doe"
sequence s = patch(target, source, 6)
-- s is now "John Dabc"

See Also:

mid, replace

2.0.0.458 pathinfo

include std/filesys.e
public function pathinfo(sequence path, integer std_slash = 0)

Parse a fully qualified pathname.

Euphoria v4.0 svn3379

Parameters: 449

Parameters:

path : a sequence, the path to parse1.

Returns:

A sequence, of length 5. Each of these elements is a string:

The path name•
The full unqualified file name•
the file name, without extension•
the file extension•
the drive id•

Comments:

The host operating system path separator is used in the parsing.

Example 1:

-- WIN32
info = pathinfo("C:\\euphoria\\docs\\readme.txt")
-- info is {"C:\\euphoria\\docs", "readme.txt", "readme", "txt", "C"}

Example 2:

-- Unix variants
info = pathinfo("/opt/euphoria/docs/readme.txt")
-- info is {"/opt/euphoria/docs", "readme.txt", "readme", "txt", ""}

Example 3:

-- no extension
info = pathinfo("/opt/euphoria/docs/readme")
-- info is {"/opt/euphoria/docs", "readme", "readme", "", ""}

See Also:

driveid, dirname, filename, fileext, PATH_BASENAME, PATH_DIR, PATH_DRIVEID, PATH_FILEEXT,
PATH_FILENAME

Euphoria v4.0 svn3379

Parameters: 450

2.0.0.459 pathname

include std/filesys.e
public function pathname(sequence path)

Return the directory name of a fully qualified filename

Parameters:

path : the path from which to extract information1.
pcd : If not zero and there is no directory name in path then "." is returned. The default (0) will just
return any directory name in path.

2.

Returns:

A sequence, the full file name part of path.

Comments:

The host operating system path separator is used.

Example 1:

fname = dirname("/opt/euphoria/docs/readme.txt")
-- fname is "/opt/euphoria/docs"

See Also:

driveid, filename, pathinfo

2.0.0.460 pcre_copyright

include info.e
public function pcre_copyright()

Get the copyright statement for PCRE.

Returns:

A sequence, containing 2 sequences: product name and copyright message.

Euphoria v4.0 svn3379

Parameters: 451

See Also:

euphoria_copyright()

2.0.0.461 peek

<built-in> function peek(object addr_n_length)

Fetches a byte, or some bytes, from an address in memory.

Parameters:

addr_n_length : an object, either of
an atom addr -- to fetch one byte at addr, or♦
a pair {addr,len} -- to fetch len bytes at addr♦

1.

Returns:

An object, either an integer if the input was a single address, or a sequence of integers if a sequence was
passed. In both cases, integers returned are bytes, in the range 0..255.

Errors:

Peeking in memory you don't own may be blocked by the OS, and cause a machine exception. If you use the
define safe these routines will catch these problems with a EUPHORIA error.

When supplying a {address, count} sequence, the count must not be negative.

Comments:

Since addresses are 32-bit numbers, they can be larger than the largest value of type integer (31-bits).
Variables that hold an address should therefore be declared as atoms.

It is faster to read several bytes at once using the second form of peek() than it is to read one byte at a time in
a loop. The returned sequence has the length you asked for on input.

Remember that peek() takes just one argument, which in the second form is actually a 2-element sequence.

Example 1:

-- The following are equivalent:
-- method 1
s = {peek(100), peek(101), peek(102), peek(103)}

Euphoria v4.0 svn3379

Parameters: 452

-- method 2
s = peek({100, 4})

See Also:

poke, peeks, peek4u, allocate, free, peek2u

2.0.0.462 peek

include std/safe.e
override function peek(object

2.0.0.463 peek2s

<built-in> function peek2s(object addr_n_length)

Fetches a signed word, or some signed words , from an address in memory.

Parameters:

addr_n_length : an object, either of
an atom addr -- to fetch one word at addr, or♦
a pair { addr, len}, to fetch len words at addr♦

1.

Returns:

An object, either an integer if the input was a single address, or a sequence of integers if a sequence was
passed. In both cases, integers returned are double words, in the range -32768..32767.

Errors:

Peeking in memory you don't own may be blocked by the OS, and cause a machine exception. If you use the
define safe these routines will catch these problems with a EUPHORIA error.

When supplying a {address, count} sequence, the count must not be negative.

Comments:

Since addresses are 32-bit numbers, they can be larger than the largest value of type integer (31-bits).
Variables that hold an address should therefore be declared as atoms.

Euphoria v4.0 svn3379

Parameters: 453

It is faster to read several words at once using the second form of peek() than it is to read one word at a time
in a loop. The returned sequence has the length you asked for on input.

Remember that peek2s() takes just one argument, which in the second form is actually a 2-element
sequence.

The only difference between peek2s() and peek2u() is how words with the highest bit set are returned.
peek2s() assumes them to be negative, while peek2u() just assumes them to be large and positive.

Example 1:

-- The following are equivalent:
-- method 1
s = {peek2s(100), peek2s(102), peek2s(104), peek2s(106)}

-- method 2
s = peek2s({100, 4})

See Also:

poke2, peeks, peek4s, allocate, free peek2u

2.0.0.464 peek2s

include std/safe.e
override function peek2s(object

2.0.0.465 peek2u

<built-in> function peek2u(object addr_n_length)

Fetches an unsigned word, or some unsigned words, from an address in memory.

Parameters:

addr_n_length : an object, either of
an atom addr -- to fetch one double word at addr, or♦
a pair {addr,len} -- to fetch len double words at addr♦

1.

Euphoria v4.0 svn3379

Parameters: 454

Returns:

An object, either an integer if the input was a single address, or a sequence of integers if a sequence was
passed. In both cases, integers returned are words, in the range 0..65535.

Errors:

Peek() in memory you don't own may be blocked by the OS, and cause a machine exception. If you use the
define safe these routines will catch these problems with a EUPHORIA error.

When supplying a {address, count} sequence, the count must not be negative.

Comments:

Since addresses are 32-bit numbers, they can be larger than the largest value of type integer (31-bits).
Variables that hold an address should therefore be declared as atoms.

It is faster to read several words at once using the second form of peek() than it is to read one word at a time
in a loop. The returned sequence has the length you asked for on input.

Remember that peek2u() takes just one argument, which in the second form is actually a 2-element
sequence.

The only difference between peek2s() and peek2u() is how words with the highest bit set are returned.
peek2s() assumes them to be negative, while peek2u() just assumes them to be large and positive.

Example 1:

-- The following are equivalent:
-- method 1
Get 4 2-byte numbers starting address 100.
s = {peek2u(100), peek2u(102), peek2u(104), peek2u(106)}

-- method 2
Get 4 2-byte numbers starting address 100.
s = peek2u({100, 4})

See Also:

poke2, peek, peek2s, allocate, free peek4u

2.0.0.466 peek2u

include std/safe.e
override function peek2u(object

Euphoria v4.0 svn3379

Parameters: 455

2.0.0.467 peek4s

<built-in> function peek4s(object addr_n_length)

Fetches a signed double words, or some signed double words, from an address in memory.

Parameters:

addr_n_length : an object, either of
an atom addr -- to fetch one double word at addr, or♦
a pair { addr, len } -- to fetch len double words at addr♦

1.

Returns:

An object, either an atom if the input was a single address, or a sequence of atoms if a sequence was passed.
In both cases, atoms returned are double words, in the range -power(2,31)..power(2,31)-1.

Errors:

Peeking in memory you don't own may be blocked by the OS, and cause a machine exception. If you use the
define safe these routines will catch these problems with a EUPHORIA error.

When supplying a {address, count} sequence, the count must not be negative.

Comments:

Since addresses are 32-bit numbers, they can be larger than the largest value of type integer (31-bits).
Variables that hold an address should therefore be declared as atoms.

It is faster to read several double words at once using the second form of peek() than it is to read one double
word at a time in a loop. The returned sequence has the length you asked for on input.

Remember that peek4s() takes just one argument, which in the second form is actually a 2-element
sequence.

The only difference between peek4s() and peek4u() is how double words with the highest bit set are
returned. peek4s() assumes them to be negative, while peek4u() just assumes them to be large and positive.

Euphoria v4.0 svn3379

Parameters: 456

Example 1:

-- The following are equivalent:
-- method 1
s = {peek4s(100), peek4s(104), peek4s(108), peek4s(112)}

-- method 2
s = peek4s({100, 4})

See Also:

poke4, peeks, peek4u, allocate, free, peek2s

2.0.0.468 peek4s

include std/safe.e
override function peek4s(object

2.0.0.469 peek4u

<built-in> function peek4u(object addr_n_length)

Fetches an unsigned double word, or some unsigned double words, from an address in memory.

Parameters:

addr_n_length : an object, either of
an atom addr -- to fetch one double word at addr, or♦
a pair {addr,len} -- to fetch len double words at addr♦

1.

Returns:

An object, either an atom if the input was a single address, or a sequence of atoms if a sequence was passed.
In both cases, atoms returned are double words, in the range 0..power(2,32)-1.

Errors:

Peek() in memory you don't own may be blocked by the OS, and cause a machine exception. If you use the
define safe these routines will catch these problems with a EUPHORIA error.

When supplying a {address, count} sequence, the count must not be negative.

Euphoria v4.0 svn3379

Parameters: 457

Comments:

Since addresses are 32-bit numbers, they can be larger than the largest value of type integer (31-bits).
Variables that hold an address should therefore be declared as atoms.

It is faster to read several double words at once using the second form of peek() than it is to read one double
word at a time in a loop. The returned sequence has the length you asked for on input.

Remember that peek4u() takes just one argument, which in the second form is actually a 2-element
sequence.

The only difference between peek4s() and peek4u() is how double words with the highest bit set are
returned. peek4s() assumes them to be negative, while peek4u() just assumes them to be large and
positive.

Example 1:

-- The following are equivalent:
-- method 1
s = {peek4u(100), peek4u(104), peek4u(108), peek4u(112)}

-- method 2
s = peek4u({100, 4})

See Also:

poke4, peek, peek4s, allocate, free, peek2u

2.0.0.470 peek4u

include std/safe.e
override function peek4u(object

2.0.0.471 peek_end

include std/stack.e
public function peek_end(stack sk, integer idx = 1)

Gets an object, relative to the end, from a stack.

Parameters:

sk : the stack to get from.1.
idx : integer. The n-th item from the end to get from the stack. The default is 1.2.

Euphoria v4.0 svn3379

Parameters: 458

Returns:

An item, from the stack, which is not removed from the stack.

Errors:

If the stack is empty, an error occurs.•
If the idx is greater than the number of items in the stack, an error occurs.•

Comments:

For FIFO stacks (queues), the end item is the newest item in the stack.•
For FILO stacks, the end item is the oldest item in the stack.•

When idx is omitted the 'end' of the stack is returned. When idx is supplied, it represents the N-th item from
the end to be returned. Thus an idx of 2 returns the 2nd item from the end, a value of 3 returns the 3rd item
from the end, etc ...

Example 1:

stack sk = new(FIFO)
push(sk, 1)
push(sk, 2)
push(sk, 3)
? peek_end(sk) -- 3
? peek_end(sk,2) -- 2
? peek_end(sk,3) -- 1
? peek_end(sk,4) -- *error*
? peek_end(sk, size(sk)) -- 3 (top item)

Example 2:

stack sk = new(FILO)
push(sk, 1)
push(sk, 2)
push(sk, 3)
? peek_end(sk) -- 1
? peek_end(sk,2) -- 2
? peek_end(sk,3) -- 3
? peek_end(sk,4) -- *error*
? peek_end(sk, size(sk)) -- 3 (top item)

See Also:

pop, top, is_empty, size, peek_top

Euphoria v4.0 svn3379

Parameters: 459

2.0.0.472 peek_string

<built-in> procedure peek_string(atom addr)

Read an ASCII string in RAM, starting from a supplied address.

Parameters:

addr : an atom, the address at which to start reading.1.

Returns:

A sequence, of bytes, the string that could be read.

Errors:

Further, peek() memory that doesn't belong to your process is something the operating system could prevent,
and you'd crash with a machine level exception.

Comments:

An ASCII string is any sequence of bytes and ends with a 0 byte. If you peek_string() at some place
where there is no string, you will get a sequence of garbage.

See Also:

peek, peek_wstring, allocate_string

2.0.0.473 peek_string

include std/safe.e
override function peek_string(object

2.0.0.474 peek_top

include std/stack.e
public function peek_top(stack sk, integer idx = 1)

Gets an object, relative to the top, from a stack.

Euphoria v4.0 svn3379

Parameters: 460

Parameters:

sk : the stack to get from.1.
idx : integer. The n-th item to get from the stack. The default is 1.2.

Returns:

An item, from the stack, which is not removed from the stack.

Errors:

If the stack is empty, an error occurs.•
If the idx is greater than the number of items in the stack, an error occurs.•

Comments:

This is identical to pop except that it does not remove the item.

For FIFO stacks (queues), the top item is the oldest item in the stack.•
For FILO stacks, the top item is the newest item in the stack.•

When idx is omitted the 'top' of the stack is returned. When idx is supplied, it represents the N-th item from
the top to be returned. Thus an idx of 2 returns the 2nd item from the top, a value of 3 returns the 3rd item
from the top, etc ...

Example 1:

stack sk = new(FIFO)
push(sk, 1)
push(sk, 2)
push(sk, 3)
? peek_top(sk) -- 1
? peek_top(sk,2) -- 2
? peek_top(sk,3) -- 3
? peek_top(sk,4) -- *error*
? peek_top(sk, size(sk)) -- 3 (end item)

Example 2:

stack sk = new(FILO)
push(sk, 1)
push(sk, 2)
push(sk, 3)
? peek_top(sk) -- 3
? peek_top(sk,2) -- 2
? peek_top(sk,3) -- 1
? peek_top(sk,4) -- *error*
? peek_top(sk, size(sk)) -- 1 (end item)

Euphoria v4.0 svn3379

Parameters: 461

See Also:

pop, top, is_empty, size, peek_end

2.0.0.475 peek_wstring

include std/machine.e
public function peek_wstring(atom addr)

Return a unicode (utf16) string that are stored at machine address a.

Parameters:

addr : an atom, the address of the string in memory1.

Returns:

The string, at the memory position. The terminator is the null word (two bytes equal to 0).

See Also:

peek_string

2.0.0.476 peeks

<built-in> function peeks(object addr_n_length)

Fetches a byte, or some bytes, from an address in memory.

Parameters:

addr_n_length : an object, either of
an atom addr : to fetch one byte at addr, or♦
a pair {addr,len} : to fetch len bytes at addr♦

1.

Returns:

An object, either an integer if the input was a single address, or a sequence of integers if a sequence was
passed. In both cases, integers returned are bytes, in the range -128..127.

Euphoria v4.0 svn3379

Parameters: 462

Errors:

Peeking in memory you don't own may be blocked by the OS, and cause a machine exception. If you use the
define safe these routines will catch these problems with a EUPHORIA error.

When supplying a {address, count} sequence, the count must not be negative.

Comments:

Since addresses are 32-bit numbers, they can be larger than the largest value of type integer (31-bits).
Variables that hold an address should therefore be declared as atoms.

It is faster to read several bytes at once using the second form of peek() than it is to read one byte at a time in
a loop. The returned sequence has the length you asked for on input.

Remember that peeks() takes just one argument, which in the second form is actually a 2-element sequence.

Example 1:

-- The following are equivalent:
-- method 1
s = {peeks(100), peek(101), peek(102), peek(103)}

-- method 2
s = peeks({100, 4})

See Also:

poke, peek4s, allocate, free, peek2s, peek

2.0.0.477 peeks

include std/safe.e
override function peeks(object

2.0.0.478 pivot

include std/sequence.e
public function pivot(object data_p, object pivot_p = 0)

Returns a sequence of three sub-sequences. The sub-sequences contain all the elements less than the supplied
pivot value, equal to the pivot, and greater than the pivot.

Euphoria v4.0 svn3379

Parameters: 463

Parameters:

data_p : Either an atom or a list. An atom is treated as if it is one-element sequence.1.
pivot_p : An object. Default is zero.2.

Returns:

A sequence, { {less than pivot}, {equal to pivot}, {greater than pivot} }

Comments:

pivot() is used as a split up a sequence relative to a specific value.

Example 1:

? pivot({7, 2, 8.5, 6, 6, -4.8, 6, 6, 3.341, -8, "text"}, 6)
 -- Ans: {{2, -4.8, 3.341, -8}, {6, 6, 6, 6}, {7, 8.5, "text"}}
? pivot({4, 1, -4, 6, -1, -7, 9, 10})
 -- Ans: {{-4, -1, -7}, {}, {4, 1, 6, 9, 10}}
? pivot(5)
 -- Ans: {{}, {}, {5}}

Example 2:

function quiksort(sequence s)
 if length(s) < 2 then
 return s
 end if
 sequence k

 k = pivot(s, s[rand(length(s))])

 return quiksort(k[1]) & k[2] & quiksort(k[3])
end function
sequence t2 = {5,4,7,2,4,9,1,0,4,32,7,54,2,5,8,445,67}
? quiksort(t2) --> {0,1,2,2,4,4,4,5,5,7,7,8,9,32,54,67,445}

2.0.0.479 platform

<built-in> function platform()

Indicates the platform that the program is being executed on.

Euphoria v4.0 svn3379

Parameters: 464

Returns:

An integer,

public constant
 WIN32,
 LINUX,
 FREEBSD,
 OSX,
 SUNOS,
 OPENBSD,
 NETBSD,
 FREEBSD

Comments:

The ifdef statement is much more versatile and in most cases supersedes platform().

platform() used to be the way to execute different code depending on which platform the program is
running on. Additional platforms will be added as Euphoria is ported to new machines and operating
environments.

Example 1:

ifdef WIN32 then
 -- call system Beep routine
 err = c_func(Beep, {0,0})
elsedef
 -- do nothing (Linux/FreeBSD)
end if

See Also:

Platform-Specific Issues, ifdef statement

2.0.0.480 platform_locale

include std/localeconv.e
public constant platform_locale

Euphoria v4.0 svn3379

Parameters: 465

2.0.0.481 platform_name

include info.e
public function platform_name()

Get the platform name

Returns:

A sequence, containing the platform name, i.e. Windows, Linux, DOS, FreeBSD or OS X.

2.0.0.482 poke

<built-in> procedure poke(atom addr, object x)

Stores one or more bytes, starting at a memory location.

Parameters:

addr : an atom, the address at which to store1.
x : an object, either a byte or a non empty sequence of bytes.2.

Errors:

Poke() in memory you don't own may be blocked by the OS, and cause a machine exception. The -D SAFE
option will make poke() catch this sort of issues.

Comments:

The lower 8-bits of each byte value, i.e. remainder(x, 256), is actually stored in memory.

It is faster to write several bytes at once by poking a sequence of values, than it is to write one byte at a time
in a loop.

Writing to the screen memory with poke() can be much faster than using puts() or printf(), but the
programming is more difficult. In most cases the speed is not needed. For example, the Euphoria editor, ed,
never uses poke().

Example 1:

a = allocate(100) -- allocate 100 bytes in memory

-- poke one byte at a time:
poke(a, 97)

Euphoria v4.0 svn3379

Parameters: 466

poke(a+1, 98)
poke(a+2, 99)

-- poke 3 bytes at once:
poke(a, {97, 98, 99})

Example 2:

demo/callmach.ex

See Also:

peek, peeks, poke4, allocate, free, poke2, call, mem_copy, mem_set

2.0.0.483 poke

include std/safe.e
override procedure poke(atom

2.0.0.484 poke2

<built-in> procedure poke2(atom addr, object x)

Stores one or more words, starting at a memory location.

Parameters:

addr : an atom, the address at which to store1.
x : an object, either a word or a non empty sequence of words.2.

Errors:

Poke() in memory you don't own may be blocked by the OS, and cause a machine exception. If you use the
define safe these routines will catch these problems with a EUPHORIA error.

Comments:

There is no point in having poke2s() or poke2u(). For example, both 32768 and -32768 are stored as
#F000 when stored as words. It's up to whoever reads the value to figure it out.

It is faster to write several words at once by poking a sequence of values, than it is to write one words at a
time in a loop.

Euphoria v4.0 svn3379

Parameters: 467

Writing to the screen memory with poke2() can be much faster than using puts() or printf(), but the
programming is more difficult. In most cases the speed is not needed. For example, the Euphoria editor, ed,
never uses poke2().

The 2-byte values to be stored can be negative or positive. You can read them back with either peek2s() or
peek2u(). Actually, only remainder(x,65536) is being stored.

Example 1:

a = allocate(100) -- allocate 100 bytes in memory

-- poke one 2-byte value at a time:
poke2(a, 12345)
poke2(a+2, #FF00)
poke2(a+4, -12345)

-- poke 3 2-byte values at once:
poke4(a, {12345, #FF00, -12345})

See Also:

peek2s, peek2u, poke, poke4, allocate, free, call

2.0.0.485 poke2

include std/safe.e
override procedure poke2(atom

2.0.0.486 poke4

<built-in> procedure poke4(atom addr, object x)

Stores one or more double words, starting at a memory location.

Parameters:

addr : an atom, the address at which to store1.
x : an object, either a double word or a non empty sequence of double words.2.

Errors:

Poke() in memory you don't own may be blocked by the OS, and cause a machine exception. If you use the
define safe these routines will catch these problems with a EUPHORIA error.

Euphoria v4.0 svn3379

Parameters: 468

Comments:

There is no point in having poke4s() or poke4u(). For example, both +power(2,31) and -power(2,31) are
stored as #F0000000. It's up to whoever reads the value to figure it out.

It is faster to write several double words at once by poking a sequence of values, than it is to write one double
words at a time in a loop.

Writing to the screen memory with poke4() can be much faster than using puts() or printf(), but the
programming is more difficult. In most cases the speed is not needed. For example, the Euphoria editor, ed,
never uses poke4().

The 4-byte values to be stored can be negative or positive. You can read them back with either peek4s() or
peek4u(). However, the results are unpredictable if you want to store values with a fractional part or a
magnitude greater than power(2,32), even though Euphoria represents them all as atoms.

Example 1:

a = allocate(100) -- allocate 100 bytes in memory

-- poke one 4-byte value at a time:
poke4(a, 9712345)
poke4(a+4, #FF00FF00)
poke4(a+8, -12345)

-- poke 3 4-byte values at once:
poke4(a, {9712345, #FF00FF00, -12345})

See Also:

peek4s, peek4u, poke, poke2, allocate, free, call

2.0.0.487 poke4

include std/safe.e
override procedure poke4(atom

2.0.0.488 poke_string

include std/machine.e
public function poke_string(atom buffaddr, integer buffsize, sequence s)

Stores a C-style null-terminated ANSI string in memory

Euphoria v4.0 svn3379

Parameters: 469

Parameters:

buffaddr: an atom, the RAM address to to the string at.1.
buffsize: an integer, the number of bytes available, starting from buffaddr.2.
s : a sequence, the string to store at address buffaddr.3.

Comments:

This does not allocate an RAM. You must supply the preallocated area.•
This can only be used on ANSI strings. It cannot be used for double-byte strings.•
If s is not a string, nothing is stored and a zero is returned.•

Returns:

An atom. If this is zero, then nothing was stored, otherwise it is the address of the first byte after the stored
string.

Example 1:

atom title

title = allocate(1000)
if poke_string(title, 1000, "The Wizard of Oz") then
 -- successful
else
 -- failed
end if

See Also:

allocate, allocate_string

2.0.0.489 poke_wstring

include std/machine.e
public function poke_wstring(atom buffaddr, integer buffsize, sequence s)

Stores a C-style null-terminated Double-Byte string in memory

Parameters:

buffaddr: an atom, the RAM address to to the string at.1.
buffsize: an integer, the number of bytes available, starting from buffaddr.2.
s : a sequence, the string to store at address buffaddr.3.

Euphoria v4.0 svn3379

Parameters: 470

Comments:

This does not allocate an RAM. You must supply the preallocated area.•
This uses two bytes per string character. Note that buffsize is the number of bytes available in the
buffer and not the number of characters available.

•

If s is not a double-byte string, nothing is stored and a zero is returned.•

Returns:

An atom. If this is zero, then nothing was stored, otherwise it is the address of the first byte after the stored
string.

Example 1:

atom title

title = allocate(1000)
if poke_wstring(title, 1000, "The Wizard of Oz") then
 -- successful
else
 -- failed
end if

See Also:

allocate, allocate_wstring

2.0.0.490 pop

include std/stack.e
public function pop(stack sk, integer idx = 1)

Removes an object from a stack.

Parameters:

sk : the stack to pop1.
idx : integer. The n-th item to pick from the stack. The default is 1.2.

Returns:

An item, from the stack, which is also removed from the stack.

Euphoria v4.0 svn3379

Parameters: 471

Errors:

If the stack is empty, an error occurs.•
If the idx is greater than the number of items in the stack, an error occurs.•

Comments:

For FIFO stacks (queues), the top item is the oldest item in the stack.•
For FILO stacks, the top item is the newest item in the stack.•

When idx is omitted the 'top' of the stack is removed and returned. When idx is supplied, it represents the
N-th item from the top to be removed and returned. Thus an idx of 2 returns the 2nd item from the top, a
value of 3 returns the 3rd item from the top, etc ...

Example 1:

stack sk = new(FIFO)
push(sk, 1)
push(sk, 2)
push(sk, 3)
? size(sk) -- 3
? pop(sk) -- 1
? size(sk) -- 2
? pop(sk) -- 2
? size(sk) -- 1
? pop(sk) -- 3
? size(sk) -- 0
? pop(sk) -- *error*

Example 2:

stack sk = new(FILO)
push(sk, 1)
push(sk, 2)
push(sk, 3)
? size(sk) -- 3
? pop(sk) -- 3
? size(sk) -- 2
? pop(sk) -- 2
? size(sk) -- 1
? pop(sk) -- 1
? size(sk) -- 0
? pop(sk) -- *error*

Example 3:

stack sk = new(FILO)
push(sk, 1)
push(sk, 2)
push(sk, 3)

Euphoria v4.0 svn3379

Parameters: 472

push(sk, 4)
-- stack contains {1,2,3,4} (oldest to newest)
? size(sk) -- 4
? pop(sk, 2) -- Pluck out the 2nd newest item .. 3
? size(sk) -- 3
-- stack now contains {1,2,4}

Example 4:

stack sk = new(FIFO)
push(sk, 1)
push(sk, 2)
push(sk, 3)
push(sk, 4)
-- stack contains {1,2,3,4} (oldest to newest)
? size(sk) -- 4
? pop(sk, 2) -- Pluck out the 2nd oldest item .. 2
? size(sk) -- 3
-- stack now contains {1,3,4}

See Also:

push, top, is_empty

2.0.0.491 position

<built-in> procedure position(integer row, integer column)

Parameters:

row : an integer, the index of the row to position the cursor on.1.
column : an integer, the index of the column to position the cursor on.2.

Set the cursor to line row, column column, where the top left corner of the screen is line 1, column 1. The
next character displayed on the screen will be printed at this location. position() will report an error if the
location is off the screen. The Windows console does not check for rows, as the physical height of the console
may be vastly less than its logical height.

Example 1:

position(2,1)
-- the cursor moves to the beginning of the second line from the top

Euphoria v4.0 svn3379

Parameters: 473

See Also:

get_position

2.0.0.492 positive_int

include std/console.e
public type positive_int(integer x)

2.0.0.493 positive_int

include std/memory.e
export type positive_int(integer x)

Positive integer type

2.0.0.494 positive_int

include std/safe.e
export type positive_int(integer x)

2.0.0.495 posix_names

include std/localeconv.e
public constant posix_names

POSIX locale names:

af_ZA sq_AL gsw_FR am_ET ar_DZ ar_BH ar_EG ar_IQ
ar_JO ar_KW ar_LB ar_LY ar_MA ar_OM ar_QA ar_SA
ar_SY ar_TN ar_AE ar_YE hy_AM as_IN az_Cyrl_AZ az_Latn_AZ
ba_RU eu_ES be_BY bn_IN bs_Cyrl_BA bs_Latn_BA br_FR bg_BG
ca_ES zh_HK zh_MO zh_CN zh_SG zh_TW co_FR hr_BA
hr_HR cs_CZ da_DK prs_AF dv_MV nl_BE nl_NL en_AU
en_BZ en_CA en_029 en_IN en_IE en_JM en_MY en_NZ
en_PH en_SG en_ZA en_TT en_GB en_US en_ZW et_EE
fo_FO fil_PH fi_FI fr_BE fr_CA fr_FR fr_LU fr_MC
fr_CH fy_NL gl_ES ka_GE de_AT de_DE de_LI de_LU
de_CH el_GR kl_GL gu_IN ha_Latn_NG he_IL hi_IN hu_HU

Euphoria v4.0 svn3379

Parameters: 474

is_IS ig_NG id_ID iu_Latn_CA iu_Cans_CA ga_IE it_IT it_CH
ja_JP kn_IN kk_KZ kh_KH qut_GT rw_RW kok_IN ko_KR
ky_KG lo_LA lv_LV lt_LT dsb_DE lb_LU mk_MK ms_BN
ms_MY ml_IN mt_MT mi_NZ arn_CL mr_IN moh_CA mn_Cyrl_MN
mn_Mong_CN ne_IN ne_NP nb_NO nn_NO oc_FR or_IN ps_AF
fa_IR pl_PL pt_BR pt_PT pa_IN quz_BO quz_EC quz_PE
ro_RO rm_CH ru_RU smn_FI smj_NO smj_SE se_FI se_NO
se_SE sms_FI sma_NO sma_SE sa_IN sr_Cyrl_BA sr_Latn_BA sr_Cyrl_CS
sr_Latn_CS ns_ZA tn_ZA si_LK sk_SK sl_SI es_AR es_BO
es_CL es_CO es_CR es_DO es_EC es_SV es_GT es_HN
es_MX es_NI es_PA es_PY es_PE es_PR es_ES es_ES_tradnl
es_US es_UY es_VE sw_KE sv_FI sv_SE syr_SY tg_Cyrl_TJ
tmz_Latn_DZ ta_IN tt_RU te_IN th_TH bo_BT bo_CN tr_TR
tk_TM ug_CN uk_UA wen_DE tr_IN ur_PK uz_Cyrl_UZ uz_Latn_UZ
vi_VN cy_GB wo_SN xh_ZA sah_RU ii_CN yo_NG zu_ZA

2.0.0.496 power

<built-in> function power(object base, object exponent)

Raise a base value to some power.

Parameters:

base : an object, the value(s) to raise to some power.1.
exponent : an object, the exponent(s) to apply to base.2.

Returns:

An object, the shape of which depends on base's and exponent's. For two atoms, this will be base raised
to the power exponent.

Errors:

If some atom in base is negative and is raised to a non integer exponent, an error will occur, as the result is
undefined.

If 0 is raised to any negative power, this is the same as a zero divide and causes an error.

power(0,0) is illegal, because there is not an unique value that can be assigned to that quantity.

Euphoria v4.0 svn3379

Parameters: 475

Comments:

The arguments to this function may be atoms or sequences. The rules for operations on sequences apply.

Powers of 2 are calculated very efficiently.

Other languages have a ** or ^ operator to perform the same action. But they don't have sequences.

Example 1:

? power(5, 2)
-- 25 is printed

Example 2:

? power({5, 4, 3.5}, {2, 1, -0.5})
-- {25, 4, 0.534522} is printed

Example 3:

? power(2, {1, 2, 3, 4})
-- {2, 4, 8, 16}

Example 4:

? power({1, 2, 3, 4}, 2)
-- {1, 4, 9, 16}

See Also:

log, Operations on sequences

2.0.0.497 powof2

include std/math.e
public function powof2(object p)

Tests for power of 2

Parameters:

p : an object. The item to test. This can be an integer, atom or sequence.1.

Euphoria v4.0 svn3379

Parameters: 476

Returns:

An integer,

1 for each item in p that is a power of two, eg. 2,4,8,16,32, ...•
0 for each item in p that is not a power of two, eg. 3, 54.322, -2•

Example 1:

for i = 1 to 10 do
 ? {i, powof2(i)}
end for
-- output ...
-- {1,1}
-- {2,1}
-- {3,0}
-- {4,1}
-- {5,0}
-- {6,0}
-- {7,0}
-- {8,1}
-- {9,0}
-- {10,0}

2.0.0.498 prepare_block

include std/memory.e
export function prepare_block(atom addr, integer a, integer protection)

2.0.0.499 prepare_block

include std/safe.e
export function prepare_block(int_addr iaddr, positive_int n, natural protection)

2.0.0.500 prepend

<built-in> function prepend(sequence target, object x)

Adds an object as the first element of a sequence.

Parameters:

source : the sequence to add to1.
x : the object to add2.

Euphoria v4.0 svn3379

Parameters: 477

Returns:

A sequence, whose last elements are those of target and whose first element is x.

Comments:

The length of the returned sequence will be length(target) + 1 always.

If x is an atom this is the same as result = x & target. If x is a sequence it is not the same.

The case where target itself is prepend()ed to is handled very efficiently.

Example 1:

prepend({1,2,3}, {0,0}) -- {{0,0}, 1, 2, 3}
-- Compare with concatenation:
{0,0} & {1,2,3} -- {0, 0, 1, 2, 3}

Example 2:

s = {}
for i = 1 to 10 do
 s = prepend(s, i)
end for
-- s is {10,9,8,7,6,5,4,3,2,1}

See Also:

append, &

2.0.0.501 pretty_print

include std/pretty.e
public procedure pretty_print(integer fn, object x, sequence options = PRETTY_DEFAULT)

Print an object to a file or device, using braces { , , , }, indentation, and multiple lines to show the structure.

Parameters:

fn : an integer, the file/device number to write to1.
x : the object to display/convert to printable form2.
options : is an (up to) 10-element options sequence.3.

Euphoria v4.0 svn3379

Parameters: 478

Comments:

Pass {} in options to select the defaults, or set options as below:

display ASCII characters:
0 -- never♦
1 -- alongside any integers in printable ASCII range (default)♦
2 -- display as "string" when all integers of a sequence are in ASCII range♦
3 -- show strings, and quoted characters (only) for any integers in ASCII range as well as the
characters: \t \r \n

♦

1.

amount to indent for each level of sequence nesting -- default: 22.
column we are starting at -- default: 13.
approximate column to wrap at -- default: 784.
format to use for integers -- default: "%d"5.
format to use for floating-point numbers -- default: "%.10g"6.
minimum value for printable ASCII -- default 327.
maximum value for printable ASCII -- default 1278.
maximum number of lines to output9.
line breaks between elements -- default 1 (0 = no line breaks, -1 = line breaks to wrap only)10.

If the length is less than 10, unspecified options at the end of the sequence will keep the default values. e.g.
{0, 5} will choose "never display ASCII", plus 5-character indentation, with defaults for everything else.

The default options can be applied using the public constant PRETTY_DEFAULT, and the elements may be
accessed using the following public enum:

DISPLAY_ASCII1.
INDENT2.
START_COLUMN3.
WRAP4.
INT_FORMAT5.
FP_FORMAT6.
MIN_ASCII7.
MAX_ASCII8.
MAX_LINES9.
LINE_BREAKS10.

The display will start at the current cursor position. Normally you will want to call pretty_print() when
the cursor is in column 1 (after printing a <code>\n</code> character). If you want to start in a different
column, you should call position() and specify a value for option [3]. This will ensure that the first and last
braces in a sequence line up vertically.

When specifying the format to use for integers and floating-point numbers, you can add some decoration, e.g.
"(%d)" or "$ %.2f"

Euphoria v4.0 svn3379

Parameters: 479

Example 1:

pretty_print(1, "ABC", {})

{65'A',66'B',67'C'}

Example 2:

pretty_print(1, {{1,2,3}, {4,5,6}}, {})

{
 {1,2,3},
 {4,5,6}
}

Example 3:

pretty_print(1, {"Euphoria", "Programming", "Language"}, {2})

{
 "Euphoria",
 "Programming",
 "Language"
}

Example 4:

puts(1, "word_list = ") -- moves cursor to column 13
pretty_print(1,
 {{"Euphoria", 8, 5.3},
 {"Programming", 11, -2.9},
 {"Language", 8, 9.8}},
 {2, 4, 13, 78, "%03d", "%.3f"}) -- first 6 of 8 options

word_list = {
 {
 "Euphoria",
 008,
 5.300
 },
 {
 "Programming",
 011,
 -2.900
 },
 {
 "Language",
 008,
 9.800
 }
}

Euphoria v4.0 svn3379

Parameters: 480

See Also:

print, sprint, printf, sprintf, pretty_sprint

2.0.0.502 pretty_sprint

include std/pretty.e
public function pretty_sprint(object x, sequence options = PRETTY_DEFAULT)

Format an object using braces { , , , }, indentation, and multiple lines to show the structure.

Parameters:

x : the object to display1.
options : is an (up to) 10-element options sequence: Pass {} to select the defaults, or set options2.

Returns:

A sequence, of printable characters, representing x in an human-readable form.

Comments:

This function formats objects the same as pretty_print(), but returns the sequence obtained instead of sending
it to some file..

See Also:

pretty_print, sprint

Page Contents

2.0.0.503 prime_list

include std/primes.e
public function prime_list(integer top_prime_p = 0)

Returns a list of prime numbers.

Euphoria v4.0 svn3379

Parameters: 481

Parameters:

top_prime_p : The list will end with the prime less than or equal to this value. If this is zero, the
current list calculated primes is returned.

1.

Returns:

An sequence, a list of prime numbers from 2 to top_prime_p

Example 1:

sequence pList = prime_list(1000)
-- pList will now contain all the primes from 2 up to the largest less than or
-- equal to 1000.

See Also:

calc_primes, next_prime

2.0.0.504 print

<built-in> procedure print(integer fn, object x)

Writes out a text representation of an object to a file or device. If the object x is a sequence, it uses braces {
, , , } to show the structure.

Parameters:

fn : an integer, the handle to a file or device to output to1.
x : the object to print2.

Errors:

The target file or device must be open.

Comments:

This is not used to write to "binary" files as it only outputs text.

Euphoria v4.0 svn3379

Parameters: 482

Example 1:

print(STDOUT, "ABC") -- output is: "{65,66,67}"
puts(STDOUT, "ABC") -- output is: "ABC"
print(STDOUT, 65) -- output is: "65"
puts(STDOUT, 65) -- output is: "A" (ASCII-65 ==> 'A')
print(STDOUT, 65.1234) -- output is: "65.1234"
puts(STDOUT, 65.1234) -- output is: "A" (Converts to integer first)

Example 2:

print(STDOUT, repeat({10,20}, 3)) -- output is: {{10,20},{10,20},{10,20}}

See Also:

?, puts

2.0.0.505 printf

<built-in> procedure printf(integer fn, sequence format, object values)

Print one or more values to a file or device, using a format string to embed them in and define how they
should be represented.

Parameters:

fn : an integer, the handle to a file or device to output to1.
format : a sequence, the text to print. This text may contain format specifiers.2.
values : usually, a sequence of values. It should have as many elements as format specifiers in
format, as these values will be substituted to the specifiers.

3.

Errors:

If there are less values to show than format specifiers, a run time error will occur.

The target file or device must be open.

Comments:

A format specifier is a string of characters starting with a percent sign (%) and ending in a letter. Some extra
information may come in the middle.

format will be scanned for format specifiers. Whenever one is found, the current value in values will be
turned into a string according to the format specifier. The resulting string will be plugged in the result, as if

Euphoria v4.0 svn3379

Parameters: 483

replacing the modifier with the printed value. Then moving on to next value and carrying the process on.

This way, printf() always takes exactly 3 arguments, no matter how many values are to be printed. Only
the length of the last argument, containing the values to be printed, will vary.

The basic format specifiers are...

%d -- print an atom as a decimal integer•
%x -- print an atom as a hexadecimal integer. Negative numbers are printed in two's complement, so
-1 will print as FFFFFFFF

•

%o -- print an atom as an octal integer•
%s -- print a sequence as a string of characters, or print an atom as a single character•
%e -- print an atom as a floating-point number with exponential notation•
%f -- print an atom as a floating-point number with a decimal point but no exponent•
%g -- print an atom as a floating-point number using whichever format seems appropriate, given the
magnitude of the number

•

%% -- print the '%' character itself. This is not an actual format specifier.•

Field widths can be added to the basic formats, e.g. %5d, %8.2f, %10.4s. The number before the decimal
point is the minimum field width to be used. The number after the decimal point is the precision to be used.

If the field width is negative, e.g. %-5d then the value will be left-justified within the field. Normally it will be
right-justified. If the field width starts with a leading 0, e.g. %08d then leading zeros will be supplied to fill up
the field. If the field width starts with a '+' e.g. %+7d then a plus sign will be printed for positive values.

Comments:

Watch out for the following common mistake:

name="John Smith"
printf(STDOUT, "%s", name) -- error!

This will print only the first character, J, of name, as each element of name is taken to be a separate value to
be formatted. You must say this instead:

name="John Smith"
printf(STDOUT, "%s", {name}) -- correct

Now, the third argument of printf() is a one-element sequence containing the item to be formatted.

If there is only one % format specifier, and if the value it stands for is an atom, then values may be simply
that atom.

Example 1:

rate = 7.875
printf(my_file, "The interest rate is: %8.2f\n", rate)

Euphoria v4.0 svn3379

Parameters: 484

-- The interest rate is: 7.88

Example 2:

name="John Smith"
score=97
printf(STDOUT, "%15s, %5d\n", {name, score})

-- John Smith, 97

Example 3:

printf(STDOUT, "%-10.4s $ %s", {"ABCDEFGHIJKLMNOP", "XXX"})
-- ABCD $ XXX

Example 4:

printf(STDOUT, "%d %e %f %g", repeat(7.75, 4)) -- same value in different formats

-- 7 7.750000e+000 7.750000 7.75

See Also:

sprintf, sprint, print

2.0.0.506 process

include std/pipeio.e
public type process(object o)

Process Type

2.0.0.507 process_lines

include std/io.e
public function process_lines(object file, integer proc, object user_data = 0)

Process the contents of a file, one line at a time.

Euphoria v4.0 svn3379

Parameters: 485

Parameters:

file : an object. Either a file path or the handle to an open file. An empty string signifies STDIN -
the console keyboard.

1.

proc : an integer. The routine_id of a function that will process the line.2.
user_data : on object. This is passed untouched to proc for each line.3.

Returns:

An object. If 0 then all the file was processed successfully. Anything else means that something went wrong
and this is whatever value was returned by proc.

Comments:

The function proc must accept three parameters ...
A sequence: The line to process. It will not contain an end-of-line character.♦
An integer: The line number.♦
An object : This is the user_data that was passed to process_lines.♦

•

If file was a sequence, the file will be closed on completion. Otherwise, it will remain open, and be
positioned where ever reading stopped.

•

Example:

-- Format each supplied line according to the format pattern supplied as well.
function show(sequence aLine, integer line_no, object data)
 writefln(data[1], {line_no, aLine})
 if data[2] > 0 and line_no = data[2] then
 return 1
 else
 return 0
 end if
end function
-- Show the first 20 lines.
process_lines("sample.txt", routine_id("show"), {"[1z:4] : [2]", 20})

See Also:

gets, read_lines, read_file

2.0.0.508 product

include std/math.e
public function product(object a)

Compute the product of all the atom in the argument, no matter how deeply nested.

Euphoria v4.0 svn3379

Parameters: 486

Parameters:

values : an object, all atoms of which will be multiplied up, no matter how nested.1.

Returns:

An atom, the product of all atoms in flatten(values).

Comments:

This function may be applied to an atom or to all elements of a sequence

Example 1:

a = product({10, 20, 30})
-- a is 6000

a = product({10.5, {11.2} , 8.1})
-- a is 952.56

See Also:

can_add, sum, or_all

2.0.0.509 product

include std/sets.e
public function product(set S1, set S2)

Returns the set of all pairs made of an element of a set and an element of another set.

Parameters:

S1 : The set where the first coordinate lives1.
S2 : The set where the second coordinate lives2.

Returns:

The set, of all pairs made of an element of S1 and an element of S2.

Euphoria v4.0 svn3379

Parameters: 487

Example 1:

set s0,s1,s2
s1 = {1, 3, 5, 7} s2 = {-1, 3}
s0 = product(s1, s2) -- s0 is now {{1, -1}, {1, 3}, {3, -1}, {3, 3}, {5, -1}, {5, 3}, {7, -1}, {7, 3}}

See Also:

product_map, amalgamated_sum, fiber_product

2.0.0.510 product_map

include std/sets.e
public function product_map(map f1, map f2)

Builds a map to a product from a map to each of its components.

Parameters:

f1 : the map going to the first component1.
f2 : the map going to the second component2.

Returns:

A map, f=f1 x f2 defined by f(x,y)={f1(x),f2(y)} wherever this makes sense.

Example 1:

set s = {1,3,5,7}
 map f = {3,1,4,1,4,4}
 map f1 = product(f,f)
 -- f1 is {11,9,12,9,3,1,4,1,15,13,16,13,3,1,4,1,16,16}.

See Also:

product, amalgamated_sum, fiber_product

2.0.0.511 project

include std/sequence.e
public function project(sequence source, sequence coords)

Euphoria v4.0 svn3379

Parameters: 488

Creates a list of sequences based on selected elements from sequences in the source.

Parameters:

source : a list of sequences.1.
coords : a list of index lists.2.

Returns:

A sequence, with the same length as source. Each of its elements is a sequence, the length of coords.
Each innermost sequence is made of the elements from the corresponding source sub-sequence.

Comments:

For each sequence in source, a set of sub-sequences is created; one for each index list in coords. An index
list is just a sequence containing indexes for items in a sequence.

Example 1:

s = project({ "ABCD", "789"}, {{1,2}, {3,1}, {2}})
-- s is {{"AB","CA","B"},{"78","97","8"}}

See Also:

vslice, extract

2.0.0.512 prompt_number

include std/console.e
public function prompt_number(sequence prompt, sequence range)

Prompts the user to enter a number, and returns only validated input.

Parameters:

st : is a string of text that will be displayed on the screen.1.
s : is a sequence of two values {lower, upper} which determine the range of values that the user may
enter. s can be empty, {}, if there are no restrictions.

2.

Euphoria v4.0 svn3379

Parameters: 489

Returns:

An atom, in the assigned range which the user typed in.

Errors:

If puts() cannot display st on standard output, or if the first or second element of s is a sequence, a runtime
error will be raised.

If user tries cancelling the prompt by hitting Ctrl-Z, the program will abort as well, issuing a type check error.

Comments:

As long as the user enters a number that is less than lower or greater than upper, the user will be prompted
again.

If this routine is too simple for your needs, feel free to copy it and make your own more specialized version.

Example 1:

age = prompt_number("What is your age? ", {0, 150})

Example 2:

t = prompt_number("Enter a temperature in Celcius:\n", {})

See Also:

puts, prompt_string

2.0.0.513 prompt_string

include std/console.e
public function prompt_string(sequence prompt)

Prompt the user to enter a string of text.

Parameters:

st : is a string that will be displayed on the screen.1.

Euphoria v4.0 svn3379

Parameters: 490

Returns:

A sequence, the string that the user typed in, stripped of any new-line character.

Comments:

If the user happens to type control-Z (indicates end-of-file), "" will be returned.

Example 1:

name = prompt_string("What is your name? ")

See Also:

prompt_number

2.0.0.514 proper

include std/text.e
public function proper(sequence x)

Convert a text sequence to capitalized words.

Parameters:

x : A text sequence.1.

Returns:

A sequence, the Capitalized Version of x

Comments:

A text sequence is one in which all elements are either characters or text sequences. This means that if a
non-character is found in the input, it is not converted. However this rule only applies to elements on the same
level, meaning that sub-sequences could be converted if they are actually text sequences.

Euphoria v4.0 svn3379

Parameters: 491

Example 1:

s = proper("euphoria programming language")
-- s is "Euphoria Programming Language"
s = proper("EUPHORIA PROGRAMMING LANGUAGE")
-- s is "Euphoria Programming Language"
s = proper({"EUPHORIA PROGRAMMING", "language", "rapid dEPLOYMENT", "sOfTwArE"})
-- s is {"Euphoria Programming", "Language", "Rapid Deployment", "Software"}
s = proper({'a', 'b', 'c'})
-- s is {'A', 'b', c'} -- "Abc"
s = proper({'a', 'b', 'c', 3.1472})
-- s is {'a', 'b', c', 3.1472} -- Unchanged because it contains a non-character.
s = proper({"abc", 3.1472})
-- s is {"Abc", 3.1472} -- The embedded text sequence is converted.

See Also:

lower upper

2.0.0.515 push

include std/stack.e
public procedure push(stack sk, object value)

Adds something to a stack.

Parameters:

sk : the stack to augment1.
value : an object, the value to push.2.

Comments:

value appears at the end of FIFO stacks and the top of FILO stacks. The size of the stack increases by one.

Example 1:

stack sk = new(FIFO)
push(sk,5)
push(sk,"abc")
push(sk, 2.3)
? top(sk) -- 5
? last(sk) -- 2.3

Euphoria v4.0 svn3379

Parameters: 492

Example 2:

stack sk = new(FILO)
push(sk,5)
push(sk,"abc")
push(sk, 2.3)
? top(sk) -- 2.3
? last(sk) -- 5

See Also:

pop, top

2.0.0.516 put

include std/map.e
public procedure put(map the_map_p, object the_key_p, object the_value_p, integer operation_p = PUT, integer trigger_p = 100)

Adds or updates an entry on a map.

Parameters:

the_map_p : the map where an entry is being added or updated1.
the_key_p : an object, the the_key_p to look up2.
the_value_p : an object, the value to add, or to use for updating.3.
operation : an integer, indicating what is to be done with the_value_p. Defaults to PUT.4.
trigger_p : an integer. Default is 100. See Comments for details.5.

Comments:

The operation parameter can be used to modify the existing value. Valid operations are:•

PUT -- This is the default, and it replaces any value in there already♦
ADD -- Equivalent to using the += operator♦
SUBTRACT -- Equivalent to using the -= operator♦
MULTIPLY -- Equivalent to using the *= operator♦
DIVIDE -- Equivalent to using the /= operator♦
APPEND -- Appends the value to the existing data♦
CONCAT -- Equivalent to using the &= operator♦
LEAVE -- If it already exists, the current value is left unchanged otherwise the new value is
added to the map.

♦

•

The trigger parameter is used when you need to keep the average number of keys in a hash bucket to
a specific maximum. The trigger value is the maximum allowed. Each time a put operation increases
the hash table's average bucket size to be more than the trigger value the table is expanded by a factor
of 3.5 and the keys are rehashed into the enlarged table. This can be a time intensive action so set the

•

Euphoria v4.0 svn3379

Parameters: 493

value to one that is appropriate to your application.
By keeping the average bucket size to a certain maximum, it can speed up lookup times.♦
If you set the trigger to zero, it will not check to see if the table needs reorganizing. You
might do this if you created the original bucket size to an optimal value. See new on how to
do this.

♦

Example 1:

map ages
ages = new()
put(ages, "Andy", 12)
put(ages, "Budi", 13)
put(ages, "Budi", 14)

-- ages now contains 2 entries: "Andy" => 12, "Budi" => 14

See Also:

remove, has, nested_put

2.0.0.517 put_integer16

include std/io.e
public procedure put_integer16(integer fh, atom val)

Write the supplied integer as two bytes to a file.

Parameters:

fh : an integer, the handle to an open file to write to.1.
val : an integer2.

Comments:

This function is normally used with files opened in binary mode, "wb".•

Example 1:

integer fn
fn = open("temp", "wb")

put_integer16(fn, 1234)

Euphoria v4.0 svn3379

Parameters: 494

See Also:

getc, gets, get_bytes, get_dstring

2.0.0.518 put_integer32

include std/io.e
public procedure put_integer32(integer fh, atom val)

Write the supplied integer as four bytes to a file.

Parameters:

fh : an integer, the handle to an open file to write to.1.
val : an integer2.

Comments:

This function is normally used with files opened in binary mode, "wb".•

Example 1:

integer fn
fn = open("temp", "wb")

put_integer32(fn, 1234)

See Also:

getc, gets, get_bytes, get_dstring

2.0.0.519 put_screen_char

include std/console.e
public procedure put_screen_char(positive_atom line, positive_atom column, sequence char_attr)

Stores/displays a sequence of characters with attributes at a given location.

Parameters:

line : the 1-based line at which to start writing1.
column : the 1-based column at which to start writing2.

Euphoria v4.0 svn3379

Parameters: 495

char_attr : a sequence of alternated characters and attribute codes.3.

Comments:

char_attr must be in the form {character, attribute code, character, attribute
code, ...}.

Errors:

The length of char_attr must be a multiple of 2.

Comments:

The attributes atom contains the foreground color, background color, and possibly other platform-dependent
information controlling how the character is displayed on the screen. If char_attr has 0 length, nothing
will be written to the screen. The characters are written to the active page. It's faster to write several characters
to the screen with a single call to put_screen_char() than it is to write one character at a time.

Example 1:

-- write AZ to the top left of the screen
-- (attributes are platform-dependent)
put_screen_char(1, 1, {'A', 152, 'Z', 131})

See Also:

get_screen_char, display_text_image

2.0.0.520 puts

<built-in> procedure puts(integer fn, object text)

Output, to a file or device, a single byte (atom) or sequence of bytes. The low order 8-bits of each value is
actually sent out. If outputting to the screen you will see text characters displayed.

Parameters:

fn : an integer, the handle to an opened file or device1.
text : an object, either a single character or a sequence of characters.2.

Euphoria v4.0 svn3379

Parameters: 496

Errors:

The target file or device must be open.

Comments:

When you output a sequence of bytes it must not have any (sub)sequences within it. It must be a sequence of
atoms only. (Typically a string of ASCII codes).

Avoid outputting 0's to the screen or to standard output. Your output might get truncated.

Remember that if the output file was opened in text mode, Windows will change \n (10) to \r\n (13 10).
Open the file in binary mode if this is not what you want.

Example 1:

puts(SCREEN, "Enter your first name: ")

Example 2:

puts(output, 'A') -- the single byte 65 will be sent to output

See Also:

print

2.0.0.521 quote

include std/text.e
public function quote(sequence text_in, object quote_pair = {"\"", "\""}, integer esc = - 1, t_text sp = "")

Return a quoted version of the first argument.

Parameters:

text_in : The string or set of strings to quote.1.
quote_pair : A sequence of two strings. The first string is the opening quote to use, and the second
string is the closing quote to use. The default is {"\"", "\""} which means that the output will be
enclosed by double-quotation marks.

2.

esc : A single escape character. If this is not negative (the default), then this is used to 'escape' any
embedded quote characters and 'esc' characters already in the text_in string.

3.

sp : A list of zero or more special characters. The text_in is only quoted if it contains any of the
special characters. The default is "" which means that the text_in is always quoted.

4.

Euphoria v4.0 svn3379

Parameters: 497

Returns:

A sequence, the quoted version of text_in.

Example 1:

-- Using the defaults. Output enclosed in double-quotes, no escapes and no specials.
s = quote("The small man")
-- 's' now contains '"the small man"' including the double-quote characters.

Example 2:

s = quote("The small man", {"(", ")"})
-- 's' now contains '(the small man)'

Example 3:

s = quote("The (small) man", {"(", ")"}, '~')
-- 's' now contains '(The ~(small~) man)'

Example 4:

s = quote("The (small) man", {"(", ")"}, '~', "#")
-- 's' now contains "the (small) man"
-- because the input did not contain a '#' character.

Example 5:

s = quote("The #1 (small) man", {"(", ")"}, '~', "#")
-- 's' now contains '(the #1 ~(small~) man)'
-- because the input did contain a '#' character.

Example 6:

-- input is a set of strings...
s = quote({"a b c", "def", "g hi"},)
-- 's' now contains three quoted strings: '"a b c"', '"def"', and '"g hi"'

See Also:

escape

Euphoria v4.0 svn3379

Parameters: 498

2.0.0.522 rad2deg

include std/math.e
public function rad2deg(object x)

Convert an angle measured in radians to an angle measured in degrees

Parameters:

angle : an object, all atoms of which will be converted, no matter how deeply nested.1.

Returns:

An object, the same shape as angle, all atoms of which were multiplied by 180/PI.

Comments:

This function may be applied to an atom or sequence. A flat angle is PI radians and 180 degrees.

arcsin(), arccos() and arctan() return angles in radians.

Example 1:

x = rad2deg(3.385938749)
-- x is 194

See Also:

deg2rad

2.0.0.523 ram_space

include std/eumem.e
export sequence ram_space

The (pseudo) RAM heap space. Use malloc to gain ownership to a heap location and free to release it back to
the system.

Euphoria v4.0 svn3379

Parameters: 499

2.0.0.524 rand

<built-in> function rand(object maximum)

Return a random positive integer.

Parameters:

maximum : an atom, a cap on the value to return.1.

Returns:

An integer, from 1 to maximum.

Errors:

If ceil(maximum) is not a positive integer <= 1073741823, an error will occur. It must also be at least 1.

Comments:

This function may be applied to an atom or to all elements of a sequence. In order to get reproducible results
from this function, you should call set_rand() with a reproducible value prior.

Example 1:

s = rand({10, 20, 30})
-- s might be: {5, 17, 23} or {9, 3, 12} etc.

See Also:

set_rand, ceil

2.0.0.525 rand_range

include std/rand.e
public function rand_range(integer lo, integer hi)

Return a random integer from a specified inclusive integer range.

Euphoria v4.0 svn3379

Parameters: 500

Parameters:

lo : an integer, the lower bound of the range1.
hi : an integer, the upper bound of the range.2.

Returns:

An integer, randomly drawn between lo and hi inclusive.

Errors:

If lo is not less than hi, an error will occur.

Comments:

This function may be applied to an atom or to all elements of a sequence. In order to get reproducible results
from this function, you should call set_rand() with a reproducible value prior.

Example 1:

s = rand_range(18, 24)
-- s could be any of: 18, 19, 20, 21, 22, 23 or 24

See Also:

rand, set_rand, rnd

2.0.0.526 range

include std/sets.e
public function range(map f, set s)

Returns the set of all values taken by a map in some output set.

Parameters:

f : the map to inspect1.
set : the output set2.

Euphoria v4.0 svn3379

Parameters: 501

Returns:

The set, of all f(x).

Example 1:

map f = {3, 2, 5, 2, 4, 6}
set s = {"Albert", "Beatrix", "Conrad", "Doris", "Eugene", "Fabiola"}
set s1 = range(f, s)
-- s1 is now {"Beatrix", "Conrad", "Eugene"}

See Also:

direct_map, image

2.0.0.527 range

include std/stats.e
public function range(object data_set)

Determines a number of range statistics for the data set.

Parameters:

data_set : a list of 1 or more numbers for which you want the range data.1.

Returns:

A sequence, empty if no atoms were found, else like {Lowest, Highest, Range, Mid-range}

Comments:

Any sequence element in data_set is ignored.

Example 1:

? range({7,2,8,5,6,6,4,8,6,16,3,3,4,1,8,"text"}) -- Ans: {1, 16, 15, 8.5}

See also:

smallest largest

Euphoria v4.0 svn3379

Parameters: 502

Enums used to influence the results of some of these functions.

2.0.0.528 raw_frequency

include std/stats.e
public function raw_frequency(object data_set, object subseq_opt = ST_ALLNUM)

Returns the frequency of each unique item in the data set.

Parameters:

data_set : a list of 1 or more numbers for which you want the frequencies.1.
subseq_opt : an object. When this is ST_ALLNUM (the default) it means that data_set is
assumed to contain no sub-sequences otherwise this gives instructions about how to treat
sub-sequences. See comments for details.

2.

Returns:

A sequence. This will contain zero or more 2-element sub-sequences. The first element is the frequency count
and the second element is the data item that was counted. The returned values are in descending order,
meaning that the highest frequencies are at the beginning of the returned list.

Comments:

If the data can contain sub-sequences, such as strings, you need to let the the function know about this
otherwise it assumes every value in data_set is an number. If that is not the case then the function will
crash. So it is important that if it can possibly contain sub-sequences that you tell this function what to do with
them. Your choices are to ignore them or assume they have the value zero. To ignore them, use ST_IGNSTR
as the subseq_opt parameter value otherwise use ST_ZEROSTR. However, if you know that data_set
only contains numbers use the default subseq_opt value, ST_ALLNUM. Note It is faster if the data only
contains numbers.

Example 1:

? raw_frequency("the cat is the hatter")

This returns

{
{5,116},
{4,32},
{3,104},
{3,101},
{2,97},
{1,115},

Euphoria v4.0 svn3379

Parameters: 503

{1,114},
{1,105},
{1,99}
}

2.0.0.529 read

include std/pipeio.e
public function read(atom fd, integer bytes)

Read bytes bytes from handle fd

Returns:

A sequence, containing data, an empty sequence on EOF or an error code. Similar to get_bytes.

Example 1:

sequence data=read(p[STDOUT],256)

Write bytes to handle fd

Returns:

A integer, number of bytes written, or -1 on error

Example 1:

integer bytes_written = write(p[STDIN],"Hello World!")

2.0.0.530 read_bitmap

include std/image.e
public function read_bitmap(sequence file_name)

Read a bitmap (.BMP) file into a 2-d sequence of sequences (image)

Parameters:

file_name : a sequence, the path to a .bmp file to read from. The extension is not assumed if
missing.

1.

Euphoria v4.0 svn3379

Parameters: 504

Returns:

An object, on success, a sequence of the form {palette,image}. On failure, an error code is returned.

Comments:

In the returned value, the first element is a list of mixtures, each of which defines a color, and the second, a
list of point rows. Each pixel in a row is represented by its color index.

The file should be in the bitmap format. The most common variations of the format are supported.

Bitmaps of 2, 4, 16 or 256 colors are supported. If the file is not in a good format, an error code (atom) is
returned instead

public constant
 BMP_OPEN_FAILED = 1,
 BMP_UNEXPECTED_EOF = 2,
 BMP_UNSUPPORTED_FORMAT = 3

You can create your own bitmap picture files using Windows Paintbrush and many other graphics programs.
You can then incorporate these pictures into your Euphoria programs.

Example 1:

x = read_bitmap("c:\\windows\\arcade.bmp")

Note:

double backslash needed to get single backslash in a string

See Also:

save_bitmap

2.0.0.531 read_file

include std/io.e
public function read_file(object file, integer as_text = BINARY_MODE)

Read the contents of a file as a single sequence of bytes.

Euphoria v4.0 svn3379

Parameters: 505

Parameters:

file : an object, either a file path or the handle to an open file.1.
as_text : integer, BINARY_MODE (the default) assumes binary mode that causes every byte to
be read in, and TEXT_MODE assumes text mode that ensures that lines end with just a Ctrl-J
(NewLine) character, and the first byte value of 26 (Ctrl-Z) is interpreted as End-Of-File.

2.

Returns:

A sequence, holding the entire file.

Comments

When using BINARY_MODE, each byte in the file is returned as an element in the return sequence.•
When not using BINARY_MODE, the file will be interpreted as a text file. This means that all line
endings will be transformed to a single 0x0A character and the first 0x1A character (Ctrl-Z) will
indicate the end of file (all data after this will not be returned to the caller.)

•

Example 1:

data = read_file("my_file.txt")
-- data contains the entire contents of ##my_file.txt##

Example 2:

fh = open("my_file.txt", "r")
data = read_file(fh)
close(fh)

-- data contains the entire contents of ##my_file.txt##

See Also:

write_file, read_lines

2.0.0.532 read_lines

include std/io.e
public function read_lines(object file)

Read the contents of a file as a sequence of lines.

Euphoria v4.0 svn3379

Parameters: 506

Parameters:

file : an object, either a file path or the handle to an open file. If this is an empty string, STDIN (the
console) is used.

Returns:

A sequence, made of lines from the file, as gets could read them.

Comments:

If file was a sequence, the file will be closed on completion. Otherwise, it will remain open, but at end of
file.

Example 1:

data = read_lines("my_file.txt")
-- data contains the entire contents of ##my_file.txt##, 1 sequence per line:
-- {"Line 1", "Line 2", "Line 3"}

Example 2:

fh = open("my_file.txt", "r")
data = read_lines(fh)
close(fh)

-- data contains the entire contents of ##my_file.txt##, 1 sequence per line:
-- {"Line 1", "Line 2", "Line 3"}

See Also:

gets, write_lines, read_file

2.0.0.533 receive

include std/socket.e
public function receive(socket sock, atom flags = 0)

Receive data from a bound socket.

Euphoria v4.0 svn3379

Parameters: 507

Parameters:

sock : the socket to get data from1.
flags : flags (see Send Flags)2.

Returns:

A sequence, either a full string of data on success, or an atom indicating the error code.

Comments:

This function will not return until data is actually received on the socket, unless the flags parameter contains
MSG_DONTWAIT.

MSG_DONTWAIT only works on Linux kernels 2.4 and above. To be cross-platform you should use select
to determine if a socket is readable, i.e. has data waiting.

2.0.0.534 receive_from

include std/socket.e
public function receive_from(socket sock, atom flags = 0)

Receive a UDP packet from a given socket

Parameters:

sock: the server socket1.
flags : flags (see Send Flags)2.

Returns:

A sequence containing { client_ip, client_port, data } or an atom error code.

See Also:

send_to

Euphoria v4.0 svn3379

Parameters: 508

2.0.0.535 regex

include std/regex.e
public type regex(object o)

Regular expression type

2.0.0.536 register_block

include std/memory.e
public procedure register_block(atom block_addr, atom block_len, integer protection)

Description: Add a block of memory to the list of safe blocks maintained by safe.e (the debug version of
memory.e). The block starts at address a. The length of the block is i bytes.

Parameters:

block_addr : an atom, the start address of the block1.
block_len : an integer, the size of the block.2.
protection : a constant integer, of the memory protection constants found in machine.e, that
describes what access we have to the memory.

3.

Comments:

In memory.e, this procedure does nothing. It is there to simplify switching between the normal and debug
version of the library.

This routine is only meant to be used for debugging purposes. safe.e tracks the blocks of memory that your
program is allowed to peek(), poke(), mem_copy() etc. These are normally just the blocks that you have
allocated using Euphoria's allocate() routine, and which you have not yet freed using Euphoria's free(). In
some cases, you may acquire additional, external, blocks of memory, perhaps as a result of calling a C routine.

If you are debugging your program using safe.e, you must register these external blocks of memory or safe.e
will prevent you from accessing them. When you are finished using an external block you can unregister it
using unregister_block().

Example 1:

atom addr

addr = c_func(x, {})
register_block(addr, 5)
poke(addr, "ABCDE")
unregister_block(addr)

Euphoria v4.0 svn3379

Parameters: 509

See Also:

unregister_block, safe.e

2.0.0.537 register_block

include std/safe.e
public procedure register_block(machine_addr block_addr, positive_int block_len, valid_memory_protection_constant memory_protection = PAGE_READ_WRITE)

2.0.0.538 rehash

include std/map.e
public procedure rehash(map the_map_p, integer requested_bucket_size_p = 0)

Changes the width, i.e. the number of buckets, of a map. Only effects large maps.

Parameters:

m : the map to resize1.
requested_bucket_size_p : a lower limit for the new size.2.

Comment:

If requested_bucket_size_p is not greater than zero, a new width is automatically derived from the
current one.

See Also:

statistics, optimize

2.0.0.539 remainder

<built-in> function remainder(object dividend, object divisor)

Compute the remainder of the division of two objects using truncated division.

Parameters:

dividend : any Euphoria object.1.
divisor : any Euphoria object.2.

Euphoria v4.0 svn3379

Parameters: 510

Returns:

An object, the shape of which depends on dividend's and divisor's. For two atoms, this is the remainder
of dividing dividend by divisor, with dividend's sign.

Errors:

If any atom in divisor is 0, this is an error condition as it amounts to an attempt to divide by zero.1.
If both dividend and divisor are sequences, they must be the same length as each other.2.

Comments:

There is a integer N such that dividend = N * divisor + result.•
The result has the sign of dividend and lesser magnitude than divisor.•
The result has the same sign as the dividend.•
This differs from mod() in that when the operands' signs are different this function rounds
dividend/divisior towards zero whereas mod() rounds away from zero.

•

The arguments to this function may be atoms or sequences. The rules for operations on sequences apply, and
determine the shape of the returned object.

Example 1:

a = remainder(9, 4)
-- a is 1

Example 2:

s = remainder({81, -3.5, -9, 5.5}, {8, -1.7, 2, -4})
-- s is {1, -0.1, -1, 1.5}

Example 3:

s = remainder({17, 12, 34}, 16)
-- s is {1, 12, 2}

Example 4:

s = remainder(16, {2, 3, 5})
-- s is {0, 1, 1}

Euphoria v4.0 svn3379

Parameters: 511

See Also:

mod, Relational operators, Operations on sequences

2.0.0.540 remove

<built-in> function remove(sequence target, atom start, atom stop=start)

Remove an item, or a range of items from a sequence.

Parameters:

target : the sequence to remove from.1.
start : an atom, the (starting) index at which to remove2.
stop : an atom, the index at which to stop removing (defaults to start)3.

Returns:

A sequence, obtained from target by carving the start..stop slice out of it.

Comments:

A new sequence is created. target can be a string or complex sequence.

Example 1:

s = remove("Johnn Doe", 4)
-- s is "John Doe"

Example 2:

s = remove({1,2,3,3,4}, 4)
-- s is {1,2,3,4}

Example 3:

s = remove("John Middle Doe", 6, 12)
-- s is "John Doe"

Euphoria v4.0 svn3379

Parameters: 512

Example 4:

s = remove({1,2,3,3,4,4}, 4, 5)
-- s is {1,2,3,4}

See Also:

replace, insert, splice, remove_all

2.0.0.541 remove

include std/map.e
public procedure remove(map the_map_p, object the_key_p)

Remove an entry with given key from a map.

Parameters:

the_map_p : the map to operate on1.
key : an object, the key to remove.2.

Comments:

If key is not on the_map_p, the the_map_p is returned unchanged.•
If you need to remove all entries, see clear•

Example 1:

map the_map_p
the_map_p = new()
put(the_map_p, "Amy", 66.9)
remove(the_map_p, "Amy")
-- the_map_p is now an empty map again

See Also:

clear, has

2.0.0.542 remove_all

include std/sequence.e
public function remove_all(object needle, sequence haystack)

Euphoria v4.0 svn3379

Parameters: 513

Removes all occurrences of some object from a sequence.

Parameters:

needle : the object to remove.1.
haystack : the sequence to remove from.2.

Returns:

A sequence, of length at most length(haystack), and which has the same elements, without any copy of
needle left

Comments:

This function weeds elements out, not sub-sequences.

Example 1:

s = remove_all(1, {1,2,4,1,3,2,4,1,2,3})
-- s is {2,4,3,2,4,2,3}

Example 2:

s = remove_all('x', "I'm toox secxksy for my shixrt.")
-- s is "I'm too secksy for my shirt."

See Also:

remove, replace

2.0.0.543 remove_directory

include std/filesys.e
public function remove_directory(sequence dir_name, integer force = 0)

Remove a directory.

Parameters:

name : a sequence, the name of the directory to remove.1.
force : an integer, if 1 this will also remove files and sub-directories in the directory. The default is
0, which means that it will only remove the directory if it is already empty.

2.

Euphoria v4.0 svn3379

Parameters: 514

Returns:

An integer, 0 on failure, 1 on success.

Example 1:

if not remove_directory("the_old_folder") then
 crash("Filesystem problem - could not remove the old folder")
end if

See Also:

create_directory, chdir, clear_directory

2.0.0.544 remove_dups

include std/sequence.e
public function remove_dups(sequence source_data, integer proc_option = RD_PRESORTED)

Removes duplicate elements

Parameters:

source_data : A sequence that may contain duplicated elements1.
proc_option : One of RD_INPLACE, RD_PRESORTED, or RD_SORT.

RD_INPLACE removes items while preserving the original order of the unique items.♦
RD_PRESORTED assumes that the elements in source_data are already sorted. If they
are not already sorted, this option merely removed adjacent duplicate elements.

♦

RD_SORT will return the unique elements in ascending sorted order.♦

2.

Returns:

A sequence, that contains only the unique elements from source_data.

Example 1:

sequence s = { 4,7,9,7,2,5,5,9,0,4,4,5,6,5}
? remove_dups(s, RD_INPLACE) --> {4,7,9,2,5,0,6}
? remove_dups(s, RD_SORT) --> {0,2,4,5,6,7,9}
? remove_dups(s, RD_PRESORTED) --> {4,7,9,7,2,5,9,0,4,5,6,5}
? remove_dups(sort(s), RD_PRESORTED) --> {0,2,4,5,6,7,9}

Euphoria v4.0 svn3379

Parameters: 515

2.0.0.545 remove_from

include std/sets.e
public function remove_from(object x, set s)

Remove an object from a set.

Parameters:

x : the object to add1.
S : the set to remove from2.

Returns:

A set, which is a copy of S, with x removed if it was there.

Example 1:

set s0 = {1,2,3,5,7}
 s0=remove_from(2,s0) -- s0 is now {1,3,5,7}

See Also:

remove_from, belongs_to, union

2.0.0.546 remove_item

include std/sequence.e
public function remove_item(object needle, sequence haystack)

Removes an item from the sequence.

Parameters:

needle : object to remove.1.
haystack : sequence to remove it from.2.

Returns:

A sequence, which is haystack with needle removed from it.

Euphoria v4.0 svn3379

Parameters: 516

Comments:

If needle is not in haystack then haystack is returned unchanged.

Example 1:

s = remove_item(1, {3,4,2,1}) --> {3,4,2}
s = remove_item(5, {3,4,2,1}) --> {3,4,2,1}

2.0.0.547 remove_subseq

include std/sequence.e
public function remove_subseq(sequence source_list, object alt_value = SEQ_NOALT)

Removes all sub-sequences from the supplied sequence, optionally replacing them with a supplied alternative
value. One common use is to remove all strings from a mixed set of numbers and strings.

Parameters:

source_list : A sequence from which sub-sequences are removed.1.
alt_value : An object. The default is SEQ_NOALT, which causes sub-sequences to be physically
removed, otherwise any other value will be used to replace the sub-sequence.

2.

Returns:

A sequence, which contains only the atoms from source_list and optionally the alt_value where
sub-sequences used to be.

Example:

sequence s = remove_subseq({4,6,"Apple",0.1, {1,2,3}, 4})
-- 's' is now {4, 6, 0.1, 4} -- length now 4
s = remove_subseq({4,6,"Apple",0.1, {1,2,3}, 4}, -1)
-- 's' is now {4, 6, -1, 0.1, -1, 4} -- length unchanged.

2.0.0.548 rename_file

include std/filesys.e
public function rename_file(sequence old_name, sequence new_name, integer overwrite = 0)

Rename a file.

Euphoria v4.0 svn3379

Parameters: 517

Parameters:

old_name : a sequence, the name of the file or directory to rename.1.
new_name : a sequence, the new name for the renamed file2.
overwrite : an integer, 0 (the default) to prevent renaming if destination file exists, 1 to delete
existing destination file first

3.

Returns:

An integer, 0 on failure, 1 on success.

Comments:

If new_name contains a path specification, this is equivalent to moving the file, as well as possibly
changing its name. However, the path must be on the same drive for this to work.

•

If overwrite was requested but the rename fails, any existing destination file is preserved.•

See Also:

move_file, copy_file

2.0.0.549 repeat

<built-in> function repeat(object item, atom count)

Create a sequence whose all elements are identical, with given length.

Parameters:

item : an object, to which all elements of the result will be equal1.
count : an atom, the requested length of the result sequence. This must be a value from zero to
0x3FFFFFFF. Any floating point values are first floored.

2.

Returns:

A sequence, of length count each element of which is item.

Errors:

count cannot be less than zero and cannot be greater than 1,073,741,823.

Euphoria v4.0 svn3379

Parameters: 518

Comments:

When you repeat() a sequence or a floating-point number the interpreter does not actually make multiple
copies in memory. Rather, a single copy is "pointed to" a number of times.

Example 1:

repeat(0, 10) -- {0,0,0,0,0,0,0,0,0,0}

repeat("JOHN", 4) -- {"JOHN", "JOHN", "JOHN", "JOHN"}
-- The interpreter will create only one copy of "JOHN"
-- in memory and create a sequence containing four references to it.

See Also:

repeat_pattern, linear

2.0.0.550 repeat_pattern

include std/sequence.e
public function repeat_pattern(sequence pattern, integer count)

Returns a periodic sequence, given a pattern and a count.

Parameters:

pattern : the sequence whose elements are to be repeated1.
count : an integer, the number of times the pattern is to be repeated.2.

Returns:

A sequence, empty on failure, and of length count*length(pattern) otherwise. The first elements of
the returned sequence are those of pattern. So are those that follow, on to the end.

Example 1:

s = repeat_pattern({1,2,5},3)
-- s is {1,2,5,1,2,5,1,2,5}

Euphoria v4.0 svn3379

Parameters: 519

See Also:

repeat, linear

2.0.0.551 replace

<built-in> function replace(sequence target, object replacement, integer start, integer stop=start)

Replace a slice in a sequence by an object.

Parameters:

target : the sequence in which replacement will be done.1.
replacement : an object, the item to replace with.2.
start : an integer, the starting index of the slice to replace.3.
stop : an integer, the stopping index of the slice to replace.4.

Returns:

A sequence, which is made of target with the start..stop slice removed and replaced by
replacement, which is splice()d in.

Comments:

A new sequence is created. target can be a string or complex sequence of any shape.•

To replace by just one element, enclose replacement in curly braces, which will be removed at
replace time.

•

Example 1:

s = replace("John Middle Doe", "Smith", 6, 11)
-- s is "John Smith Doe"

s = replace({45.3, "John", 5, {10, 20}}, 25, 2, 3)
-- s is {45.3, 25, {10, 20}}

See Also:

splice, remove, remove_all

Euphoria v4.0 svn3379

Parameters: 520

2.0.0.552 replace_all

include std/sequence.e
public function replace_all(sequence source, object olddata, object newdata)

Replaces all occurrences of olddata with newdata

Parameters:

source : the sequence in which replacements will be done.1.
olddata : the sequence/item which is going to be replaced. If this is an empty sequence, the
source is returned as is.

2.

newdata : the sequence/item which will be the replacement.3.

Returns:

A sequence, which is made of source with all olddata occurrences replaced by newdata.

Comments:

This also removes all olddata occurrences when newdata is "".

Example:

s = replace_all("abracadabra", 'a', 'X')
-- s is now "XbrXcXdXbrX"
s = replace_all("abracadabra", "ra", 'X')
-- s is now "abXcadabX"
s = replace_all("abracadabra", "a", "aa")
-- s is now "aabraacaadaabraa"
s = replace_all("abracadabra", "a", "")
-- s is now "brcdbr"

See Also:

replace, remove_all

2.0.0.553 restrict

include std/sets.e
public function restrict(map f, set source, set restriction)

Restricts f to the intersection of an input set and another set

Euphoria v4.0 svn3379

Parameters: 521

Parameters:

f : the map to restrict1.
source : the initial source set for f2.
restriction : the set which will help forming a restricted source set.3.

Returns:

A map, defined on difference(source,restriction) which agrees with f.

Example 1:

set s1 = {1,3,5,7,9,11,13,17,19,23}}
 map f = [3,7,1,4,5,2,7,1,6,2,10,7}
 set s0 = {3,11,13,19,29}
 map f0 = restrict(f,s1,s0)
 f0 is now: {7,2,7,6,4,7}

See Also:

is_subset, direct_map, difference

2.0.0.554 retain_all

include std/sequence.e
public function retain_all(object needles, sequence haystack)

Keeps all occurrences of a set of objects from a sequence and removes all others.

Parameters:

needles : the set of objects to retain.1.
haystack : the sequence to remove items not in needles.2.

Returns:

A sequence containing only those objects from haystack that are also in needles.

Example:

s = retain_all({1,3,5}, {1,2,4,1,3,2,4,1,2,3}) --> {1,1,3,1,3}
s = retain_all("0123456789", "+34 (04) 555-44392") -> "340455544392"

Euphoria v4.0 svn3379

Parameters: 522

See Also:

remove, replace, remove_all

2.0.0.555 reverse

include std/sequence.e
public function reverse(object target, integer pFrom = 1, integer pTo = 0)

Reverse the order of elements in a sequence.

Parameters:

target : the sequence to reverse.1.
pFrom : an integer, the starting point. Defaults to 1.2.
pTo : an integer, the end point. Defaults to 0.3.

Returns:

A sequence, if target is a sequence, the same length as target and the same elements, but those with
index between pFrom and pTo appear in reverse order.

Comments:

In the result sequence, some or all top-level elements appear in reverse order compared to the original
sequence. This does not reverse any sub-sequences found in the original sequence.
The pTo parameter can be negative, which indicates an offset from the last element. Thus -1 means the
second-last element and 0 means the last element.

Example 1:

reverse({1,3,5,7}) -- {7,5,3,1}
reverse({1,3,5,7,9}, 2, -1) -- {1,7,5,3,9}
reverse({1,3,5,7,9}, 2) -- {1,9,7,5,3}
reverse({{1,2,3}, {4,5,6}}) -- {{4,5,6}, {1,2,3}}
reverse({99}) -- {99}
reverse({}) -- {}
reverse(42) -- 42

2.0.0.556 reverse_map

include std/sets.e
public function reverse_map(map f, set s1, sequence s0, set s2)

Euphoria v4.0 svn3379

Parameters: 523

Given a map between two sets, returns the smallest subset whose image contains the set of elements in a list.

Parameters:

f : the map relative to which reverse images are to be taken1.
source : the source set2.
elements : the list of elements in target to lift to source3.
target : the target set4.

Returns:

A set, which is included in source and contains all antecedents of elements in elements by f.

Comments:

Elements which f does not hit are ignored.

Example 1:

set s1,s2
 s1={5,7,9,11} s2={13,17,19,23,29}
 sequence s0 = {23,13,17,23}
 map f = {5,3,1,3,4,5}
 set s = reverse_map(f,s1,s0,s2)
 s is now {9}.

See Also:

direct_map, fiber_over

2.0.0.557 rfind

include std/search.e
public function rfind(object needle, sequence haystack, integer start = length(haystack))

Find a needle in a haystack in reverse order.

Parameters:

needle : an object to search for1.
haystack : a sequence to search in2.
start : an integer, the starting index position (defaults to length(haystack))3.

Euphoria v4.0 svn3379

Parameters: 524

Returns:

An integer, 0 if no instance of needle can be found on haystack before index start, or the highest
such index otherwise.

Comments:

If start is less than 1, it will be added once to length(haystack) to designate a position counted
backwards. Thus, if start is -1, the first element to be queried in haystack will be haystack[$-1], then
haystack[$-2] and so on.

Example 1:

location = rfind(11, {5, 8, 11, 2, 11, 3})
-- location is set to 5

Example 2:

names = {"fred", "rob", "rob", "george", "mary"}
location = rfind("rob", names)
-- location is set to 3
location = rfind("rob", names, -4)
-- location is set to 2

See Also:

find, rmatch

2.0.0.558 rmatch

include std/search.e
public function rmatch(sequence needle, sequence haystack, integer start = length(haystack))

Try to match a needle against some slice of a haystack in reverse order.

Parameters:

needle : a sequence to search for1.
haystack : a sequence to search in2.
start : an integer, the starting index position (defaults to length(haystack))3.

Euphoria v4.0 svn3379

Parameters: 525

Returns:

An integer, either 0 if no slice of haystack starting before start equals needle, else the highest lower
index of such a slice.

Comments:

If start is less than 1, it will be added once to length(haystack) to designate a position counted
backwards. Thus, if start is -1, the first element to be queried in haystack will be haystack[$-1], then
haystack[$-2] and so on.

Example 1:

location = rmatch("the", "the dog ate the steak from the table.")
-- location is set to 28 (3rd 'the')
location = rmatch("the", "the dog ate the steak from the table.", -11)
-- location is set to 13 (2nd 'the')

See Also:

rfind, match

2.0.0.559 rnd

include std/rand.e
public function rnd()

Return a random floating point number in the range 0 to 1.

Parameters:

None.

Returns:

An atom, randomly drawn between 0.0 and 1.0 inclusive.

Comments:

In order to get reproducible results from this function, you should call set_rand() with a reproducible value
prior to calling this.

Euphoria v4.0 svn3379

Parameters: 526

Example 1:

set_rand(1001)
s = rnd()
 -- s is 0.2634879318

See Also:

rand, set_rand, rand_range

2.0.0.560 rnd_1

include std/rand.e
public function rnd_1()

Return a random floating point number in the range 0 to less than 1.

Parameters:

None.

Returns:

An atom, randomly drawn between 0.0 and a number less than 1.0

Comments:

In order to get reproducible results from this function, you should call set_rand() with a reproducible value
prior to calling this.

Example 1:

set_rand(1001)
s = rnd_1()
 -- s is 0.2634879318

See Also:

rand, set_rand, rand_range

Euphoria v4.0 svn3379

Parameters: 527

2.0.0.561 roll

include std/rand.e
public function roll(object desired, integer sides = 6)

Simulates the probability of a dice throw.

Parameters:

desired : an object. One or more desired outcomes.1.
sides: an integer. The number of sides on the dice. Default is 6.2.

Returns:

an integer. 0 if none of the desired outcomes occured, otherwise the face number that was rolled.

Comments:

The minimum number of sides is 2 and there is no maximum.

Example 1:

res = roll(1, 2) -- Simulate a coin toss.
res = roll({1,6}) -- Try for a 1 or a 6 from a standard die toss.
res = roll({1,2,3,4}, 20) -- Looking for any number under 5 from a 20-sided die.

See Also:

rnd, chance

2.0.0.562 rotate

include std/sequence.e
public function rotate(sequence source, integer shift, integer start = 1, integer stop = length(source))

Rotates a slice of a sequence.

Parameters:

source : sequence to be rotated1.
shift : direction and count to be shifted (ROTATE_LEFT or ROTATE_RIGHT)2.
start : starting position for shift, defaults o 13.
stop : stopping position for shift, defaults to length(source)4.

Euphoria v4.0 svn3379

Parameters: 528

Comments:

Use amount * direction to specify the shift. direction is either ROTATE_LEFT or ROTATE_RIGHT.
This enables to shift multiple places in a single call. For instance, use ROTATE_LEFT * 5 to rotate left, 5
positions.

A null shift does nothing and returns source unchanged.

Example 1:

s = rotate({1, 2, 3, 4, 5}, ROTATE_LEFT)
-- s is {2, 3, 4, 5, 1}

Example 2:

s = rotate({1, 2, 3, 4, 5}, ROTATE_RIGHT * 2)
-- s is {4, 5, 1, 2, 3}

Example 3:

s = rotate({11,13,15,17,19,23}, ROTATE_LEFT, 2, 5)
-- s is {11,15,17,19,13,23}

Example 4:

s = rotate({11,13,15,17,19,23}, ROTATE_RIGHT, 2, 5)
-- s is {11,19,13,15,17,23}

See Also:

slice, head, tail

2.0.0.563 rotate_bits

include std/math.e
public function rotate_bits(object source_number, integer shift_distance)

Rotates the bits in the input value by the specified distance.

Parameters:

source_number : object: value(s) whose bits will be be rotated.1.
shift_distance : integer: number of bits to be moved by.2.

Euphoria v4.0 svn3379

Parameters: 529

Comments:

If source_number is a sequence, each element is rotated.•
The value(s) in source_number are first truncated to a 32-bit integer.•
The output is truncated to a 32-bit integer.•
If shift_distance is negative, the bits in source_number are rotated left.•
If shift_distance is positive, the bits in source_number are rotated right.•
If shift_distance is zero, the bits in source_number are not rotated.•

Returns:

Atom(s) containing a 32-bit integer. A single atom in source_number is an atom, or a sequence in the
same form as source_number containing 32-bit integers.

Example 1:

? rotate_bits(7, -3) --> 56
? rotate_bits(0, -9) --> 0
? rotate_bits(4, -7) --> 512
? rotate_bits(8, -4) --> 128
? rotate_bits(0xFE427AAC, -7) --> 0x213D567F
? rotate_bits(-7, -3) --> -49 which is 0xFFFFFFCF
? rotate_bits(131, 0) --> 131
? rotate_bits(184.464, 0) --> 184
? rotate_bits(999_999_999_999_999, 0) --> -1530494977 which is 0xA4C67FFF
? rotate_bits(184, 3) -- 23
? rotate_bits(48, 2) --> 12
? rotate_bits(121, 3) --> 536870927
? rotate_bits(0xFE427AAC, 7) --> 0x59FC84F5
? rotate_bits(-7, 3) --> 0x3FFFFFFF
? rotate_bits({48, 121}, 2) --> {12, 1073741854}

See Also:

shift_bits

Arithmetics

2.0.0.564 round

include std/math.e
public function round(object a, object precision = 1)

Return the argument's elements rounded to some precision

Euphoria v4.0 svn3379

Parameters: 530

Parameters:

value : an object, each atom of which will be acted upon, no matter how deeply nested.1.
precision : an object, the rounding precision(s). If not passed, this defaults to 1.2.

Returns:

An object, the same shape as value. When value is an atom, the result is that atom rounded to the nearest
integer multiple of 1/precision.

Comments:

This function may be applied to an atom or to all elements of a sequence.

Example 1:

round(5.2) -- 5
round({4.12, 4.67, -5.8, -5.21}, 10) -- {4.1, 4.7, -5.8, -5.2}
round(12.2512, 100) -- 12.25

See Also:

floor, ceil

2.0.0.565 routine_id

<built-in> function routine_id(sequence routine_name)

Return an integer id number for a user-defined Euphoria procedure or function.

Parameters:

routine_name : a string, the name of the procedure or function.1.

Returns:

An integer, known as a routine id, -1 if the named routine can't be found, else zero or more.

Euphoria v4.0 svn3379

Parameters: 531

Errors:

routine_name should not exceed 1,024 characters.

Comments:

The id number can be passed to call_proc() or call_func(), to indirectly call the routine named by
routine_name. This id depends on the internal process of parsing your code, not on routine_name.

The routine named routine_name must be visible, i.e. callable, at the place where routine_id() is used
to get the id number. If it is not, -1 is returned.

Indirect calls to the routine can appear earlier in the program than the definition of the routine, but the id
number can only be obtained in code that comes after the definition of the routine - see example 2 below.

Once obtained, a valid routine id can be used at any place in the program to call a routine indirectly via
call_proc()/call_func(), including at places where the routine is no longer in scope.

Some typical uses of routine_id() are:

Creating a subroutine that takes another routine as a parameter. (See Example 2 below)1.
Using a sequence of routine id's to make a case (switch) statement. Using the switch statement is
more efficient.

2.

Setting up an Object-Oriented system.3.
Getting a routine id so you can pass it to call_back(). (See Platform-Specific Issues)4.
Getting a routine id so you can pass it to task_create(). (See Multitasking in Euphoria)5.
Calling a routine that is defined later in a program. This is no longer needed from v4.0 onward.6.

Note that C routines, callable by Euphoria, also have ids, but they cannot be used where routine ids are,
because of the different type checking and other technical issues. See define_c_proc() and define_c_func().

Example 1:

procedure foo()
 puts(1, "Hello World\n")
end procedure

integer foo_num
foo_num = routine_id("foo")

call_proc(foo_num, {}) -- same as calling foo()

Example 2:

function apply_to_all(sequence s, integer f)
 -- apply a function to all elements of a sequence
 sequence result
 result = {}
 for i = 1 to length(s) do

Euphoria v4.0 svn3379

Parameters: 532

 -- we can call add1() here although it comes later in the program
 result = append(result, call_func(f, {s[i]}))
 end for
 return result
end function

function add1(atom x)
 return x + 1
end function

-- add1() is visible here, so we can ask for its routine id
? apply_to_all({1, 2, 3}, routine_id("add1"))
-- displays {2,3,4}

See Also:

call_proc, call_func, call_back, define_c_func, define_c_proc, task_create, Platform-Specific Issues, Indirect
routine calling

2.0.0.566 safe_address

include std/memory.e
public function safe_address(atom start, integer len, positive_int action)

Scans the list of registered blocks for any corruption.

Comments:

safe.e maintains a list of acquired memory blocks. Those gained through allocate() are automatically included.
Any other block, for debugging purposes, must be registered by register_block() and unregistered by
unregister_block().

The list is scanned and, if any block shows signs of corruption, it is displayed on the screen and the program
terminates. Otherwise, nothing happens.

In memory.e, this routine does nothing. It is there to make switching between debugged and normal version of
your program easier.

See Also:

register_block, unregister_block

Euphoria v4.0 svn3379

Parameters: 533

2.0.0.567 safe_address

include std/safe.e
public function safe_address(machine_addr start, natural len, positive_int action)

2.0.0.568 safe_address_list

include std/safe.e
public sequence safe_address_list

2.0.0.569 sample

include std/rand.e
public function sample(sequence full_set, integer sample_size, integer return_remaining = 0)

Selects a random sample sub-set of items from a population set.

Parameters:

full_set : a sequence. The set of items from which to take a sample.1.
sample_size: an integer. The number of samples to take.2.
return_remaining: an integer. If non-zero, the sub-set not selected is also returned. If zero, the
default, only the sampled set is returned.

3.

Returns:

a sequence. When return_remaining = 0 then this is the set of samples, otherwise it returns a
two-element sequence; the first is the samples, and the second is the remainder of the population (in the
original order).

Comments:

If sample_size is less than 1, an empty set is returned.•
If sample_size is greater than or equal to the population count, the entire population set is
returned, but in a random order.

•

Example 1:

set_rand("example")
printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", 1)}) --> "t"
printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", 5)}) --> "flukq"
printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", -1)}) --> ""
printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", 26)}) --> "kghrsxmjoeubaywlzftcpivqnd"

Euphoria v4.0 svn3379

Parameters: 534

printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", 25)}) --> "omntrqsbjguaikzywvxflpedc"

Example 2:

-- Deal 4 hands of 5 cards from a standard deck of cards.
sequence theDeck
sequence hands = {}
sequence rt
function new_deck()
 sequence nd = {}
 for i = 1 to 4 do
 for j = 1 to 13 do
 nd = append(nd, {i,j})
 end for
 end for
 return nd
end function
theDeck = new_deck()
for i = 1 to 4 do
 rt = sample(theDeck, 5, 1)
 theDeck = rt[2]
 hands = append(hands, rt[1])
end for

Linux -- you need GPM server to be running•
Windows -- not implemented yet for the text console•
FreeBSD -- not implemented•
OS X -- not implemented•

The following constants can be used to identify and specify mouse events.

2.0.0.570 save_bitmap

include std/image.e
public function save_bitmap(two_seq palette_n_image, sequence file_name)

Create a .BMP bitmap file, given a palette and a 2-d sequence of sequences of colors.

Parameters:

palette_n_image : a {palette, image} pair, like read_bitmap() returns1.
file_name : a sequence, the name of the file to save to.2.

Euphoria v4.0 svn3379

Parameters: 535

Returns:

An integer, 0 on success.

Comments:

This routine does the opposite of read_bitmap(). The first element of palette_n_image is a sequence of
mixtures defining each color in the bitmap. The second element is a sequence of sequences of colors. The
inner sequences must have the same length.

The result will be one of the following codes:

public constant
 BMP_SUCCESS = 0,
 BMP_OPEN_FAILED = 1,
 BMP_INVALID_MODE = 4 -- invalid graphics mode
 -- or invalid argument

save_bitmap() produces bitmaps of 2, 4, 16, or 256 colors and these can all be read with
read_bitmap(). Windows Paintbrush and some other tools do not support 4-color bitmaps.

Example 1:

code = save_bitmap({paletteData, imageData},
 "c:\\example\\a1.bmp")

See Also:

read_bitmap

2.0.0.571 save_map

include std/map.e
public function save_map(map the_map_, object file_name_p, integer type_ = SM_TEXT)

Euphoria v4.0 svn3379

Parameters: 536

2.0.0.572 save_text_image

include std/console.e
public function save_text_image(text_point top_left, text_point bottom_right)

Copy a rectangular block of text out of screen memory

Parameters:

top_left : the coordinates, given as a pair, of the upper left corner of the area to save.1.
bottom_right : the coordinates, given as a pair, of the lower right corner of the area to save.2.

Returns:

A sequence, of {character, attribute, character, ...} lists.

Comments:

The returned value is appropriately handled by display_text_image.

This routine reads from the active text page, and only works in text modes.

You might use this function in a text-mode graphical user interface to save a portion of the screen before
displaying a drop-down menu, dialog box, alert box etc.

Example 1:

-- Top 2 lines are: Hello and World
s = save_text_image({1,1}, {2,5})

-- s is something like: {"H-e-l-l-o-", "W-o-r-l-d-"}

See Also:

display_text_image, get_screen_char

2.0.0.573 scroll

include std/graphics.e
public procedure scroll(integer amount, positive_int top_line, positive_int bottom_line)

Scroll a region of text on the screen.

Euphoria v4.0 svn3379

Parameters: 537

Parameters:

amount : an integer, the number of lines by which to scroll. This is >0 to scroll up and <0 to scroll
down.

1.

top_line : the 1-based number of the topmost line to scroll.2.
bottom_line : the 1-based number of the bottom-most line to scroll.3.

Comments:

inclusive. New blank lines will appear at the top or bottom.

You could perform the scrolling operation using a series of calls to [:puts]](), but scroll() is much
faster.

The position of the cursor after scrolling is not defined.

Example 1:

bin/ed.ex

See Also:

clear_screen, text_rows

2.0.0.574 section

include std/sets.e
public function section(map f)

Return a right, and left is possible, inverse of a map over its range.

Parameters:

f : the map to invert.1.

Returns:

A map, g such that f(g(y)) = y whenever y is hit by f. and If f is injective, it also holds that
g(f(x))=x.

Euphoria v4.0 svn3379

Parameters: 538

Example 1:

map f = {2, 3, 1, 1, 2, 5, 3}, g = section(f)
-- g is now {3,1,2,3,5}.

See Also:

reverse_map, is_injective

2.0.0.575 seek

include std/io.e
public function seek(file_number fn, file_position pos)

Seek (move) to any byte position in a file.

Parameters:

fn : an integer, the handle to the file or device to seek()1.
pos : an atom, either an absolute 0-based position or -1 to seek to end of file.2.

Returns:

An integer, 0 on success, 1 on failure.

Errors:

The target file or device must be open.

Comments:

For each open file, there is a current byte position that is updated as a result of I/O operations on the file. The
initial file position is 0 for files opened for read, write or update. The initial position is the end of file for files
opened for append. It is possible to seek past the end of a file. If you seek past the end of the file, and write
some data, undefined bytes will be inserted into the gap between the original end of file and your new data.

After seeking and reading (writing) a series of bytes, you may need to call seek() explicitly before you switch
to writing (reading) bytes, even though the file position should already be what you want.

This function is normally used with files opened in binary mode. In text mode, Windows converts CR LF to
LF on input, and LF to CR LF on output, which can cause great confusion when you are trying to count bytes
because seek() counts the Windows end of line sequences as two bytes, even if the file has been opened in text

Euphoria v4.0 svn3379

Parameters: 539

mode.

Example 1:

include std/io.e

integer fn
fn = open("my.data", "rb")
-- read and display first line of file 3 times:
for i = 1 to 3 do
 puts(STDOUT, gets(fn))
 if seek(fn, 0) then
 puts(STDOUT, "rewind failed!\n")
 end if
end for

See Also:

get_bytes, puts, where

2.0.0.576 select

include std/socket.e
public function select(object sockets_read, object sockets_write, object sockets_err, integer timeout = 0, integer timeout_micro = 0)

Determine the read, write and error status of one or more sockets.

Using select, you can check to see if a socket has data waiting and is read to be read, if a socket can be written
to and if a socket has an error status.

select allows for fine-grained control over your sockets, allow you to specify that a given socket only be
checked for reading or for only reading and writing, etc.

Parameters:

sockets_read : either one socket or a sequence of sockets to check for reading.1.
sockets_write : either one socket or a sequence of sockets to check for writing.2.
sockets_err : either one socket or a sequence of sockets to check for errors.3.
timeout : maximum time to wait to determine a sockets status, seconds part4.
timeout_micro : maximum time to wait to determine a sockets status, microsecond part5.

Returns:

A sequence, of the same size of all unique sockets containing { socket, read_status, write_status, error_status
} for each socket passed 2 to the function. Note that the sockets returned are not guaranteed to be in any

Euphoria v4.0 svn3379

Parameters: 540

particular order.

2.0.0.577 send

include std/socket.e
public function send(socket sock, sequence data, atom flags = 0)

Send TCP data to a socket connected remotely.

Parameters:

sock : the socket to send data to1.
data : a sequence of atoms, what to send2.
flags : flags (see Send Flags)3.

Returns:

An integer, the number of characters sent, or -1 for an error.

2.0.0.578 send_to

include std/socket.e
public function send_to(socket sock, sequence data, sequence address, integer port = - 1, atom flags = 0)

Send a UDP packet to a given socket

Parameters:

sock: the server socket1.
data: the data to be sent2.
ip: the ip where the data is to be sent to (ip:port) is acceptable3.
port: the port where the data is to be sent on (if not supplied with the ip)4.
flags : flags (see Send Flags)5.

Returns:

An integer status code.

Euphoria v4.0 svn3379

Parameters: 541

See Also:

receive_from

2.0.0.579 sequence

<built-in> function sequence(object x)

Tests the supplied argument x to see if it is a sequence or not.

Returns:

An integer.
1 if x is a sequence.♦
0 if x is not an sequence.♦

1.

Example 1:

? sequence(1) --> 0
? sequence({1}) --> 1
? sequence("1") --> 1

See Also:

integer(), object(), atom()

2.0.0.580 sequence_array

include std/types.e
public type sequence_array(object x)

Returns:

TRUE if argument is a sequence that only contains zero or more sequences.

Example 1:

sequence_array(-1) -- FALSE (not a sequence)
sequence_array("abc") -- FALSE (all single characters)
sequence_array({1, 2, "abc"}) -- FALSE (contains some atoms)
sequence_array({1, 2, 9.7}) -- FALSE
sequence_array({1, 2, 'a'}) -- FALSE
sequence_array({"abc", {3.4, 99182.78737}}) -- TRUE

Euphoria v4.0 svn3379

Parameters: 542

sequence_array({}) -- TRUE

2.0.0.581 sequence_to_set

include std/sets.e
public function sequence_to_set(sequence s)

Makes a set out of a sequence by sorting it and removing duplicate elements.

Parameters:

s : the sequence to transform.1.

Returns:

A set, which is the ordered list of distinct elements in s.

Example 1:

sequence s0 = {1,3,7,5,7,4,1}
 set s1 = sequence_to_set(s0) -- s1 is now {1,3,4,5,7}

See Also:

set

2.0.0.582 sequences_to_map

include std/sets.e
public function sequences_to_map(sequence mapped, sequence mapped_to, integer mode)

Returns a map which sends each element of some sequence to the corresponding one in another sequence.

Parameters:

mapped : the source sequence1.
mapped_to : the sequence it must map to.2.
mode : an integer, nonzero to also return the minimal sets the result map maps.3.

Euphoria v4.0 svn3379

Parameters: 543

Returns:

A sequence,

If mode is 0, a map which maps mapped to mapped_to, between the smallest possible sets.•
If mode is not zero, the sequence has length 3. The first element is the map above. The other two
elements are the sets derived from the input sequences.

•

Comments:

Elements in excess in mapped_to are discarded.

If an element is repeated in mapped, only the mapping of the last occurrence is retained.

Example 1:

sequence s0, s1
s0 = {2, 3, 4, 1, 4}
s1 = {"aba", "aac", 3, "def"}

map f = sequences_to_map(s0,s1)
-- As a sequence, f is {3,2,1,4,4,4}

See Also:

map, define_map

2.0.0.583 serialize

include std/serialize.e
public function serialize(object x)

Convert a standard Euphoria object in to a serialized version of it.

Parameters:

euobj : any Euphoria object.1.

Returns:

A sequence, this is the serialized version of the input object.

Euphoria v4.0 svn3379

Parameters: 544

Comments:

A serialized object is one that has been converted to a set of byte values. This can then by written directly out
to a file for storage.

You can use the deserialize function to convert it back into a standard Euphoria object.

Example 1:

integer fh
 fh = open("cust.dat", "wb")
 puts(fh, serialize(FirstName))
 puts(fh, serialize(LastName))
 puts(fh, serialize(PhoneNumber))
 puts(fh, serialize(Address))
 close(fh)

 fh = open("cust.dat", "rb")
 FirstName = deserialize(fh)
 LastName = deserialize(fh)
 PhoneNumber = deserialize(fh)
 Address = deserialize(fh)
 close(fh)

Example 2:

integer fh
 fh = open("cust.dat", "wb")
 puts(fh, serialize({FirstName,
 LastName,
 PhoneNumber,
 Address}))
 close(fh)

 sequence res
 fh = open("cust.dat", "rb")
 res = deserialize(fh)
 close(fh)
 FirstName = res[1]
 LastName = res[2]
 PhoneNumber = res[3]
 Address = res[4]

2.0.0.584 service_by_name

include std/socket.e
public function service_by_name(sequence name, object protocol = 0)

Get service information by name.

Euphoria v4.0 svn3379

Parameters: 545

Parameters:

name : service name.1.
protocol : protocol. Default is not to search by protocol.2.

Returns:

A sequence, containing { official protocol name, protocol, port number } or an atom indicating the error code.

Example 1:

object result = getservbyname("http")
-- result = { "http", "tcp", 80 }

See Also:

service_by_port

2.0.0.585 service_by_port

include std/socket.e
public function service_by_port(integer port, object protocol = 0)

Get service information by port number.

Parameters:

port : port number.1.
protocol : protocol. Default is not to search by protocol.2.

Returns:

A sequence, containing { official protocol name, protocol, port number } or an atom indicating the error code.

Example 1:

object result = getservbyport(80)
-- result = { "http", "tcp", 80 }

Euphoria v4.0 svn3379

Parameters: 546

See Also:

service_by_name

2.0.0.586 set

include std/locale.e
public function set(sequence new_locale)

Set the computer locale, and possibly load appropriate translation file.

Parameters:

new_locale : a sequence representing a new locale.1.

Returns:

An integer, either 0 on failure or 1 on success.

Comments:

Locale strings have the following format: xx_YY or xx_YY.xyz . The xx part refers to a culture, or main
language/script. For instance, "en" refers to English, "de" refers to German, and so on. For some language, a
script may be specified, like in "mn_Cyrl_MN" (mongolian in cyrillic transcription).

The YY part refers to a subculture, or variant, of the main language. For instance, "fr_FR" refers to
metropolitan France, while "fr_BE" refers to the variant spoken in Wallonie, the French speaking region of
Belgium.

The optional .xyz part specifies an encoding, like .utf8 or .1252 . This is required in some cases.

2.0.0.587 set

include std/sets.e
public type set(object s)

A set is a sequence in which each item is greater than the previous item.

Euphoria v4.0 svn3379

Parameters: 547

See Also:

compare

2.0.0.588 set

include std/stack.e
public procedure set(stack sk, object val, integer idx = 1)

Update a value on the stack

Parameters:

sk : the stack being queried1.
val : an object, the value to place on the stack2.
idx : an integer, the place to inspect. The default is 1 (the top item)3.

Errors:

If the supplied value of idx does not correspond to an existing element, an error occurs.

Comments:

For FIFO stacks (queues), the top item is the oldest item in the stack.•
For FILO stacks, the top item is the newest item in the stack.•

idx can be less than 1, in which case it refers to an element relative to the end of the stack. Thus, 0 stands for
the end element.

See Also:

size, top

2.0.0.589 set_accumulate_summary

include std/unittest.e
public procedure set_accumulate_summary(integer accumulate)

Request the test report to save run stats in "unittest.dat" before exiting.

Euphoria v4.0 svn3379

Parameters: 548

Parameters:

accumulate : an integer, zero not to accumulate, nonzero to accumulate.1.

Comments:

The file "unittest.dat" is appended to with {t,f}

where

t is total number of tests run
f is the total number of tests that failed

2.0.0.590 set_charsets

include std/types.e
public procedure set_charsets(sequence charset_list)

Sets the definition for one or more defined character sets.

Parameters:

charset_list : a sequence of zero or more character set definitions.1.

Comments:

charset_list must be a sequence of pairs. The first element of each pair is the character set id , eg.
CS_Whitespace, and the second is the definition of that character set.

This is the same format returned by the get_charsets() routine.

You cannot create new character sets using this routine.

Example 1:

set_charsets({{CS_Whitespace, " \t"}})
t_space('\n') --> FALSE

t_specword('$') --> FALSE
set_charsets({{CS_SpecWord, "_-#$%"}})
t_specword('$') --> TRUE

Euphoria v4.0 svn3379

Parameters: 549

See Also:

get_charsets

2.0.0.591 set_colors

include syncolor.e
public procedure set_colors(sequence pColorList)

2.0.0.592 set_decimal_mark

include std/convert.e
public function set_decimal_mark(integer new_mark)

Gets, and possibly sets, the decimal mark that to_number() uses.

Parameters:

new_mark : An integer: Either a comma (,), a period (.) or any other integer.1.

Returns:

An integer, The current value, before new_mark changes it.

Comments:

When new_mark is a period it will cause to_number() to interpret a dot (.) as the decimal
point symbol. The pre-changed value is returned.

•

When new_mark is a comma it will cause to_number() to interpret a comma (,) as the decimal
point symbol. The pre-changed value is returned.

•

Any other value does not change the current setting. Instead it just returns the current value.•
The initial value of the decimal marker is a period.•

2.0.0.593 set_def_lang

include std/locale.e
public procedure set_def_lang(object langmap)

Sets the default language (translation) map

Euphoria v4.0 svn3379

Parameters: 550

Parameters:

langmap : A value returned by lang_load(), or zero to remove any default map.1.

Example:

set_def_lang(lang_load("appmsgs"))

2.0.0.594 set_default_charsets

include std/types.e
public procedure set_default_charsets()

Sets all the defined character sets to their default definitions.

Example 1:

set_default_charsets()

2.0.0.595 set_encoding_properties

include std/text.e
public procedure set_encoding_properties(sequence en = "", sequence lc = "", sequence uc = "")

Sets the table of lowercase and uppercase characters that is used by lower and upper

Parameters:

en : The name of the encoding represented by these character sets1.
lc : The set of lowercase characters2.
uc : The set of upper case characters3.

Comments:

lc and uc must be the same length.•
If no parameters are given, the default ASCII table is set.•

Example 1:

set_encoding_properties("Elvish", "aeiouy", "AEIOUY")

Euphoria v4.0 svn3379

Parameters: 551

Example 1:

set_encoding_properties("1251") -- Loads a predefined code page.

See Also:

lower, upper, get_encoding_properties

2.0.0.596 set_lang_path

include std/locale.e
public procedure set_lang_path(object pp)

Set the language path.

Parameters:

pp : an object, either an actual path or an atom.1.

Comments:

When the language path is not set, and it is unset by default, set() does not load any language file.

See Also:

set

2.0.0.597 set_option

include std/socket.e
public function set_option(socket sock, integer level, integer optname, object val)

Set options for a socket.

Parameters:

sock : an atom, the socket id1.
level : an integer, the option level2.
optname : requested option (See Socket Options)3.
val : an object, the new value for the option4.

Euphoria v4.0 svn3379

Parameters: 552

Returns:

An integer, 0 on success, -1 on error.

Comments:

Primarily for use in multicast or more advanced socket applications. Level is the option level, and
option_name is the option for which values are being set. Level is usually SOL_SOCKET.

See Also:

get_option

2.0.0.598 set_rand

include std/rand.e
public procedure set_rand(object seed)

Reset the random number generator.

Parameters:

seed : an object. The generator uses this initialize itself for the next random number generated. This
can be a single integer or atom, or a sequence of two integers, or an empty sequence or any other sort
of sequence.

1.

Comments:

Starting from a seed, the values returned by rand() are reproducible. This is useful for demos and
stress tests based on random data. Normally the numbers returned by the rand() function are totally
unpredictable, and will be different each time you run your program. Sometimes however you may
wish to repeat the same series of numbers, perhaps because you are trying to debug your program, or
maybe you want the ability to generate the same output (e.g. a random picture) for your user upon
request.

•

Internally there are actually two seed values.
When set_rand() is called with a single integer or atom, the two internal seeds are
derived from the parameter.

♦

When set_rand() is called with a sequence of exactly two integers/atoms the internal
seeds are set to the parameter values.

♦

When set_rand() is called with an empty sequence, the internal seeds are set to random
values and are unpredictable. This is how to reset the generator.

♦

When set_rand() is called with any other sequence, the internal seeds are set based on the
length of the sequence and the hashed value of the sequence.

♦

•

Euphoria v4.0 svn3379

Parameters: 553

Aside from an empty seed parameter, this sets the generator to a known state and the random
numbers generated after come in a predicable order, though they still appear to be random.

•

Example 1:

sequence s, t
s = repeat(0, 3)
t = s

set_rand(12345)
s[1] = rand(10)
s[2] = rand(100)
s[3] = rand(1000)

set_rand(12345) -- same value for set_rand()
t[1] = rand(10) -- same arguments to rand() as before
t[2] = rand(100)
t[3] = rand(1000)
-- at this point s and t will be identical
set_rand("") -- Reset the generator to an unknown seed.
t[1] = rand(10) -- Could be anything now, no way to predict it.

See Also:

rand

2.0.0.599 set_sendheader

include std/net/http.e
public procedure set_sendheader(object whatheader, sequence whatdata)

Set an individual header field.

Parameters:

whatheader : an object, either an explicit name string or a HTTP_HEADER_xxx constant1.
whatdata : a string, the associated data2.

Comments:

If the requested field is not one of the default header fields, the field MUST be set by string. This will increase
the length of the header overall.

Euphoria v4.0 svn3379

Parameters: 554

Example 1:

set_sendheader("Referer","search.yahoo.com")

See Also:

get_sendheader

2.0.0.600 set_sendheader_default

include std/net/http.e
public procedure set_sendheader_default()

Sets header elements to default values. The default User Agent is Opera (currently the most standards
compliant). Before setting any header option individually, programs must call this procedure.

See Also:

get_sendheader, set_sendheader, set_sendheader_useragent_msie

2.0.0.601 set_sendheader_useragent_msie

include std/net/http.e
public procedure set_sendheader_useragent_msie()

Inform listener that user agent is Microsoft (R) Internet Explorer (TM).

Comments:

This is a convenience procedure to tell a website that a Microsoft Internet Explorer (TM) browser is
requesting data. Because some websites format their response differently (or simply refuse data) depending on
the browser, this procedure provides a quick means around that. For example, see:
http://www.missporters.org/podium/nonsupport.aspx

2.0.0.602 set_test_abort

include std/unittest.e
public function set_test_abort(integer abort_test)

Set behavior on test failure, and return previous value.

Euphoria v4.0 svn3379

Parameters: 555

http://www.missporters.org/podium/nonsupport.aspx

Parameters:

abort_test : an integer, the new value for this setting.1.

Returns:

An integer, the previous value for the setting.

Comments:

By default, the tests go on even if a file crashed.

2.0.0.603 set_test_verbosity

include std/unittest.e
public procedure set_test_verbosity(atom verbosity)

Set the amount of information that is returned about passed and failed tests.

Parameters:

verbosity : an atom which takes predefined values for verbosity levels.1.

Comments:

The following values are allowable for verbosity:

TEST_QUIET -- 0,•
TEST_SHOW_FAILED_ONLY -- 1•
TEST_SHOW_ALL -- 2•

However, anything less than TEST_SHOW_FAILED_ONLY is treated as TEST_QUIET, and everything
above TEST_SHOW_ALL is treated as TEST_SHOW_ALL.

At the lowest verbosity level, only the score is shown, ie the ratio passed tests/total tests.•
At the medium level, in addition, failed tests display their name, the expected outcome and the
outcome they got. This is the initial setting.

•

At the highest level of verbosity, each test is reported as passed or failed.•

If a file crashes when it should not, this event is reported no matter the verbosity level.

The command line switch ""-failed" causes verbosity to be set to medium at startup. The command line switch
""-all" causes verbosity to be set to high at startup.

Euphoria v4.0 svn3379

Parameters: 556

See Also:

test_report

2.0.0.604 set_wait_on_summary

include std/unittest.e
public procedure set_wait_on_summary(integer to_wait)

Request the test report to pause before exiting.

Parameters:

to_wait : an integer, zero not to wait, nonzero to wait.1.

Comments:

Depending on the environment, the test results may be invisible if set_wait_on_summary(1) was not
called prior, as this is not the default. The command line switch "-wait" performs this call.

See Also:

test_report

2.0.0.605 setenv

include std/os.e
public function setenv(sequence name, sequence val, integer overwrite = 1)

Set an environment variable.

Parameters:

name : a string, the environment variable name1.
val : a string, the value to set to2.
overwrite : an integer, nonzero to overwrite an existing variable, 0 to disallow this.3.

Example 1:

? setenv("NAME", "John Doe")
? setenv("NAME", "Jane Doe")
? setenv("NAME", "Jim Doe", 0)

Euphoria v4.0 svn3379

Parameters: 557

See Also:

getenv, unsetenv

2.0.0.606 shift_bits

include std/math.e
public function shift_bits(object source_number, integer shift_distance)

Moves the bits in the input value by the specified distance.

Parameters:

source_number : object: The value(s) whose bits will be be moved.1.
shift_distance : integer: number of bits to be moved by.2.

Comments:

If source_number is a sequence, each element is shifted.•
The value(s) in source_number are first truncated to a 32-bit integer.•
The output is truncated to a 32-bit integer.•
Vacated bits are replaced with zero.•
If shift_distance is negative, the bits in source_number are moved left.•
If shift_distance is positive, the bits in source_number are moved right.•
If shift_distance is zero, the bits in source_number are not moved.•

Returns:

Atom(s) containing a 32-bit integer. A single atom in source_number is an atom, or a sequence in the
same form as source_number containing 32-bit integers.

Example 1:

? shift_bits((7, -3) --> 56
? shift_bits((0, -9) --> 0
? shift_bits((4, -7) --> 512
? shift_bits((8, -4) --> 128
? shift_bits((0xFE427AAC, -7) --> 0x213D5600
? shift_bits((-7, -3) --> -56 which is 0xFFFFFFC8
? shift_bits((131, 0) --> 131
? shift_bits((184.464, 0) --> 184
? shift_bits((999_999_999_999_999, 0) --> -1530494977 which is 0xA4C67FFF
? shift_bits((184, 3) -- 23
? shift_bits((48, 2) --> 12
? shift_bits((121, 3) --> 15
? shift_bits((0xFE427AAC, 7) --> 0x01FC84F5

Euphoria v4.0 svn3379

Parameters: 558

? shift_bits((-7, 3) --> 0x1FFFFFFF
? shift_bits({48, 121}, 2) --> {12, 30}

See Also:

rotate_bits

2.0.0.607 show_block

include std/safe.e
public procedure show_block(sequence block_info)

2.0.0.608 show_help

include std/cmdline.e
public procedure show_help(sequence opts, object add_help_rid = - 1, sequence cmds = command_line())

Show help message for the given opts.

Parameters:

opts : a sequence of options. See the cmd_parse for details.1.
add_help_rid : an object. Either a routine_id or a set of text strings. The default is -1 meaning
that no additional help text will be used.

2.

cmds : a sequence of strings. By default this is the output from command_line()3.

Comments:

opts is identical to the one used by cmd_parse•
add_help_rid can be used to provide additional help text. By default, just the option switches and
their descriptions will be displayed. However you can provide additional text by either supplying a
routine_id of a procedure that accepts no parameters; this procedure is expected to write text to the
stdout device. Or you can supply one or more lines of text that will be displayed.

•

Example 1:

-- in myfile.ex
constant description = {
 "Creates a file containing an analysis of the weather.",
 "The analysis includes temperature and rainfall data",
 "for the past week."
 }

show_help({

Euphoria v4.0 svn3379

Parameters: 559

 {"q", "silent", "Suppresses any output to console", NO_PARAMETER, -1},
 {"r", 0, "Sets how many lines the console should display", {HAS_PARAMETER,"lines"}, -1}},
 description)

Outputs:

myfile.ex options:
-q, --silent Suppresses any output to console
-r lines Sets how many lines the console should display

Creates a file containing an analysis of the weather.
The analysis includes temperature and rainfall data
for the past week.

Example 2:

-- in myfile.ex
constant description = {
 "Creates a file containing an analysis of the weather.",
 "The analysis includes temperature and rainfall data",
 "for the past week."
 }
procedure sh()
 for i = 1 to length(description) do
 printf(1, " >> %s <<\n", {description[i]})
 end for
end procedure

show_help({
 {"q", "silent", "Suppresses any output to console", NO_PARAMETER, -1},
 {"r", 0, "Sets how many lines the console should display", {HAS_PARAMETER,"lines"}, -1}},
 routine_id("sh"))

Outputs:

myfile.ex options:
-q, --silent Suppresses any output to console
-r lines Sets how many lines the console should display

>> Creates a file containing an analysis of the weather. <<
>> The analysis includes temperature and rainfall data <<
>> for the past week. <<

2.0.0.609 shuffle

include std/sequence.e
public function shuffle(sequence seq)

Shuffle the elements of a sequence.

Euphoria v4.0 svn3379

Parameters: 560

Parameters:

seq: the sequence to shuffle.1.

Returns:

A sequence

Comments:

The input sequence does not have to be in any specific order and can contain duplicates. The output will be in
an unpredictable order, which might even be the same as the input order.

Example 1:

shuffle({1,2,3,3}) -- {3,1,3,2}
shuffle({1,2,3,3}) -- {2,3,1,3}
shuffle({1,2,3,3}) -- {1,2,3,3}

2.0.0.610 shutdown

include std/socket.e
public function shutdown(socket sock, atom method = SD_BOTH)

Partially or fully close a socket.

Parameters:

sock : the socket to shutdown1.
method : the method used to close the socket2.

Returns:

An integer, 0 on success and -1 on error.

Comments:

Three constants are defined that can be sent to method:

SD_SEND - shutdown the send operations.•
SD_RECEIVE - shutdown the receive operations.•

Euphoria v4.0 svn3379

Parameters: 561

SD_BOTH - shutdown both send and receive operations.•

It may take several minutes for the OS to declare the socket as closed.

2.0.0.611 sign

include std/math.e
public function sign(object a)

Return -1, 0 or 1 for each element according to it being negative, zero or positive

Parameters:

value : an object, each atom of which will be acted upon, no matter how deeply nested.1.

Returns:

An object, the same shape as value. When value is an atom, the result is -1 if value is less than zero, 1 if
greater and 0 if equal.

Comments:

This function may be applied to an atom or to all elements of a sequence.

For an atom, sign(x) is the same as compare(x,0).

Example 1:

i = sign(5)
i is 1

i = sign(0)
-- i is 0

i = sign(-2)
-- i is -1

See Also:

compare

Euphoria v4.0 svn3379

Parameters: 562

2.0.0.612 sim_index

include std/sequence.e
public function sim_index(sequence A, sequence B)

Calculates the similarity between two sequences.

Parameters:

A : A sequence.1.
B : A sequence.2.

Returns:

An atom, the closer to zero, the more the two sequences are alike.

Comments:

The calculation is weighted to give mismatched elements towards the front of the sequences larger scores.
This means that sequences that differ near the begining are considered more un-alike than mismatches
towards the end of the sequences. Also, unmatched elements from the first sequence are weighted more than
unmatched elements from the second sequence.

Two identical sequences return zero. A non-zero means that they are not the same and larger values indicate a
larger differences.

Example 1:

? sim_index("sit", "sin") --> 0.08784
? sim_index("sit", "sat") --> 0.32394
? sim_index("sit", "skit") --> 0.34324
? sim_index("sit", "its") --> 0.68293
? sim_index("sit", "kit") --> 0.86603

? sim_index("knitting", "knitting") --> 0.00000
? sim_index("kitting", "kitten") --> 0.09068
? sim_index("knitting", "knotting") --> 0.27717
? sim_index("knitting", "kitten") --> 0.35332
? sim_index("abacus","zoological") --> 0.76304

2.0.0.613 sin

<built-in> function sin(object angle)

Return the sine of an angle expressed in radians

Euphoria v4.0 svn3379

Parameters: 563

Parameters:

angle : an object, each atom in which will be acted upon.1.

Returns:

An object, the same shape as angle. When angle is an atom, the result is the sine of angle.

Comments:

This function may be applied to an atom or to all elements of a sequence.

The sine of an angle is an atom between -1 and 1 inclusive. 0.0 is hit by integer multiples of PI only.

Example 1:

sin_x = sin({.5, .9, .11})
-- sin_x is {.479, .783, .110}

See Also:

cos, arcsin, PI, deg2rad

2.0.0.614 sinh

include std/math.e
public function sinh(object a)

Computes the hyperbolic sine of an object.

Parameters:

x : the object to process.1.

Returns:

An object, the same shape as x, each atom of which was acted upon.

Euphoria v4.0 svn3379

Parameters: 564

Comments:

The hyperbolic sine grows like the exponential function.

For all reals, power(cosh(x), 2) - power(sinh(x), 2) = 1. Compare with ordinary
trigonometry.

Example 1:

? sinh(LN2) -- prints out 0.75

See Also:

cosh, sin, arcsinh

2.0.0.615 size

include std/map.e
public function size(map the_map_p)

Return the number of entries in a map.

Parameters:

the_map_p : the map being queried

Returns:

An integer, the number of entries it has.

Comments:

For an empty map, size will be zero

Example 1:

map the_map_p
put(the_map_p, 1, "a")
put(the_map_p, 2, "b")
? size(the_map_p) -- outputs 2

Euphoria v4.0 svn3379

Parameters: 565

See Also:

statistics

2.0.0.616 size

include std/stack.e
public function size(stack sk)

Returns how many elements a stack has.

Parameters:

sk : the stack being queried.1.

Returns:

An integer, the number of elements in sk.

2.0.0.617 skewness

include std/stats.e
public function skewness(object data_set, object subseq_opt = ST_ALLNUM)

Returns a measure of the asymmetry of a data set. Usually the data_set is a probablity distribution but it can
be anything. This value is used to assess how suitable the data set is in representing the required analysis. It
can help detect if there are too many extreme values in the data set.

Parameters:

data_set : a list of 1 or more numbers whose mean is used.1.
subseq_opt : an object. When this is ST_ALLNUM (the default) it means that data_set is
assumed to contain no sub-sequences otherwise this gives instructions about how to treat
sub-sequences. See comments for details.

2.

Returns:

An atom. The skewness measure of the data set.

Euphoria v4.0 svn3379

Parameters: 566

Comments:

Generally speaking, a negative return indicates that most of the values are lower than the mean, while positive
values indicate that most values are greater than the mean. However this might not be the case when there are
a few extreme values on one side of the mean.

The larger the magnitude of the returned value, the more the data is skewed in that direction.

A returned value of zero indicates that the mean and median values are identical and that the data is
symmetrical.

If the data can contain sub-sequences, such as strings, you need to let the the function know about this
otherwise it assumes every value in data_set is an number. If that is not the case then the function will
crash. So it is important that if it can possibly contain sub-sequences that you tell this function what to do with
them. Your choices are to ignore them or assume they have the value zero. To ignore them, use ST_IGNSTR
as the subseq_opt parameter value otherwise use ST_ZEROSTR. However, if you know that data_set
only contains numbers use the default subseq_opt value, ST_ALLNUM. Note It is faster if the data only
contains numbers.

Example 1:

skewness("the cat is the hatter") --> -1.36166186
skewness("thecatisthehatter") --> 0.1093730315

See also:

kurtosis

2.0.0.618 sleep

include std/os.e
public procedure sleep(atom t)

Suspend thread execution. for t seconds.

Parameters:

t : an atom, the number of seconds for which to sleep.1.

Comments:

The operating system will suspend your process and schedule other processes.

Euphoria v4.0 svn3379

Parameters: 567

With multiple tasks, the whole program sleeps, not just the current task. To make just the current task sleep,
you can call task_schedule(task_self(), {i, i}) and then execute task_yield(). Another option
is to call task_delay().

Example:

puts(1, "Waiting 15 seconds and a quarter...\n")
sleep(15.25)
puts(1, "Done.\n")

See Also:

task_schedule, task_yield, task_delay

2.0.0.619 slice

include std/sequence.e
public function slice(sequence source, atom start = 1, atom stop = 0)

Return a portion of the supplied sequence.

Parameters:

source : the sequence from which to get a portion1.
start : an integer, the starting point of the portion. Default is 1.2.
stop : an integer, the ending point of the portion. Default is length(source).3.

Returns:

A sequence.

Comments:

If the supplied start is less than 1 then it set to 1.•
If the supplied stop is less than 1 then length(source) is added to it. In this way, 0 represents
the end of source, -1 represents one element in from the end of source and so on.

•

If the supplied stop is greater than length(source) then it is set to the end.•
After these adjustments, and if source[start..stop] makes sense, it is returned, otherwise, {}
is returned.

•

Euphoria v4.0 svn3379

Parameters: 568

Examples:

s2 = slice("John Doe", 6, 8)--> "Doe"
s2 = slice("John Doe", 6, 50) --> "Doe"
s2 = slice({1, 5.4, "John", 30}, 2, 3) --> {5.4, "John"}
s2 = slice({1,2,3,4,5}, 2, -1) --> {2,3,4}
s2 = slice({1,2,3,4,5}, 2) --> {2,3,4,5}
s2 = slice({1,2,3,4,5}, , 4) --> {1,2,3,4}

See Also:

head, mid, tail

2.0.0.620 small

include std/stats.e
public function small(sequence data_set, integer ordinal_idx)

Determines the k-th smallest value from the supplied set of numbers.

Parameters:

data_set : The list of values from which the smallest value is chosen.1.
ordinal_idx : The relative index of the desired smallest value.2.

Returns:

A sequence, {The k-th smallest value, its index in the set}

Comments:

small() is used to return a value based on its size relative to all the other elements in the sequence. When
index is 1, the smallest index is returned. Use index = length(data_set) to return the highest.

If ordinal_idx is less than one, or greater then length of data_set, an empty sequence is returned.

The set of values does not have to be in any particular order. The values may be any Euphoria object.

Example 1:

? small({4,5,6,8,5,4,3,"text"}, 3) -- Ans: {4,1} (The 3rd smallest value)
? small({4,5,6,8,5,4,3,"text"}, 1) -- Ans: {3,7} (The 1st smallest value)
? small({4,5,6,8,5,4,3,"text"}, 7) -- Ans: {8,4} (The 7th smallest value)
? small({"def", "qwe", "abc", "try"}, 2) -- Ans: {"def", 1} (The 2nd smallest value)
? small({1,2,3,4}, -1) -- Ans: {} -- no-value

Euphoria v4.0 svn3379

Parameters: 569

? small({1,2,3,4}, 10) -- Ans: {} -- no-value

2.0.0.621 smallest

include std/stats.e
public function smallest(object data_set)

Returns the smallest of the data points.

Parameters:

data_set : A list of 1 or more numbers for which you want the smallest. Note: only atom elements
are included and any sub-sequences elements are ignored.

1.

Returns:

An object, either of:

an atom (the smallest value) if there is at least one atom item in the set•
{} if there is no largest value.•

Comments:

Any data_set element which is not an atom is ignored.

Example 1:

? smallest({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,"text"}) -- Ans: 1
? smallest({"just","text"}) -- Ans: {}

See also:

range

2.0.0.622 socket

include std/socket.e
public type socket(object o)

Socket type

Euphoria v4.0 svn3379

Parameters: 570

2.0.0.623 sort

include std/sort.e
public function sort(sequence x, integer order = ASCENDING)

Sort the elements of a sequence into ascending order.

Parameters:

x : The sequence to be sorted.1.
order : the sort order. Default is ASCENDING.2.

Returns:

A sequence, a copy of the original sequence in ascending order

Comments:

The elements can be atoms or sequences.

The standard compare() routine is used to compare elements. This means that "y is greater than x" is
defined by compare(y, x)=1.

This function uses the "Shell" sort algorithm. This sort is not "stable", i.e. elements that are considered equal
might change position relative to each other.

Example 1:

constant student_ages = {18,21,16,23,17,16,20,20,19}
sequence sorted_ages
sorted_ages = sort(student_ages)
-- result is {16,16,17,18,19,20,20,21,23}

See Also:

compare, custom_sort

2.0.0.624 sort_columns

include std/sort.e
public function sort_columns(sequence x, sequence column_list)

Euphoria v4.0 svn3379

Parameters: 571

Sort the rows in a sequence according to a user-defined column order.

Parameters:

x : a sequence, holding the sequences to be sorted.1.
column_list : a list of columns indexes x is to be sorted by.2.

Returns:

A sequence, a copy of the original sequence in sorted order.

Comments:

x must be a sequence of sequences.

A non-existent column is treated as coming before an existing column. This allows sorting of records that are
shorter than the columns in the column list.

By default, columns are sorted in ascending order. To sort in descending order, make the column number
negative.

This function uses the "Shell" sort algorithm. This sort is not "stable", i.e. elements that are considered equal
might change position relative to each other.

Example 1:

sequence dirlist
dirlist = dir("c:\\temp")
sequence sorted
-- Order is Size:descending, Name
sorted = sort_columns(dirlist, {-D_SIZE, D_NAME})

See Also:

compare, sort

2.0.0.625 splice

<built-in> function splice(sequence target, object what, integer index)

Inserts an object as a new slice in a sequence at a given position.

Euphoria v4.0 svn3379

Parameters: 572

Parameters:

target : the sequence to insert into1.
what : the object to insert2.
index : an integer, the position in target where what should appear3.

Returns:

A sequence, which is target with one or more elements, those of what, inserted at locations starting at
index.

Comments:

target can be a sequence of any shape, and what any kind of object.

The length of this new sequence is the sum of the lengths of target and what. splice() is equivalent to
insert() when what is an atom, but not when it is a sequence.

Splicing a string into a string results into a new string.

Example 1:

s = splice("John Doe", " Middle", 5)
-- s is "John Middle Doe"

Example 2:

s = splice({10,30,40}, 20, 2)
-- s is {10,20,30,40}

See Also:

insert, remove, replace, &

2.0.0.626 split

include std/regex.e
public function split(regex re, string text, integer from = 1, option_spec options = DEFAULT)

Split a string based on a regex as a delimiter

Euphoria v4.0 svn3379

Parameters: 573

Parameters:

re : a regex which will be used for matching1.
text : a string on which search and replace will apply2.
from : optional start position3.
options : options, defaults to DEFAULT. See Match Time Option Constants. options can be any
match time option or a sequence of valid options or it can be a value that comes from using or_bits on
any two valid option values.

4.

Returns:

A sequence of string values split at the delimiter and if no delimiters were matched this sequence will be a
one member sequence equal to {text}.

Example 1:

include std/regex.e as re
regex comma_space_re = re:new(`,\s`)
sequence data = re:split(comma_space_re, "euphoria programming, source code, reference data")
-- data is
-- {
-- "euphoria programming",
-- "source code",
-- "reference data"
-- }

2.0.0.627 split

include std/sequence.e
public function split(sequence st, object delim = ' ', integer no_empty = 0, integer limit = 0)

Split a sequence on separator delimiters into a number of sub-sequences.

Parameters:

source : the sequence to split.1.
delim : an object (default is ' '). The delimiter that separates items in source.2.
no_empty : an integer (default is 0). If not zero then all zero-length sub-sequences are removed
from the returned sequence. Use this when leading, trailing and duplicated delimiters are not
significant.

3.

limit : an integer (default is 0). The maximum number of sub-sequences to create. If zero, there is
no limit.

4.

Euphoria v4.0 svn3379

Parameters: 574

Returns:

A sequence, of sub-sequences of source. Delimiters are removed.

Comments:

This function may be applied to a string sequence or a complex sequence.

If limit is > 0, this is the maximum number of sub-sequences that will created, otherwise there is no limit.

Example 1:

result = split("John Middle Doe")
-- result is {"John", "Middle", "Doe"}

Example 2:

result = split("John,Middle,Doe", ",",, 2) -- Only want 2 sub-sequences.
-- result is {"John", "Middle,Doe"}

Example 3:

result = split("John||Middle||Doe|", '|') -- Each '|' is significant by default
-- result is {"John","","Middle","","Doe",""}
result = split("John||Middle||Doe|", '|', 1) -- Adjacent '|' are just a single delim,
 -- and leading/trailing '|' ignored.
-- result is {"John","Middle","Doe"}

See Also:

split_any, breakup, join

2.0.0.628 split_any

include std/sequence.e
public function split_any(sequence source, object delim, integer limit = 0, integer no_empty = 0)

Split a sequence by any of the separators in the list of delimiters.

If limit is > 0 then limit the number of tokens that will be split to limit.

Euphoria v4.0 svn3379

Parameters: 575

Parameters:

source : the sequence to split.1.
delim : a list of delimiters to split by.2.
limit : an integer (default is 0). The maximum number of sub-sequences to create. If zero, there is
no limit.

3.

no_empty : an integer (default is 0). If not zero then all zero-length sub-sequences removed from
the returned sequence. Use this when leading, trailing and duplicated delimiters are not significant.

4.

Comments:

This function may be applied to a string sequence or a complex sequence.

It works like split(), but in this case delim is a set of potential delimiters rather than a single delimiter.

Example 1:

result = split_any("One,Two|Three.Four", ".,|")
-- result is {"One", "Two", "Three", "Four"}
result = split_any(",One,,Two|.Three||.Four,", ".,|",,1) -- No Empty option
-- result is {"One", "Two", "Three", "Four"}

See Also:

split, breakup, join

2.0.0.629 split_limit

include std/regex.e
public function split_limit(regex re, string text, integer limit = 0, integer from = 1, option_spec options = DEFAULT)

2.0.0.630 sprint

include std/text.e
public function sprint(object x)

Returns the representation of any Euphoria object as a string of characters.

Euphoria v4.0 svn3379

Parameters: 576

Parameters:

x : Any Euphoria object.1.

Returns:

A sequence, a string representation of x.

Comments:

This is exactly the same as print(fn, x), except that the output is returned as a sequence of characters,
rather than being sent to a file or device. x can be any Euphoria object.

The atoms contained within x will be displayed to a maximum of 10 significant digits, just as with print().

Example 1:

s = sprint(12345)
-- s is "12345"

Example 2:

s = sprint({10,20,30}+5)
-- s is "{15,25,35}"

See Also:

sprintf, printf

2.0.0.631 sprintf

<built-in> function sprintf(sequence format, object values)

This is exactly the same as printf(), except that the output is returned as a sequence of characters, rather than
being sent to a file or device.

Parameters:

format : a sequence, the text to print. This text may contain format specifiers.1.
values : usually, a sequence of values. It should have as many elements as format specifiers in
format, as these values will be substituted to the specifiers.

2.

Euphoria v4.0 svn3379

Parameters: 577

Returns:

A sequence, of printable characters, representing format with the values in values spliced in.

Comments:

printf(fn, st, x) is equivalent to puts(fn, sprintf(st, x)).

Some typical uses of sprintf() are:

Converting numbers to strings.1.
Creating strings to pass to system().2.
Creating formatted error messages that can be passed to a common error message handler.3.

Example 1:

s = sprintf("%08d", 12345)
-- s is "00012345"

See Also:

printf, sprint, format

2.0.0.632 sqrt

<built-in> function sqrt(object value)

Calculate the square root of a number.

Parameters:

value : an object, each atom in which will be acted upon.1.

Returns:

An object, the same shape as value. When value is an atom, the result is the positive atom whose square
is value.

Errors:

If any atom in value is less than zero, an error will occur, as no squared real can be less than zero.

Euphoria v4.0 svn3379

Parameters: 578

Comments:

This function may be applied to an atom or to all elements of a sequence.

Example 1:

r = sqrt(16)
-- r is 4

See Also:

power, Operations on sequences

2.0.0.633 stack

include std/stack.e
public type stack(object obj_p)

A stack is a sequence of objects with some internal data.

2.0.0.634 statistics

include std/map.e
public function statistics(map the_map_p)

2.0.0.635 std_library_address

include std/machine.e
public type std_library_address(atom addr)

Type for memory addresses

an address returned from allocate() or allocate_protect() or allocate_code() or the value 0.

Return Value:

An integer, The type will return 1 if the parameter was returned from one of these functions (and has not yet
been freeed)

Euphoria v4.0 svn3379

Parameters: 579

Comments:

This type is equivalent to atom unless SAFE is defined. Only values that satisfy this type may be passed into
free or free_code.

2.0.0.636 stdev

include std/stats.e
public function stdev(sequence data_set, object subseq_opt = ST_ALLNUM, integer population_type = ST_SAMPLE)

Returns the standard deviation based of the population.

Parameters:

data_set : a list of 1 or more numbers for which you want the estimated standard deviation.1.
subseq_opt : an object. When this is ST_ALLNUM (the default) it means that data_set is
assumed to contain no sub-sequences otherwise this gives instructions about how to treat
sub-sequences. See comments for details.

2.

population_type : an integer. ST_SAMPLE (the default) assumes that data_set is a random
sample of the total population. ST_FULLPOP means that data_set is the entire population.

3.

Returns:

An atom, the estimated standard deviation. An empty sequence means that there is no meaningful data to
calculate from.

Comments:

stdev() is a measure of how values are different from the average.

The numbers in data_set can either be the entire population of values or just a random subset. You indicate
which in the population_type parameter. By default data_set represents a sample and not the entire
population. When using this function with sample data, the result is an estimated standard deviation.

If the data can contain sub-sequences, such as strings, you need to let the the function know about this
otherwise it assumes every value in data_set is an number. If that is not the case then the function will
crash. So it is important that if it can possibly contain sub-sequences that you tell this function what to do with
them. Your choices are to ignore them or assume they have the value zero. To ignore them, use ST_IGNSTR
as the subseq_opt parameter value otherwise use ST_ZEROSTR. However, if you know that data_set
only contains numbers use the default subseq_opt value, ST_ALLNUM. Note It is faster if the data only
contains numbers.

Euphoria v4.0 svn3379

Parameters: 580

The equation for standard deviation is:

stdev(X) ==> SQRT(SUM(SQ(X{1..N} - MEAN)) / (N))

Example 1:

? stdev({4,5,6,7,5,4,3,7}) -- Ans: 1.457737974
? stdev({4,5,6,7,5,4,3,7} ,, ST_FULLPOP) -- Ans: 1.363589014
? stdev({4,5,6,7,5,4,3,"text"} , ST_IGNSTR) -- Ans: 1.345185418
? stdev({4,5,6,7,5,4,3,"text"}, ST_IGNSTR, ST_FULLPOP) -- Ans: 1.245399698
? stdev({4,5,6,7,5,4,3,"text"} , 0) -- Ans: 2.121320344
? stdev({4,5,6,7,5,4,3,"text"}, 0, ST_FULLPOP) -- Ans: 1.984313483

See also:

average, avedev

2.0.0.637 store

include std/sequence.e
public function store(sequence target, sequence indexes, object x)

Stores something at a location nested arbitrarily deep into a sequence.

Parameters:

target : the sequence in which to store something1.
indexes : a sequence of integers, the path to follow to reach the place where to store2.
x : the object to store.3.

Returns:

A sequence, a copy of target with the specified place indexes modified by storing x into it.

Errors:

If the path to storage location cannot be followed to its end, or an index is not what one would expect or is not
valid, an error about illegal sequence operations will occur.

Comments:

If the last element of indexes is a pair of integers, x will be stored as a slice three, the bounding indexes
being given in the pair as {lower,upper}..

Euphoria v4.0 svn3379

Parameters: 581

In Euphoria, you can never modify an object by passing it to a routine. You have to get a modified copy and
then assign it back to the original.

Example 1:

s = store({0,1,2,3,{"abc","def","ghi"},6},{5,2,3},108)
-- s is {0,1,2,3,{"abc","del","ghi"},6}

See Also:

fetch, Subscripting of Sequences

2.0.0.638 string

include std/types.e
public type string(object x)

Returns:

TRUE if argument is a sequence that only contains zero or more byte characters.

Comment:

A byte 'character' is defined as a integer in the range [0 to 255].

Example 1:

string(-1) -- FALSE (not a sequence)
string("abc'6") -- TRUE (all single byte characters)
string({1, 2, "abc'6"}) -- FALSE (contains a sequence)
string({1, 2, 9.7}) -- FALSE (contains a non-integer)
string({1, 2, 'a'}) -- TRUE
string({1, -2, 'a'}) -- FALSE (contains a negative integer)
string({}) -- TRUE

2.0.0.639 subsets

include std/sets.e
public function subsets(set s)

Returns the list of all subsets of the input set.

Euphoria v4.0 svn3379

Parameters: 582

Parameters:

s : the set to enumerate the subsets of.1.

Returns:

A sequence, containing all the subsets of the input set.

Comments:

s must not have more than 29 elements, as the length of the output sequence is power(2,length(s)),
which rapidly grows out of integer range. The order in which the subsets are output is implementation
dependent.

Example 1:

set s0 = {1,3,5,7}
 s0 = subsets(s0) -- s0 is now:
 {{},{1},{3},{5},{7},{1,3},{1,5},{1,7},{3,5},{3,7},{5,7},{1,3,5},{1,3,7},{1,5,7},{3,5,7},{1,3,5,7}}

See Also:

is_subset

2.0.0.640 subtract

include std/datetime.e
public function subtract(datetime dt, atom qty, integer interval)

Subtract a number of intervals to a base datetime.

Parameters:

dt : the base datetime1.
qty : the number of intervals to subtract. It should be positive.2.
interval : which kind of interval to subtract.3.

Returns:

A sequence, more precisely a datetime representing the new moment in time.

Euphoria v4.0 svn3379

Parameters: 583

Comments:

Please see Constants for Date/Time for a reference of valid intervals.

See the function add() for more information on adding and subtracting date intervals

Example 1:

dt2 = subtract(dt1, 18, MINUTES) -- subtract 18 minutes from dt1
dt2 = subtract(dt1, 7, MONTHS) -- subtract 7 months from dt1
dt2 = subtract(dt1, 12, HOURS) -- subtract 12 hours from dt1

See Also:

add, diff

2.0.0.641 sum

include std/math.e
public function sum(object a)

Compute the sum of all atoms in the argument, no matter how deeply nested

Parameters:

values : an object, all atoms of which will be added up, no matter how nested.1.

Returns:

An atom, the sum of all atoms in flatten(values).

Comments:

This function may be applied to an atom or to all elements of a sequence

Example 1:

a = sum({10, 20, 30})
-- a is 60

a = sum({10.5, {11.2} , 8.1})
-- a is 29.8

Euphoria v4.0 svn3379

Parameters: 584

See Also:

can_add, product, or_all

2.0.0.642 sum

include std/stats.e
public function sum(object data_set, object subseq_opt = ST_ALLNUM)

Returns the sum of all the atoms in an object.

Parameters:

data_set : Either an atom or a list of numbers to sum.1.
subseq_opt : an object. When this is ST_ALLNUM (the default) it means that data_set is
assumed to contain no sub-sequences otherwise this gives instructions about how to treat
sub-sequences. See comments for details.

2.

Returns:

An atom, the sum of the set.

Comments:

sum() is used as a measure of the magnitude of a sequence of positive values.

If the data can contain sub-sequences, such as strings, you need to let the the function know about this
otherwise it assumes every value in data_set is an number. If that is not the case then the function will
crash. So it is important that if it can possibly contain sub-sequences that you tell this function what to do with
them. Your choices are to ignore them or assume they have the value zero. To ignore them, use ST_IGNSTR
as the subseq_opt parameter value otherwise use ST_ZEROSTR. However, if you know that data_set
only contains numbers use the default subseq_opt value, ST_ALLNUM. Note It is faster if the data only
contains numbers.

The equation is:

sum(X) ==> SUM(X{1..N})

Example 1:

? sum({7,2,8.5,6,6,-4.8,6,6,3.341,-8,"text"}, 0) -- Ans: 32.041

Euphoria v4.0 svn3379

Parameters: 585

See also:

average

2.0.0.643 sum_central_moments

include std/stats.e
public function sum_central_moments(object data_set, integer order_mag = 1, object subseq_opt = ST_ALLNUM)

Returns sum of the central moments of each item in a data set.

Parameters:

data_set : a list of 1 or more numbers whose mean is used.1.
order_mag: An integer. This is the order of magnitude required. Usually a number from 1 to 4, but
can be anything.

2.

subseq_opt : an object. When this is ST_ALLNUM (the default) it means that data_set is
assumed to contain no sub-sequences otherwise this gives instructions about how to treat
sub-sequences. See comments for details.

3.

Returns:

An atom. The total of the central moments calculated for each of the items in data_set.

Comments:

If the data can contain sub-sequences, such as strings, you need to let the the function know about this
otherwise it assumes every value in data_set is an number. If that is not the case then the function will
crash. So it is important that if it can possibly contain sub-sequences that you tell this function what to do with
them. Your choices are to ignore them or assume they have the value zero. To ignore them, use ST_IGNSTR
as the subseq_opt parameter value otherwise use ST_ZEROSTR. However, if you know that data_set
only contains numbers use the default subseq_opt value, ST_ALLNUM. Note It is faster if the data only
contains numbers.

Example 1:

sum_central_moments("the cat is the hatter", 1) --> -8.526512829e-14
sum_central_moments("the cat is the hatter", 2) --> 19220.57143
sum_central_moments("the cat is the hatter", 3) --> -811341.551
sum_central_moments("the cat is the hatter", 4) --> 56824083.71

Euphoria v4.0 svn3379

Parameters: 586

See also:

central_moment, average

2.0.0.644 swap

include std/stack.e
public procedure swap(stack sk)

Swap the top two elements of a stack

Parameters:

sk : the stack to swap.1.

Returns:

A copy, of the original stack, with the top two elements swapped.

Comments:

For FIFO stacks (queues), the top item is the oldest item in the stack.•
For FILO stacks, the top item is the newest item in the stack.•

Errors:

If the stack has less than two elements, an error occurs.

Example 1:

stack sk = new(FILO)
push(sk,5)
push(sk,"abc")
push(sk, 2.3)
push(sk, "")
? peek_top(sk,1) -- ""
? peek_top(sk,2) -- 2.3
swap(sk)
? peek_top(sk,1) -- 2.3
? peek_top(sk,2) -- ""

Euphoria v4.0 svn3379

Parameters: 587

Example 2:

stack sk = new(FIFO)
push(sk,5)
push(sk,"abc")
push(sk, 2.3)
push(sk, "")
? peek_top(sk,1) -- 5
? peek_top(sk,2) -- "abc"
swap(sk)
? peek_top(sk,1) -- "abc"
? peek_top(sk,2) -- 5

2.0.0.645 system

<built-in> procedure system(sequence command, integer mode=0)

Pass a command string to the operating system command interpreter.

Parameters:

command : a string to be passed to the shell1.
mode : an integer, indicating the manner in which to return from the call.2.

Errors:

command should not exceed 1,024 characters.

Comments:

Allowable values for mode are:

0: the previous graphics mode is restored and the screen is cleared.•
1: a beep sound will be made and the program will wait for the user to press a key before the previous
graphics mode is restored.

•

2: the graphics mode is not restored and the screen is not cleared.•

mode = 2 should only be used when it is known that the command executed by system() will not change the
graphics mode.

You can use Euphoria as a sophisticated "batch" (.bat) language by making calls to system() and
system_exec().

system() will start a new command shell.

system() allows you to use command-line redirection of standard input and output in command.

Euphoria v4.0 svn3379

Parameters: 588

Example 1:

system("copy temp.txt a:\\temp.bak", 2)
-- note use of double backslash in literal string to get
-- single backslash

Example 2:

system("eui \\test\\myprog.ex < indata > outdata", 2)
-- executes myprog by redirecting standard input and
-- standard output

See Also:

system_exec, command_line, current_dir, getenv

2.0.0.646 system_exec

<built-in> function system_exec(sequence command, integer mode=0)

Try to run the a shell executable command

Parameters:

command : a string to be passed to the shell, representing an executable command1.
mode : an integer, indicating the manner in which to return from the call.2.

Returns:

An integer, basically the exit/return code from the called process.

Errors:

command should not exceed 1,024 characters.

Comments:

Allowable values for mode are:

0 -- the previous graphics mode is restored and the screen is cleared.•
1 -- a beep sound will be made and the program will wait for the user to press a key before the
previous graphics mode is restored.

•

2 -- the graphics mode is not restored and the screen is not cleared.•

Euphoria v4.0 svn3379

Parameters: 589

If it is not possible to run the program, system_exec() will return -1.

On WIN32, system_exec() will only run .exe and .com programs. To run .bat files, or built-in shell
commands, you need system(). Some commands, such as DEL, are not programs, they are actually built-in to
the command interpreter.

On WIN32, system_exec() does not allow the use of command-line redirection in command. Nor does it
allow you to quote strings that contain blanks, such as file names.

exit codes from Windows programs are normally in the range 0 to 255, with 0 indicating "success".

You can run a Euphoria program using system_exec(). A Euphoria program can return an exit code using
abort().

system_exec() does not start a new command shell.

Example 1:

integer exit_code
exit_code = system_exec("xcopy temp1.dat temp2.dat", 2)

if exit_code = -1 then
 puts(2, "\n couldn't run xcopy.exe\n")
elsif exit_code = 0 then
 puts(2, "\n xcopy succeeded\n")
else
 printf(2, "\n xcopy failed with code %d\n", exit_code)
end if

Example 2:

-- executes myprog with two file names as arguments
if system_exec("eui \\test\\myprog.ex indata outdata", 2) then
 puts(2, "failure!\n")
end if

See Also:

system, abort

2.0.0.647 t_alnum

include std/types.e
public type t_alnum(object test_data)

Euphoria v4.0 svn3379

Parameters: 590

Returns TRUE if argument is an alphanumeric character or if every element of the argument is an
alphanumeric character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-alphanumeric
elements

Example 1:

t_alnum(-1) -- FALSE
t_alnum(0) -- FALSE
t_alnum(1) -- FALSE
t_alnum(1.234) -- FALSE
t_alnum('A') -- TRUE
t_alnum('9') -- TRUE
t_alnum('?') -- FALSE
t_alnum("abc") -- TRUE (every element is alphabetic or a digit)
t_alnum("ab3") -- TRUE
t_alnum({1, 2, "abc"}) -- FALSE (contains a sequence)
t_alnum({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_alnum({}) -- FALSE (empty sequence)

2.0.0.648 t_alpha

include std/types.e
public type t_alpha(object test_data)

Returns TRUE if argument is an alphabetic character or if every element of the argument is an alphabetic
character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-alphabetic
elements

Example 1:

t_alpha(-1) -- FALSE
t_alpha(0) -- FALSE
t_alpha(1) -- FALSE
t_alpha(1.234) -- FALSE
t_alpha('A') -- TRUE
t_alpha('9') -- FALSE
t_alpha('?') -- FALSE
t_alpha("abc") -- TRUE (every element is alphabetic)
t_alpha("ab3") -- FALSE
t_alpha({1, 2, "abc"}) -- FALSE (contains a sequence)
t_alpha({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_alpha({}) -- FALSE (empty sequence)

Euphoria v4.0 svn3379

Parameters: 591

2.0.0.649 t_ascii

include std/types.e
public type t_ascii(object test_data)

Returns TRUE if argument is an ASCII character or if every element of the argument is an ASCII character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-ASCII elements

Example 1:

t_ascii(-1) -- FALSE
t_ascii(0) -- TRUE
t_ascii(1) -- TRUE
t_ascii(1.234) -- FALSE
t_ascii('A') -- TRUE
t_ascii('9') -- TRUE
t_ascii('?') -- TRUE
t_ascii("abc") -- TRUE (every element is ascii)
t_ascii("ab3") -- TRUE
t_ascii({1, 2, "abc"}) -- FALSE (contains a sequence)
t_ascii({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_ascii({}) -- FALSE (empty sequence)

2.0.0.650 t_boolean

include std/types.e
public type t_boolean(object test_data)

Returns TRUE if argument is boolean (1 or 0) or if every element of the argument is boolean.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-boolean
elements

Example 1:

t_boolean(-1) -- FALSE
t_boolean(0) -- TRUE
t_boolean(1) -- TRUE
t_boolean({1, 1, 0}) -- TRUE
t_boolean({1, 1, 9.7}) -- FALSE
t_boolean({}) -- FALSE (empty sequence)

Euphoria v4.0 svn3379

Parameters: 592

2.0.0.651 t_bytearray

include std/types.e
public type t_bytearray(object test_data)

Returns TRUE if argument is a byte or if every element of the argument is a byte. (Integers from 0 to 255)

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-byte

Example 1:

t_bytearray(-1) -- FALSE (contains value less than zero)
t_bytearray(0) -- TRUE
t_bytearray(1) -- TRUE
t_bytearray(10) -- TRUE
t_bytearray(100) -- TRUE
t_bytearray(1000) -- FALSE (greater than 255)
t_bytearray(1.234) -- FALSE (contains a floating number)
t_bytearray('A') -- TRUE
t_bytearray('9') -- TRUE
t_bytearray('?') -- TRUE
t_bytearray(' ') -- TRUE
t_bytearray("abc") -- TRUE
t_bytearray("ab3") -- TRUE
t_bytearray("123") -- TRUE
t_bytearray({1, 2, "abc"}) -- FALSE (contains a sequence)
t_bytearray({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_bytearray({1, 2, 'a'}) -- TRUE
t_bytearray({}) -- FALSE (empty sequence)

2.0.0.652 t_cntrl

include std/types.e
public type t_cntrl(object test_data)

Returns TRUE if argument is an Control character or if every element of the argument is an Control character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-Control
elements

Example 1:

t_cntrl(-1) -- FALSE
t_cntrl(0) -- TRUE
t_cntrl(1) -- TRUE
t_cntrl(1.234) -- FALSE
t_cntrl('A') -- FALSE
t_cntrl('9') -- FALSE
t_cntrl('?') -- FALSE
t_cntrl("abc") -- FALSE (every element is ascii)

Euphoria v4.0 svn3379

Parameters: 593

t_cntrl("ab3") -- FALSE
t_cntrl({1, 2, "abc"}) -- FALSE (contains a sequence)
t_cntrl({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_cntrl({1, 2, 'a'}) -- FALSE (contains a non-control)
t_cntrl({}) -- FALSE (empty sequence)

2.0.0.653 t_consonant

include std/types.e
public type t_consonant(object test_data)

Returns TRUE if argument is a consonant character or if every element of the argument is an consonant
character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-consonant
character.

Example 1:

t_consonant(-1) -- FALSE
t_consonant(0) -- FALSE
t_consonant(1) -- FALSE
t_consonant(1.234) -- FALSE
t_consonant('A') -- FALSE
t_consonant('9') -- FALSE
t_consonant('?') -- FALSE
t_consonant("abc") -- FALSE
t_consonant("rTfM") -- TRUE
t_consonant("123") -- FALSE
t_consonant({1, 2, "abc"}) -- FALSE (contains a sequence)
t_consonant({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_consonant({1, 2, 'a'}) -- FALSE (contains a non-digit)
t_consonant({}) -- FALSE (empty sequence)

2.0.0.654 t_digit

include std/types.e
public type t_digit(object test_data)

Returns TRUE if argument is an digit character or if every element of the argument is an digit character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-digits

Euphoria v4.0 svn3379

Parameters: 594

Example 1:

t_digit(-1) -- FALSE
t_digit(0) -- FALSE
t_digit(1) -- FALSE
t_digit(1.234) -- FALSE
t_digit('A') -- FALSE
t_digit('9') -- TRUE
t_digit('?') -- FALSE
t_digit("abc") -- FALSE
t_digit("ab3") -- FALSE
t_digit("123") -- TRUE
t_digit({1, 2, "abc"}) -- FALSE (contains a sequence)
t_digit({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_digit({1, 2, 'a'}) -- FALSE (contains a non-digit)
t_digit({}) -- FALSE (empty sequence)

2.0.0.655 t_display

include std/types.e
public type t_display(object test_data)

Returns TRUE if argument is a character that can be displayed or if every element of the argument is a
character that can be displayed.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains characters that
cannot be displayed.

Example 1:

t_display(-1) -- FALSE
t_display(0) -- FALSE
t_display(1) -- FALSE
t_display(1.234) -- FALSE
t_display('A') -- TRUE
t_display('9') -- TRUE
t_display('?') -- TRUE
t_display("abc") -- TRUE
t_display("ab3") -- TRUE
t_display("123") -- TRUE
t_display("123 ") -- TRUE
t_display("123\n") -- TRUE
t_display({1, 2, "abc"}) -- FALSE (contains a sequence)
t_display({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_display({1, 2, 'a'}) -- FALSE
t_display({}) -- FALSE (empty sequence)

Euphoria v4.0 svn3379

Parameters: 595

2.0.0.656 t_graph

include std/types.e
public type t_graph(object test_data)

Returns TRUE if argument is a glyph character or if every element of the argument is a glyph character. (One
that is visible when displayed)

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-glyph

Example 1:

t_graph(-1) -- FALSE
t_graph(0) -- FALSE
t_graph(1) -- FALSE
t_graph(1.234) -- FALSE
t_graph('A') -- TRUE
t_graph('9') -- TRUE
t_graph('?') -- TRUE
t_graph(' ') -- FALSE
t_graph("abc") -- TRUE
t_graph("ab3") -- TRUE
t_graph("123") -- TRUE
t_graph({1, 2, "abc"}) -- FALSE (contains a sequence)
t_graph({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_graph({1, 2, 'a'}) -- FALSE (control chars (1,2) don't have glyphs)
t_graph({}) -- FALSE (empty sequence)

2.0.0.657 t_identifier

include std/types.e
public type t_identifier(object test_data)

Returns TRUE if argument is an alphanumeric character or if every element of the argument is an
alphanumeric character and that the first character is not numeric and the whole group of characters are not all
numeric.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-alphanumeric
elements

Example 1:

t_identifier(-1) -- FALSE
t_identifier(0) -- FALSE
t_identifier(1) -- FALSE
t_identifier(1.234) -- FALSE
t_identifier('A') -- TRUE
t_identifier('9') -- FALSE
t_identifier('?') -- FALSE
t_identifier("abc") -- TRUE (every element is alphabetic or a digit)

Euphoria v4.0 svn3379

Parameters: 596

t_identifier("ab3") -- TRUE
t_identifier("ab_3") -- TRUE (underscore is allowed)
t_identifier("1abc") -- FALSE (identifier cannot start with a number)
t_identifier("102") -- FALSE (identifier cannot be all numeric)
t_identifier({1, 2, "abc"}) -- FALSE (contains a sequence)
t_identifier({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_identifier({}) -- FALSE (empty sequence)

2.0.0.658 t_lower

include std/types.e
public type t_lower(object test_data)

Returns TRUE if argument is a lowercase character or if every element of the argument is an lowercase
character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-lowercase

Example 1:

t_lower(-1) -- FALSE
t_lower(0) -- FALSE
t_lower(1) -- FALSE
t_lower(1.234) -- FALSE
t_lower('A') -- FALSE
t_lower('9') -- FALSE
t_lower('?') -- FALSE
t_lower("abc") -- TRUE
t_lower("ab3") -- FALSE
t_lower("123") -- TRUE
t_lower({1, 2, "abc"}) -- FALSE (contains a sequence)
t_lower({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_lower({1, 2, 'a'}) -- FALSE (contains a non-digit)
t_lower({}) -- FALSE (empty sequence)

2.0.0.659 t_print

include std/types.e
public type t_print(object test_data)

Returns TRUE if argument is a character that has an ASCII glyph or if every element of the argument is a
character that has an ASCII glyph.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains characters that do
not have an ASCII glyph.

Euphoria v4.0 svn3379

Parameters: 597

Example 1:

t_print(-1) -- FALSE
t_print(0) -- FALSE
t_print(1) -- FALSE
t_print(1.234) -- FALSE
t_print('A') -- TRUE
t_print('9') -- TRUE
t_print('?') -- TRUE
t_print("abc") -- TRUE
t_print("ab3") -- TRUE
t_print("123") -- TRUE
t_print("123 ") -- FALSE (contains a space)
t_print("123\n") -- FALSE (contains a new-line)
t_print({1, 2, "abc"}) -- FALSE (contains a sequence)
t_print({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_print({1, 2, 'a'}) -- FALSE
t_print({}) -- FALSE (empty sequence)

2.0.0.660 t_punct

include std/types.e
public type t_punct(object test_data)

Returns TRUE if argument is an punctuation character or if every element of the argument is an punctuation
character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-punctuation
symbols.

Example 1:

t_punct(-1) -- FALSE
t_punct(0) -- FALSE
t_punct(1) -- FALSE
t_punct(1.234) -- FALSE
t_punct('A') -- FALSE
t_punct('9') -- FALSE
t_punct('?') -- TRUE
t_punct("abc") -- FALSE
t_punct("(-)") -- TRUE
t_punct("123") -- TRUE
t_punct({1, 2, "abc"}) -- FALSE (contains a sequence)
t_punct({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_punct({1, 2, 'a'}) -- FALSE (contains a non-digit)
t_punct({}) -- FALSE (empty sequence)

Euphoria v4.0 svn3379

Parameters: 598

2.0.0.661 t_space

include std/types.e
public type t_space(object test_data)

Returns TRUE if argument is a whitespace character or if every element of the argument is an whitespace
character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-whitespace
character.

Example 1:

t_space(-1) -- FALSE
t_space(0) -- FALSE
t_space(1) -- FALSE
t_space(1.234) -- FALSE
t_space('A') -- FALSE
t_space('9') -- FALSE
t_space('\t') -- TRUE
t_space("abc") -- FALSE
t_space("123") -- FALSE
t_space({1, 2, "abc"}) -- FALSE (contains a sequence)
t_space({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_space({1, 2, 'a'}) -- FALSE (contains a non-digit)
t_space({}) -- FALSE (empty sequence)

2.0.0.662 t_specword

include std/types.e
public type t_specword(object test_data)

Returns TRUE if argument is a special word character or if every element of the argument is a special word
character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-special-word
characters.

Comments:

A special word character is any character that is not normally part of a word but in certain cases may be
considered. This is most commonly used when looking for words in programming source code which allows
an underscore as a word character.

Euphoria v4.0 svn3379

Parameters: 599

Example 1:

t_specword(-1) -- FALSE
t_specword(0) -- FALSE
t_specword(1) -- FALSE
t_specword(1.234) -- FALSE
t_specword('A') -- FALSE
t_specword('9') -- FALSE
t_specword('?') -- FALSE
t_specword('_') -- TRUE
t_specword("abc") -- FALSE
t_specword("ab3") -- FALSE
t_specword("123") -- FALSE
t_specword({1, 2, "abc"}) -- FALSE (contains a sequence)
t_specword({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_specword({1, 2, 'a'}) -- FALSE (control chars (1,2) don't have glyphs)
t_specword({}) -- FALSE (empty sequence)

2.0.0.663 t_text

include std/types.e
public type t_text(object x)

Returns:

TRUE if argument is a sequence that only contains zero or more characters.

Comment:

A 'character' is defined as a positive integer or zero. This is a broad definition that may be refined once proper
UNICODE support is implemented.

Example 1:

t_text(-1) -- FALSE (not a sequence)
t_text("abc") -- TRUE (all single characters)
t_text({1, 2, "abc"}) -- FALSE (contains a sequence)
t_text({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_text({1, 2, 'a'}) -- TRUE
t_text({1, -2, 'a'}) -- FALSE (contains a negative integer)
t_text({}) -- TRUE

2.0.0.664 t_upper

include std/types.e
public type t_upper(object test_data)

Euphoria v4.0 svn3379

Parameters: 600

Returns TRUE if argument is an uppercase character or if every element of the argument is an uppercase
character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-uppercase
characters.

Example 1:

t_upper(-1) -- FALSE
t_upper(0) -- FALSE
t_upper(1) -- FALSE
t_upper(1.234) -- FALSE
t_upper('A') -- TRUE
t_upper('9') -- FALSE
t_upper('?') -- FALSE
t_upper("abc") -- FALSE
t_upper("ABC") -- TRUE
t_upper("123") -- FALSE
t_upper({1, 2, "abc"}) -- FALSE (contains a sequence)
t_upper({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_upper({1, 2, 'a'}) -- FALSE (contains a non-digit)
t_upper({}) -- FALSE (empty sequence)

2.0.0.665 t_vowel

include std/types.e
public type t_vowel(object test_data)

Returns TRUE if argument is a vowel or if every element of the argument is a vowel character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-vowels

Example 1:

t_vowel(-1) -- FALSE
t_vowel(0) -- FALSE
t_vowel(1) -- FALSE
t_vowel(1.234) -- FALSE
t_vowel('A') -- TRUE
t_vowel('9') -- FALSE
t_vowel('?') -- FALSE
t_vowel("abc") -- FALSE
t_vowel("aiu") -- TRUE
t_vowel("123") -- FALSE
t_vowel({1, 2, "abc"}) -- FALSE (contains a sequence)
t_vowel({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_vowel({1, 2, 'a'}) -- FALSE (contains a non-digit)
t_vowel({}) -- FALSE (empty sequence)

Euphoria v4.0 svn3379

Parameters: 601

2.0.0.666 t_xdigit

include std/types.e
public type t_xdigit(object test_data)

Returns TRUE if argument is an hexadecimal digit character or if every element of the argument is an
hexadecimal digit character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-hexadecimal
character.

Example 1:

t_xdigit(-1) -- FALSE
t_xdigit(0) -- FALSE
t_xdigit(1) -- FALSE
t_xdigit(1.234) -- FALSE
t_xdigit('A') -- TRUE
t_xdigit('9') -- TRUE
t_xdigit('?') -- FALSE
t_xdigit("abc") -- TRUE
t_xdigit("fgh") -- FALSE
t_xdigit("123") -- TRUE
t_xdigit({1, 2, "abc"}) -- FALSE (contains a sequence)
t_xdigit({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_xdigit({1, 2, 'a'}) -- FALSE (contains a non-digit)
t_xdigit({}) -- FALSE (empty sequence)

2.0.0.667 tail

<built-in> function tail(sequence source, atom size=length(source) - 1)

Return the last size item(s) of a sequence.

Parameters:

source : the sequence to get the tail of.1.
size : an integer, the number of items to return. (defaults to length(source) - 1)2.

Returns:

A sequence, of length at most size. If the length is less than size, then source was returned. Otherwise,
the size last elements of source were returned.

Euphoria v4.0 svn3379

Parameters: 602

Comments:

source can be any type of sequence, including nested sequences.

Example 1:

s2 = tail("John Doe", 3)
-- s2 is "Doe"

Example 2:

s2 = tail("John Doe", 50)
-- s2 is "John Doe"

Example 3:

s2 = tail({1, 5.4, "John", 30}, 3)
-- s2 is {5.4, "John", 30}

See Also:

head, mid, slice

2.0.0.668 tan

<built-in> function tan(object angle)

Return the tangent of an angle, or a sequence of angles.

Parameters:

angle : an object, each atom of which will be converted, no matter how deeply nested.1.

Returns:

An object, of the same shape as angle. Each atom in the flattened angle is replaced by its tangent.

Errors:

If any atom in angle is an odd multiple of PI/2, an error occurs, as its tangent would be infinite.

Euphoria v4.0 svn3379

Parameters: 603

Comments:

This function may be applied to an atom or to all elements of a sequence of arbitrary shape, recursively.

Example 1:

t = tan(1.0)
-- t is 1.55741

See Also:

sin, cos, arctan

2.0.0.669 tanh

include std/math.e
public function tanh(object a)

Computes the hyperbolic tangent of an object.

Parameters:

x : the object to process.1.

Returns:

An object, the same shape as x, each atom of which was acted upon.

Comments:

The hyperbolic tangent takes values from -1 to +1.

tanh() is the ratio sinh() / cosh(). Compare with ordinary trigonometry.

Example 1:

? tanh(LN2) -- prints out 0.6

See Also:

cosh, sinh, tan, arctanh

Euphoria v4.0 svn3379

Parameters: 604

2.0.0.670 task_clock_start

<built-in> procedure task_clock_start()

Restart the clock used for scheduling real-time tasks.

Comments:

Call this routine, some time after calling task_clock_stop(), when you want scheduling of real-time tasks to
continue.

task_clock_stop() and task_clock_start() can be used to freeze the scheduling of real-time tasks.

task_clock_start() causes the scheduled times of all real-time tasks to be incremented by the amount of
time since task_clock_stop() was called. This allows a game, simulation, or other program to continue
smoothly.

Time-shared tasks are not affected.

Example 1:

-- freeze the game while the player answers the phone
task_clock_stop()
while get_key() = -1 do
end while
task_clock_start()

See Also:

task_clock_stop, task_schedule, task_yield, task_suspend, task_delay

2.0.0.671 task_clock_stop

<built-in> procedure task_clock_stop()

Stop the scheduling of real-time tasks.

Comments:

Call task_clock_stop() when you want to take time out from scheduling real-time tasks. For instance,
you want to temporarily suspend a game or simulation for a period of time.

Euphoria v4.0 svn3379

Parameters: 605

Scheduling will resume when task_clock_start() is called.

Time-shared tasks can continue. The current task can also continue, unless it's a real-time task and it yields.

The time() function is not affected by this.

See Also:

task_clock_start, task_schedule, task_yield, task_suspend, task_delay

2.0.0.672 task_create

<built-in> function task_create(integer rid, sequence args)

Create a new task, given a home procedure and the arguments passed to it.

Parameters:

rid : an integer, the routine_id of a user-defined Euphoria procedure.1.
args : a sequence, the list of arguments that will be passed to this procedure when the task starts
executing.

2.

Returns:

An atom, a task identifier, created by the system. It can be used to identify this task to the other Euphoria
multitasking routines.

Errors:

There must be at most 12 parameters in args.

Comments:

task_create() creates a new task, but does not start it executing. You must call task_schedule() for this
purpose.

Each task has its own set of private variables and its own call stack. Global and local variables are shared
between all tasks.

If a run-time error is detected, the traceback will include information on all tasks, with the offending task
listed first.

Many tasks can be created that all run the same procedure, possibly with different parameters.

Euphoria v4.0 svn3379

Parameters: 606

A task cannot be based on a function, since there would be no way of using the function result.

Each task id is unique. task_create() never returns the same task id as it did before. Task id's are
integer-valued atoms and can be as large as the largest integer-valued atom (15 digits).

Example 1:

mytask = task_create(routine_id("myproc"), {5, 9, "ABC"})

See Also:

task_schedule, task_yield, task_suspend, task_self

2.0.0.673 task_delay

include std/task.e
public procedure task_delay(atom delaytime)

Suspends a task for a short period, allowing other tasks to run in the meantime.

Parameters:

delaytime : an atom, the duration of the delay in seconds.1.

Comments:

This procedure is similar to sleep(), but allows for other tasks to run by yielding on a regular basis. Like
sleep(), its argument needs not being an integer.

See Also:

sleep

2.0.0.674 task_list

<built-in> function task_list()

Get a sequence containing the task id's for all active or suspended tasks.

Euphoria v4.0 svn3379

Parameters: 607

Returns:

A sequence, of atoms, the list of all task that are or may be scheduled.

Comments:

This function lets you find out which tasks currently exist. Tasks that have terminated are not included. You
can pass a task id to task_status() to find out more about a particular task.

Example 1:

sequence tasks

tasks = task_list()
for i = 1 to length(tasks) do
 if task_status(tasks[i]) > 0 then
 printf(1, "task %d is active\n", tasks[i])
 end if
end for

See Also:

task_status, task_create, task_schedule, task_yield, task_suspend

2.0.0.675 task_schedule

<built-in> procedure task_schedule(atom task_id, object schedule)

Schedule a task to run using a scheduling parameter.

Parameters:

task_id : an atom, the identifier of a task that did not terminate yet.1.
schedule : an object, describing when and how often to run the task.2.

Comments:

task_id must have been returned by task_create().

The task scheduler, which is built-in to the Euphoria run-time system, will use schedule as a guide when
scheduling this task. It may not always be possible to achieve the desired number of consecutive runs, or the
desired time frame. For instance, a task might take so long before yielding control, that another task misses its
desired time window.

Euphoria v4.0 svn3379

Parameters: 608

schedule is being interpreted as follows:

schedule is an integer:

This defines task_id as time shared, and tells the task scheduler how many times it should the task in one
burst before it considers running other tasks. schedule must be greater than zero then.

Increasing this count will increase the percentage of CPU time given to the selected task, while decreasing the
percentage given to other time-shared tasks. Use trial and error to find the optimal trade off. It will also
increase the efficiency of the program, since each actual task switch wastes a bit of time.

schedule is a sequence:

In this case, it must be a pair of positive atoms, the first one not being less than the second one. This defines
task_id as a real time task. The pair states the minimum and maximum times, in seconds, to wait before
running the task. The pair also sets the time interval for subsequent runs of the task, until the next call to
task_schedule() or task_suspend().

Real-time tasks have a higher priority. Time-shared tasks are run when no real-time task is ready to execute.

A task can switch back and forth between real-time and time-shared. It all depends on the last call to
task_schedule() for that task. The scheduler never runs a real-time task before the start of its time frame
(min value in the {min, max} pair), and it tries to avoid missing the task's deadline (max value).

For precise timing, you can specify the same value for min and max. However, by specifying a range of times,
you give the scheduler some flexibility. This allows it to schedule tasks more efficiently, and avoid
non-productive delays. When the scheduler must delay, it calls sleep(), unless the required delay is very short.
sleep() lets the operating system run other programs.

The min and max values can be fractional. If the min value is smaller than the resolution of the scheduler's
clock (currently 0.01 seconds on Windows or Unix) then accurate time scheduling cannot be performed, but
the scheduler will try to run the task several times in a row to approximate what is desired.

For example, if you ask for a min time of 0.002 seconds, then the scheduler will try to run your task .01/.002 =
5 times in a row before waiting for the clock to "click" ahead by .01. During the next 0.01 seconds it will run
your task (up to) another 5 times etc. provided your task can be completed 5 times in one clock period.

At program start-up there is a single task running. Its task id is 0, and initially it's a time-shared task allowed 1
run per task_yield(). No other task can run until task 0 executes a task_yield().

If task 0 (top-level) runs off the end of the main file, the whole program terminates, regardless of what other
tasks may still be active.

If the scheduler finds that no task is active, i.e. no task will ever run again (not even task 0), it terminates the
program with a 0 exit code, similar to abort(0).

Euphoria v4.0 svn3379

Parameters: 609

Example 1:

-- Task t1 will be executed up to 10 times in a row before
-- other time-shared tasks are given control. If a real-time
-- task needs control, t1 will lose control to the real-time task.
task_schedule(t1, 10)

-- Task t2 will be scheduled to run some time between 4 and 5 seconds
-- from now. Barring any rescheduling of t2, it will continue to
-- execute every 4 to 5 seconds thereafter.
task_schedule(t2, {4, 5})

See Also:

task_create, task_yield, task_suspend

2.0.0.676 task_self

<built-in> function task_self()

Return the task id of the current task.

Comments:

This value may be needed, if a task wants to schedule or suspend itself.

Example 1:

-- schedule self
task_schedule(task_self(), {5.9, 6.0})

See Also:

task_create, task_schedule, task_yield, task_suspend

2.0.0.677 task_status

<built-in> function task_status(atom task_id)

Return the status of a task.

Euphoria v4.0 svn3379

Parameters: 610

Parameters:

task_id : an atom, the id of the task being queried.1.

Returns:

An integer,

-1 -- task does not exist, or terminated•
0 -- task is suspended•
1 -- task is active•

Comments:

A task might want to know the status of one or more other tasks when deciding whether to proceed with some
processing.

Example 1:

integer s

s = task_status(tid)
if s = 1 then
 puts(1, "ACTIVE\n")
elsif s = 0 then
 puts(1, "SUSPENDED\n")
else
 puts(1, "DOESN'T EXIST\n")
end if

See Also:

task_list, task_create, task_schedule, task_suspend

2.0.0.678 task_suspend

<built-in> procedure task_suspend(atom task_id)

Suspend execution of a task.

Parameters:

task_id : an atom, the id of the task to suspend.1.

Euphoria v4.0 svn3379

Parameters: 611

Comments:

A suspended task will not be executed again unless there is a call to task_schedule() for the task.

task_id is a task id returned from task_create(). - Any task can suspend any other task. If a task suspends
itself, the suspension will start as soon as the task calls task_yield().

Suspending a task and never scheduling it again is how to kill a task. There is no task_kill() primitives
because undead tasks were creating too much trouble and confusion. As a general fact, nothing that impacts a
running task can be effective as long as the task has not yielded.

Example 1:

-- suspend task 15
task_suspend(15)

-- suspend current task
task_suspend(task_self())

See Also:

task_create, task_schedule, task_self, task_yield

2.0.0.679 task_yield

<built-in> procedure task_yield()

Yield control to the scheduler. The scheduler can then choose another task to run, or perhaps let the current
task continue running.

Comments:

Tasks should call task_yield() periodically so other tasks will have a chance to run. Only when
task_yield() is called, is there a way for the scheduler to take back control from a task. This is what's
known as cooperative multitasking.

A task can have calls to task_yield() in many different places in its code, and at any depth of subroutine
call.

The scheduler will use the current scheduling parameter (see task_schedule), in determining when to return to
the current task.

When control returns, execution will continue with the statement that follows task_yield(). The call-stack
and all private variables will remain as they were when task_yield() was called. Global and local
variables may have changed, due to the execution of other tasks.

Euphoria v4.0 svn3379

Parameters: 612

Tasks should try to call task_yield() often enough to avoid causing real-time tasks to miss their time
window, and to avoid blocking time-shared tasks for an excessive period of time. On the other hand, there is a
bit of overhead in calling task_yield(), and this overhead is slightly larger when an actual switch to a
different task takes place. A task_yield() where the same task continues executing takes less time.

A task should avoid calling task_yield() when it is in the middle of a delicate operation that requires
exclusive access to some data. Otherwise a race condition could occur, where one task might interfere with an
operation being carried out by another task. In some cases a task might need to mark some data as "locked" or
"unlocked" in order to prevent this possibility. With cooperative multitasking, these concurrency issues are
much less of a problem than with the preemptive multitasking that other languages support.

Example 1:

-- From Language war game.
-- This small task deducts life support energy from either the
-- large Euphoria ship or the small shuttle.
-- It seems to run "forever" in an infinite loop,
-- but it's actually a real-time task that is called
-- every 1.7 to 1.8 seconds throughout the game.
-- It deducts either 3 units or 13 units of life support energy each time.

procedure task_life()
-- independent task: subtract life support energy
 while TRUE do
 if shuttle then
 p_energy(-3)
 else
 p_energy(-13)
 end if
 task_yield()
 end while
end procedure

See Also:

task_create, task_schedule, task_suspend

2.0.0.680 temp_file

include std/filesys.e
public function temp_file(sequence temp_location = "", sequence temp_prefix = "", sequence temp_extn = "_T_", integer reserve_temp = 0)

Returns a file name that can be used as a temporary file.

Euphoria v4.0 svn3379

Parameters: 613

Parameters:

temp_location : A sequence. A directory where the temporary file is expected to be created.
If omitted (the default) the 'temporary' directory will be used. The temporary directory is
defined in the "TEMP" environment symbol, or failing that the "TMP" symbol and failing
that "C:\TEMP\" is used in non-Unix systems and "/tmp/" is used in Unix systems.

♦

If temp_location was supplied,
If it is an existing file, that file's directory is used.◊
If it is an existing directory, it is used.◊
If it doesn't exist, the directory name portion is used.◊

♦

1.

temp_prefix : A sequence: The is prepended to the start of the generated file name. The default is
"".

2.

temp_extn : A sequence: The is a file extention used in the generated file. The default is "_T_".3.
reserve_temp : An integer: If not zero an empty file is created using the generated name. The
default is not to reserve (create) the file.

4.

Returns:

A sequence, A generated file name.

Comments:

Example 1:

? temp_file("/usr/space", "myapp", "tmp") --> /usr/space/myapp736321.tmp
 ? temp_file() --> /tmp/277382._T_
 ? temp_file("/users/me/abc.exw") --> /users/me/992831._T_

2.0.0.681 test_equal

include std/unittest.e
public procedure test_equal(sequence name, object expected, object outcome)

Records whether a test passes by comparing two values.

Parameters:

name : a string, the name of the test1.
expected : an object, the expected outcome of some action2.
outcome : an object, some actual value that should equal the reference expected.3.

Euphoria v4.0 svn3379

Parameters: 614

Comments:

For floating point numbers, a fuzz of 1e-9 is used to assess equality.•

A test is recorded as passed if equality holds between expected and outcome. The latter is typically a
function call, or a variable that was set by some prior action.

While expected and outcome are processed symmetrically, they are not recorded symmetrically, so be
careful to pass expected before outcome for better test failure reports.

See Also:

test_not_equal, test_true, test_false, test_pass, test_fail

2.0.0.682 test_exec

include std/memconst.e
export function test_exec(valid_memory_protection_constant protection)

2.0.0.683 test_fail

include std/unittest.e
public procedure test_fail(sequence name)

Records that a test failed.

Parameters:

name : a string, the name of the test1.

See Also:

test_equal, test_not_equal,test_true, test_false, test_pass

2.0.0.684 test_false

include std/unittest.e
public procedure test_false(sequence name, object outcome)

Records whether a test passes by comparing two values.

Euphoria v4.0 svn3379

Parameters: 615

Parameters:

name : a string, the name of the test1.
outcome : an object, some actual value that should be zero2.

Comments:

This assumes an expected value of 0. No fuzz is applied when checking whether an atom is zero or not. Use
test_equal() instead in this case.

See Also:

test_equal, test_not_equal, test_true, test_pass, test_fail

2.0.0.685 test_not_equal

include std/unittest.e
public procedure test_not_equal(sequence name, object a, object b)

Records whether a test passes by comparing two values.

Parameters:

name : a string, the name of the test1.
expected : an object, the expected outcome of some action2.
outcome : an object, some actual value that should equal the reference expected.3.

Comments:

For atoms, a fuzz of 1e-9 is used to assess equality.•
For sequences, no such fuzz is implemented.•

A test is recorded as passed if equality does not hold between expected and outcome. The latter is
typically a function call, or a variable that was set by some prior action.

See Also:

test_equal, test_true, test_false, test_pass, test_fail

Euphoria v4.0 svn3379

Parameters: 616

2.0.0.686 test_pass

include std/unittest.e
public procedure test_pass(sequence name)

Records that a test passed.

Parameters:

name : a string, the name of the test1.

See Also:

test_equal, test_not_equal,test_true, test_false, test_fail

Possible style values for message_box() style sequence

2.0.0.687 test_read

include std/memconst.e
export function test_read(valid_memory_protection_constant protection)

2.0.0.688 test_report

include std/unittest.e
public procedure test_report()

Output test report

Comments:

The report components are described in the comments section for set_test_verbosity. Everything prints on the
standard error device.

See Also:

set_test_verbosity

Euphoria v4.0 svn3379

Parameters: 617

2.0.0.689 test_true

include std/unittest.e
public procedure test_true(sequence name, object outcome)

Records whether a test passes.

Parameters:

name : a string, the name of the test1.
outcome : an object, some actual value that should not be zero.2.

Comments:

This assumes an expected value different from 0. No fuzz is applied when checking whether an atom is zero
or not. Use test_equal() instead in this case.

See Also:

test_equal, test_not_equal, test_false, test_pass, test_fail

2.0.0.690 test_write

include std/memconst.e
export function test_write(valid_memory_protection_constant protection)

2.0.0.691 text_color

include std/graphics.e
public procedure text_color(color c)

Set the foreground text color.

Parameters:

c : the new text color. Add BLINKING to get blinking text in some modes.1.

Euphoria v4.0 svn3379

Parameters: 618

Comments:

Text that you print after calling text_color() will have the desired color.

When your program terminates, the last color that you selected and actually printed on the screen will remain
in effect. Thus you may have to print something, maybe just '\n', in WHITE to restore white text, especially
if you are at the bottom line of the screen, ready to scroll up.

Example:

text_color(BRIGHT_BLUE)

See Also:

bk_color , clear_screen

2.0.0.692 text_rows

include std/console.e
public function text_rows(positive_int rows)

Set the number of lines on a text-mode screen.

Parameters:

rows : an integer, the desired number of rows.1.

Platforms:

Not Unix

Returns:

An integer, the actual number of text lines.

Comments:

Values of 25, 28, 43 and 50 lines are supported by most video cards.

Euphoria v4.0 svn3379

Parameters: 619

See Also:

graphics_mode, video_config

2.0.0.693 threshold

include std/map.e
public function threshold(integer new_value_p = 0)

Gets or Sets the threshold value that determines at what point a small map converts into a large map structure.
Initially this has been set to 50, meaning that maps up to 50 elements use the small map structure.

Parameters:

new_value_p : If this is greater than zero then it sets the threshold value.1.

Returns:

An integer, the current value (when new_value_p is less than 1) or the old value prior to setting it to
new_value_p.

2.0.0.694 time

<built-in> function time()

Return the number of seconds since some fixed point in the past.

Returns:

An atom, which represents an absolute number of seconds.

Comments:

Take the difference between two readings of time(), to measure, for example, how long a section of code
takes to execute.

On some machines, time() can return a negative number. However, you can still use the difference in calls to
time() to measure elapsed time.

Euphoria v4.0 svn3379

Parameters: 620

Example 1:

constant ITERATIONS = 1000000
integer p
atom t0, loop_overhead

t0 = time()
for i = 1 to ITERATIONS do
 -- time an empty loop
end for
loop_overhead = time() - t0

t0 = time()
for i = 1 to ITERATIONS do
 p = power(2, 20)
end for
? (time() - t0 - loop_overhead)/ITERATIONS
-- calculates time (in seconds) for one call to power

See Also:

date, now

2.0.0.695 to_integer

include std/convert.e
public function to_integer(object data_in, integer def_value = 0)

Converts an object into a integer.

Parameters:

data_in : Any Euphoria object.1.
def_value : An integer. This is returned if data_in cannot be converted into an integer. If
omitted, zero is returned.

2.

Returns:

An integer, either the integer rendition of data_in or def_value if it has no integer value.

Comments:

The returned value is guaranteed to be a valid Euphoria integer.

Euphoria v4.0 svn3379

Parameters: 621

Examples:

? to_integer(12) --> 12
? to_integer(12.4) --> 12
? to_integer("12") --> 12
? to_integer("12.9") --> 12
? to_integer("a12") --> 0 (not a valid number)
? to_integer("a12",-1) --> -1 (not a valid number)
? to_integer({"12"}) --> 0 (sub-sequence found)
? to_integer(#3FFFFFFF) --> 1073741823
? to_integer(#3FFFFFFF + 1) --> 0 (too big for a Euphoria integer)

These are returned from get and value.

2.0.0.696 to_number

include std/convert.e
public function to_number(sequence text_in, integer return_bad_pos = 0)

Converts the text into a number.

Parameters:

text_in : A string containing the text representation of a number.1.
return_bad_pos : An integer.

If 0 (the default) then this will return a number based on the supplied text and it will not
return any position in text_in that caused an incomplete conversion.

♦

If return_bad_pos is -1 then if the conversion of text_in was complete the resulting
number is returned otherwise a single-element sequence containing the position within
text_in where the conversion stopped.

♦

If not 0 then this returns both the converted value up to the point of failure (if any) and the
position in text_in that caused the failure. If that position is 0 then there was no failure.

♦

2.

Returns:

an atom, If return_bad_pos is zero, the number represented by text_in. If text_in contains
invalid characters, zero is returned.

•

a sequence, If return_bad_pos is non-zero. If return_bad_pos is -1 it returns a 1-element
sequence containing the spot inside text_in where conversion stopped. Otherwise it returns a
2-element sequence containing the number represented by text_in and either 0 or the position in
text_in where conversion stopped.

•

Euphoria v4.0 svn3379

Parameters: 622

Comments:

You can supply Hexadecimal values if the value is preceded by a '#' character, Octal values if the
value is preceded by a '@' character, and Binary values if the value is preceded by a '!' character.
With hexadecimal values, the case of the digits 'A' - 'F' is not important. Also, any decimal marker
embedded in the number is used with the correct base.

1.

Any underscore characters or thousands separators, that are embedded in the text number are ignored.
These can be used to help visual clarity for long numbers. The thousands separator is a ',' when the
decimal mark is '.' (the default), or '.' if the decimal mark is ','. You inspect and set it using
set_decimal_mark().

2.

You can supply a single leading or trailing sign. Either a minus (-) or plus (+).3.
You can supply one or more trailing adjacent percentage signs. The first one causes the resulting
value to be divided by 100, and each subsequent one divides the result by a further 10. Thus 3845%
gives a value of (3845 / 100) ==> 38.45, and 3845%% gives a value of (3845 / 1000) ==> 3.845.

4.

You can have single currency symbol before the first digit or after the last digit. A currency symbol is
any character of the string: "$£¤¥�".

5.

You can have any number of whitespace characters before the first digit and after the last digit.6.
The currency, sign and base symbols can appear in any order. Thus "$ -21.10" is the same as "
-$21.10 ", which is also the same as "21.10$-", etc.

7.

This function can optionally return information about invalid numbers. If return_bad_pos is not
zero, a two-element sequence is returned. The first element is the converted number value , and the
second is the position in the text where conversion stopped. If no errors were found then the second
element is zero.

8.

When converting floating point text numbers to atoms, you need to be aware that many numbers
cannot be accurately converted to the exact value expected due to the limitations of the 64-bit IEEEE
Floating point format.

9.

Examples:

object val
 val = to_number("12.34", 1) ---> {12.34, 0} -- No errors.
 val = to_number("12.34", -1) ---> 12.34 -- No errors.
 val = to_number("12.34a", 1) ---> {12.34, 6} -- Error at position 6
 val = to_number("12.34a", -1) ---> {6} -- Error at position 6
 val = to_number("12.34a") ---> 0 because its not a valid number
 val = to_number("#f80c") --> 63500
 val = to_number("#f80c.7aa") --> 63500.47900390625
 val = to_number("@1703") --> 963
 val = to_number("!101101") --> 45
 val = to_number("12_583_891") --> 12583891
 val = to_number("12_583_891%") --> 125838.91
 val = to_number("12,583,891%%") --> 12583.891

2.0.0.697 to_unix

include std/datetime.e
public function to_unix(datetime dt)

Euphoria v4.0 svn3379

Parameters: 623

Convert a datetime value to the unix numeric format (seconds since EPOCH_1970)

Parameters:

dt : a datetime to be queried.1.

Returns:

An atom, so this will not overflow during the winter 2038-2039.

Example 1:

secs_since_epoch = to_unix(now())
-- secs_since_epoch is equal to the current seconds since epoch

See Also:

from_unix, format

2.0.0.698 top

include std/stack.e
public function top(stack sk)

Retrieve the top element on a stack.

Parameters:

sk : the stack to inspect.1.

Returns:

An object, the top element on a stack.

Comments:

This call is equivalent to at(sk,1).

Euphoria v4.0 svn3379

Parameters: 624

Example 1:

stack sk = new(FILO)
push(sk,5)
push(sk,"abc")
push(sk, 2.3)
? top(sk) -- 2.3

Example 1:

stack sk = new(FIFO)
push(sk,5)
push(sk,"abc")
push(sk, 2.3)
? top(sk) -- 5

See Also:

at, pop, peek_top, last

2.0.0.699 trailer

include std/memory.e
export constant trailer

2.0.0.700 trailer

include std/safe.e
export constant trailer

2.0.0.701 transform

include std/sequence.e
public function transform(sequence source_data, object transformer_rids)

Transforms the input sequence by using one or more user-supplied transformers.

Parameters:

source_data : A sequence to be transformed.1.
transformer_rids : An object. One or more routine_ids used to transform the input.2.

Euphoria v4.0 svn3379

Parameters: 625

Returns:

The source sequence, that has been transformed.

Comments:

This works by calling each transformer in order, passing to it the result of the previous transformation.
Of course, the first transformer gets the original sequence as passed to this routine.

•

Each transformer routine takes one or more parameters. The first is a source sequence to be
transformed and others are any user data that may have been supplied to the transform routine.

•

Each transformer routine returns a transformed sequence.•
The transformer_rids parameters is either a single routine_id or a sequence of routine_ids. In
this second case, the routine_id may actually be a multi-element sequence containing the real
routine_id and some user data to pass to the transformer routine. If there is no user data then the
transformer is called with only one parameter.

•

Examples:

res = transform(" hello ", {
 {routine_id("trim"), " ",0},
 routine_id("upper"),
 {routine_id("replace_all"), "O", "A"}
 })
--> "HELLA"

2.0.0.702 translate

include std/locale.e
public function translate(sequence word, object langmap = 0, object defval = "", integer mode = 0)

Translates a word, using the current language file.

Parameters:

word : a sequence, the word to translate.1.
langmap : Either a value returned by lang_load() or zero to use the default language map2.
defval : a object. The value to return if the word cannot be translated. Default is "". If defval is
PINF then the word is returned if it can't be translated.

3.

mode : an integer. If zero (the default) it uses word as the keyword and returns the translation text. If
not zero it uses word as the translation and returns the keyword.

4.

Returns:

A sequence, the value associated with word, or defval if there is no association.

Euphoria v4.0 svn3379

Parameters: 626

Example 1:

sequence newword
newword = translate(msgtext)
if length(msgtext) = 0 then
 error_message(msgtext)
else
 error_message(newword)
end if

Example 2:

error_message(translate(msgtext, , PINF))

See Also:

set, lang_load

2.0.0.703 transmute

include std/sequence.e
public function transmute(sequence source_data, sequence current_items, sequence new_items, integer start = 1, integer limit = length(source_data))

Replaces all instances of any element from the current_items sequence that occur in the source_data sequence
with the corresponding item from the new_items sequence.

Parameters:

source_data : a sequence, the data that might contain elements from current_items1.
current_items : a sequence, the set of items to look for in source_data. Matching data is
replaced with the correspoding data from new_items.

2.

new_items : a sequence, the set of replacement data for any matches found.3.
start : an integer, the starting point of the search. Defaults to 1.4.
limit : an integer, the maximum number of replacements to be made. Defaults to
length(source_data).

5.

Returns:

A sequence, an updated version of source_data.

Comments:

By default, this routine operates on single elements from each of the arguments. That is to say, it scans
source_data for elements that match any single element in current_items and when matched,

Euphoria v4.0 svn3379

Parameters: 627

replaces that with a single element from new_items.

For example, you can find all occurrances of 'h', 's', and 't' in a string and replace them with '1', '2', and '3'
respectively.
transmute(SomeString, "hts", "123")
However, the routine can also be used to scan for sub-sequences and/or replace matches with sequences rather
than single elements. This is done by making the first element in current_items and/or new_items an
empty sequence.

For example, to find all occurrances of "sh","th", and "sch" you have the current_items as {{},
"sh", "th", "sch"}. Note that for the purposes of determine the corresponding replacement data, the
leading empty sequence is not counted, so in this example "th" is the second item.

res = transmute("the school shoes", {{}, "sh", "th", "sch"}, "123")
 -- res becomes "2e 3ool 1oes"

The similar syntax is used to indicates that replacements are sequences and not single elements.

res = transmute("the school shoes", {{}, "sh", "th", "sch"}, {{}, "SH", "TH", "SCH"})
 -- res becomes "THe SCHool SHoes"

Using this option also allows you to remove matching data.

res = transmute("the school shoes", {{}, "sh", "th", "sch"}, {{}, "", "", ""})
 -- res becomes "e ool oes"

Another thing to note is that when using this syntax, you can still mix together atoms and seqeuences.

res = transmute("the school shoes", {{}, "sh", 't', "sch"}, {{}, 'x', "TH", "SCH"})
 -- res becomes "THhe SCHool xoes"

Example 1:

res = transmute("John Smith enjoys uncooked apples.", "aeiouy", "YUOIEA")
-- res is "JIhn SmOth UnjIAs EncIIkUd YpplUs."

See Also:

find, match, replace, mapping

2.0.0.704 trim

include std/text.e
public function trim(sequence source, object what = " \t\r\n", integer ret_index = 0)

Trim all items in the supplied set from both the left end (head/start) and right end (tail/end) of a sequence.

Euphoria v4.0 svn3379

Parameters: 628

Parameters:

source : the sequence to trim.1.
what : the set of item to trim from source (defaults to " \t\r\n").2.
ret_index : If zero (the default) returns the trimmed sequence, otherwise it returns a 2-element
sequence containing the index of the leftmost item and rightmost item not in what.

3.

Returns:

A sequence, if ret_index is zero, which is the trimmed version of source
A 2-element sequence, if ret_index is not zero, in the form {left_index, right_index}.

Example 1:

object s
s = trim("\r\nSentence read from a file\r\n", "\r\n")
-- s is "Sentence read from a file"
s = trim("\r\nSentence read from a file\r\n", "\r\n", TRUE)
-- s is {3,27}

See Also:

trim_head, trim_tail

2.0.0.705 trim_head

include std/text.e
public function trim_head(sequence source, object what = " \t\r\n", integer ret_index = 0)

Trim all items in the supplied set from the leftmost (start or head) of a sequence.

Parameters:

source : the sequence to trim.1.
what : the set of item to trim from source (defaults to " \t\r\n").2.
ret_index : If zero (the default) returns the trimmed sequence, otherwise it returns the index of the
leftmost item not in what.

3.

Returns:

A sequence, if ret_index is zero, which is the trimmed version of source
A integer, if ret_index is not zero, which is index of the leftmost element in source that is not in what.

Euphoria v4.0 svn3379

Parameters: 629

Example 1:

object s
s = trim_head("\r\nSentence read from a file\r\n", "\r\n")
-- s is "Sentence read from a file\r\n"
s = trim_head("\r\nSentence read from a file\r\n", "\r\n", TRUE)
-- s is 3

See Also:

trim_tail, trim, pad_head

2.0.0.706 trim_tail

include std/text.e
public function trim_tail(sequence source, object what = " \t\r\n", integer ret_index = 0)

Trim all items in the supplied set from the rightmost (end or tail) of a sequence.

Parameters:

source : the sequence to trim.1.
what : the set of item to trim from source (defaults to " \t\r\n").2.
ret_index : If zero (the default) returns the trimmed sequence, otherwise it returns the index of the
rightmost item not in what.

3.

Returns:

A sequence, if ret_index is zero, which is the trimmed version of source
A integer, if ret_index is not zero, which is index of the rightmost element in source that is not in
what.

Example 1:

object s
s = trim_tail("\r\nSentence read from a file\r\n", "\r\n")
-- s is "\r\nSentence read from a file"
s = trim_tail("\r\nSentence read from a file\r\n", "\r\n", TRUE)
-- s is 27

See Also:

trim_head, trim, pad_tail

Euphoria v4.0 svn3379

Parameters: 630

2.0.0.707 trsprintf

include std/locale.e
public function trsprintf(sequence fmt, sequence data, object langmap = 0)

Returns a formatted string with automatic translation performed on the parameters.

Parameters:

fmt : A sequence. Contains the formatting string. see printf() for details.1.
data : A sequence. Contains the data that goes into the formatted result. see printf for details.2.
langmap : An object. Either 0 (the default) to use the default language maps, or the result returned
from lang_load() to specify a particular language map.

3.

Returns:

A sequence, the formatted result.

Comments:

This works very much like the sprintf() function. The difference is that the fmt sequence and sequences
contained in the data parameter are translated before passing them to sprintf. If an item has no translation, it
remains unchanged.

Further more, after the translation pass, if the result text begins with "__", the "__" is removed. This method
can be used when you do not want an item to be translated.

Examples:

-- Assuming a language has been loaded and
-- "greeting" translates as '%s %s, %s'
-- "hello" translates as "G'day"
-- "how are you today" translates as "How's the family?"
sequence UserName = "Bob"
sequence result = trsprintf("greeting", {"hello", "__" & UserName, "how are you today"})
 --> "G'day Bob, How's the family?"

2.0.0.708 true_color

include std/graphcst.e
export constant true_color

Euphoria v4.0 svn3379

Parameters: 631

2.0.0.709 trunc

include std/math.e
public function trunc(object x)

Return the integer portion of a number.

Parameters:

value : any Euphoria object.1.

Returns:

An object, the shape of which depends on values's. Each item in the returned object will be an integer.
These are the same corresponding items in value except with any fractional portion removed.

Comments:

This is essentially done by always rounding towards zero. The floor() function rounds towards
negative infinity, which means it rounds towards zero for positive values and away from zero for
negative values.

•

Note that trunc(x) + frac(x) = x•

Example 1:

a = trunc(9.4)
-- a is 9

Example 2:

s = trunc({81, -3.5, -9.999, 5.5})
-- s is {81,-3, -9, 5}

See Also:

floor frac

2.0.0.710 type_of

include std/map.e
public function type_of(map the_map_p)

Euphoria v4.0 svn3379

Parameters: 632

Determines the type of the map.

Parameters:

m : A map1.

Returns:

An integer, Either SMALLMAP or LARGEMAP

2.0.0.711 uname

include std/os.e
public function uname()

Retrieves the name of the host OS.

Returns:

A sequence, starting with the OS name. If identification fails, returns an OS name of UNKNOWN. Extra
information depends on the OS.

On Unix, returns the same information as the uname() syscall in the same order as the struct utsname. This
information is: OS Name/Kernel Name Local Hostname Kernel Version/Kernel Release Kernel Specific
Version information (This is usually the date that the kernel was compiled on and the name of the host that
performed the compiling.) Architecture Name (Usually a string of i386 vs x86_64 vs ARM vs etc)

On Windows, returns the following in order: Windows Platform (out of WinCE, Win9x, WinNT, Win32s, or
Unknown Windows) Name of Windows OS (Windows 3.1, Win95, WinXP, etc) Platform Number Build
Number Minor OS version number Major OS version number

On UNKNOWN, returns an OS name of "UNKNOWN". No other information is returned.

Returns a string of "" if an internal error has occured.

Comments:

On Unix, M_UNAME is defined as a machine_func() and this is passed to the C backend. If the M_UNAME
call fails, the raw machine_func() returns -1. On non Unix platforms, calling the machine_func() directly
returns 0.

Euphoria v4.0 svn3379

Parameters: 633

2.0.0.712 union

include std/sets.e
public function union(set S1, set S2)

Returns the set of elements belonging to any of two sets.

Parameters:

S1: one of the sets to merge1.
S2: the other set.2.

Returns:

The set of all elements belonging to S1 or S2, and possibly to both.

Example 1:

set s0,s1,s2
 s1={1,3,5,7} s2={-1,2,3,7,11}
 s0=union(s1,s2) -- s0 is now {-1,1,2,3,5,7,11}.

See Also:

is_subset, subsets, belongs_to

2.0.0.713 unlock_file

include std/io.e
public procedure unlock_file(file_number fn, byte_range r = {})

Unlock (a portion of) an open file.

Parameters:

fn : an integer, the handle to the file or device to (partially) lock.1.
r : a sequence, defining a section of the file to be locked, or {} for the whole file (the default).2.

Errors:

The target file or device must be open.

Euphoria v4.0 svn3379

Parameters: 634

Comments:

You must have previously locked the file using lock_file(). On WIN32 you can unlock a range of bytes
within a file by specifying the r as {first_byte, last_byte}. The same range of bytes must have been locked by
a previous call to lock_file(). On Unix you can currently only lock or unlock an entire file. r should be {}
when you want to unlock an entire file. On Unix, r must always be {}, which is the default.

You should unlock a file as soon as possible so other processes can use it.

Any files that you have locked, will automatically be unlocked when your program terminates.

See Also:

lock_file

2.0.0.714 unregister_block

include std/memory.e
public procedure unregister_block(atom block_addr)

Remove a block of memory from the list of safe blocks maintained by safe.e (the debug version of memory.e).

Parameters:

block_addr : an atom, the start address of the block1.

Comments:

In memory.e, this procedure does nothing. It is there to simplify switching between the normal and debug
version of the library.

This routine is only meant to be used for debugging purposes. Use it to unregister blocks of memory that you
have previously registered using register_block(). By unregistering a block, you remove it from the list of safe
blocks maintained by safe.e. This prevents your program from performing any further reads or writes of
memory within the block.

See register_block() for further comments and an example.

See Also:

register_block, safe.e

Euphoria v4.0 svn3379

Parameters: 635

2.0.0.715 unregister_block

include std/safe.e
public procedure unregister_block(machine_addr block_addr)

2.0.0.716 unsetenv

include std/os.e
public function unsetenv(sequence env)

Unset an environment variable

Parameters:

name : name of environment variable to unset1.

Example 1:

? unsetenv("NAME")

See Also:

setenv, getenv

2.0.0.717 upper

include std/text.e
public function upper(object x)

Convert an atom or sequence to upper case.

Parameters:

x : Any Euphoria object.1.

Returns:

A sequence, the uppercase version of x

Euphoria v4.0 svn3379

Parameters: 636

Comments:

For Windows systems, this uses the current code page for conversion•
For non-Windows, this only works on ASCII characters. It alters characters in the 'a'..'z' range. If you
need to do case conversion with other encodings use the set_encoding_properties first.

•

x may be a sequence of any shape, all atoms of which will be acted upon.•

WARNING, When using ASCII encoding, this can also affects floating point numbers in the range 97 to 122.

Example 1:

s = upper("Euphoria")
-- s is "EUPHORIA"

a = upper('b')
-- a is 'B'

s = upper({"Euphoria", "Programming"})
-- s is {"EUPHORIA", "PROGRAMMING"}

See Also:

lower, proper, set_encoding_properties, get_encoding_properties

2.0.0.718 valid

include std/eumem.e
export function valid(object mem_p, object mem_struct_p = 1)

Validates a block of (pseudo) memory

Parameters:

mem_p : The handle to a previously acquired ram_space location.1.
mem_struct_p : If an integer, this is the length of the sequence that should be occupying the
ram_space location pointed to by mem_p.

2.

Returns:

An integer,
0 if either the mem_p is invalid or if the sequence at that location is the wrong length.
1 if the handle and contents is okay.

Euphoria v4.0 svn3379

Parameters: 637

Comments:

This can only check the length of the contents at the location. Nothing else is checked at that location.

Example 1:

my_spot = malloc()
 ram_space[my_spot] = my_data
 . . . do some processing . .
 if valid(my_spot, length(my_data)) then
 free(my_spot)
 end if

2.0.0.719 valid_index

include std/sequence.e
public function valid_index(sequence st, object x)

Checks whether an index exists on a sequence.

Parameters:

s : the sequence for which to check1.
x : an object, the index to check.2.

Returns:

An integer, 1 if s[x] makes sense, else 0.

Example 1:

i = valid_index({51,27,33,14},2)
-- i is 1

See Also:

Subscripting of Sequences

Euphoria v4.0 svn3379

Parameters: 638

2.0.0.720 valid_memory_protection_constant

include std/machine.e
public type valid_memory_protection_constant(integer x)

protection constants type

2.0.0.721 valid_memory_protection_constant

include std/memconst.e
export type valid_memory_protection_constant(integer x)

2.0.0.722 valid_wordsize

include std/memconst.e
export type valid_wordsize(integer i)

2.0.0.723 value

include std/get.e
public function value(sequence st, integer start_point = 1, integer answer = GET_SHORT_ANSWER)

Read, from a string, a human-readable string of characters representing a Euphoria object. Convert the string
into the numeric value of that object.

Parameters:

st : a sequence, from which to read text1.
offset : an integer, the position at which to start reading. Defaults to 1.2.
answer : an integer, either GET_SHORT_ANSWER (the default) or GET_LONG_ANSWER.3.

Returns:

A sequence, of length 2 (GET_SHORT_ANSWER) or 4 (GET_LONG_ANSWER), made of

an integer, the return status. This is any of
GET_SUCCESS -- object was read successfully♦
GET_EOF -- end of file before object was read completely♦
GET_FAIL -- object is not syntactically correct♦
GET_NOTHING -- nothing was read, even a partial object string, before end of input♦

•

an object, the value that was read. This is valid only if return status is GET_SUCCESS.•

Euphoria v4.0 svn3379

Parameters: 639

an integer, the number of characters read. On an error, this is the point at which the error was
detected.

•

an integer, the amount of initial whitespace read before the first active character was found•

Comments:

When answer is not specified, or explicitly GET_SHORT_ANSWER, only the first two elements in the
returned sequence are actually returned.

This works the same as get(), but it reads from a string that you supply, rather than from a file or device.

After reading one valid representation of a Euphoria object, value() will stop reading and ignore any
additional characters in the string. For example, "36" and "36P" will both give you {GET_SUCCESS, 36}.

The function returns {return_status, value} if the answer type is not passed or set to
GET_SHORT_ANSWER. If set to GET_LONG_ANSWER, the number of characters read and the amount of
leading whitespace are returned in 3rd and 4th position. The GET_NOTHING return status can occur only on a
long answer.

Example 1:

s = value("12345"}
s is {GET_SUCCESS, 12345}

Example 2:

s = value("{0, 1, -99.9}")
-- s is {GET_SUCCESS, {0, 1, -99.9}}

Example 3:

s = value("+++")
-- s is {GET_FAIL, 0}

See Also:

get

2.0.0.724 values

include std/map.e
public function values(map the_map, object keys = 0, object default_values = 0)

Return values, without their keys, from a map.

Euphoria v4.0 svn3379

Parameters: 640

Parameters:

the_map : the map being queried1.
keys : optional, key list of values to return.2.
default_values : optional default values for keys list3.

Returns:

A sequence, of all values stored in the_map.

Comments:

The order of the values returned may not be the same as the putting order.•
Duplicate values are not removed.•
You use the keys parameter to return a specific set of values from the map. They are returned in the
same order as the keys parameter. If no default_values is given and one is needed, 0 will be
used.

•

If default_values is an atom, it represents the default value for all values in keys.•
If default_values is a sequence, and its length is less than keys, then the last item in
default_values is used for the rest of the keys.

•

Example 1:

map the_map_p
the_map_p = new()
put(the_map_p, 10, "ten")
put(the_map_p, 20, "twenty")
put(the_map_p, 30, "thirty")
put(the_map_p, 40, "forty")

sequence values
values = values(the_map_p)
-- values might be {"twenty","forty","ten","thirty"}
-- or some other order

Example 2:

map the_map_p
the_map_p = new()
put(the_map_p, 10, "ten")
put(the_map_p, 20, "twenty")
put(the_map_p, 30, "thirty")
put(the_map_p, 40, "forty")

sequence values
values = values(the_map_p, { 10, 50, 30, 9000 })
-- values WILL be { "ten", 0, "thirty", 0 }
values = values(the_map_p, { 10, 50, 30, 9000 }, {-1,-2,-3,-4})
-- values WILL be { "ten", -2, "thirty", -4 }

Euphoria v4.0 svn3379

Parameters: 641

See Also:

get, keys, pairs

2.0.0.725 version

include info.e
public function version()

Get the version, as an integer, of the host Euphoria

Returns:

An integer, representing Major, Minor and Patch versions. Version 4.0.0 will return 40000, 4.0.1 will return
40001, 5.6.2 will return 50602, 5.12.24 will return 512624, etc...

2.0.0.726 version_major

include info.e
public function version_major()

Get the major version of the host Euphoria

Returns:

An integer, representing the Major version number. Version 4.0.0 will return 4, version 5.6.2 will return 5,
etc...

2.0.0.727 version_minor

include info.e
public function version_minor()

Get the minor version of the hosting Euphoria

Returns:

An integer, representing the Minor version number. Version 4.0.0 will return 0, 4.1.0 will return 1, 5.6.2 will
return 6, etc...

Euphoria v4.0 svn3379

Parameters: 642

2.0.0.728 version_patch

include info.e
public function version_patch()

Get the patch version of the hosting Euphoria

Returns:

An integer, representing the Path version number. Version 4.0.0 will return 0, 4.0.1 will return 1, 5.6.2 will
return 2, etc...

2.0.0.729 version_revision

include info.e
public function version_revision()

Get the source code revision of the hosting Euphoria

Returns:

A text sequence, containing the source code management system's revision number that the executing
Euphoria was built from.

2.0.0.730 version_string

include info.e
public function version_string()

Get a normal version string

Returns:

A #sequence, representing the Major, Minor, Patch, Type and Revision all in one string.

Example return values:

"4.0.0 alpha 3 (r1234)"•
"4.0.0 release (r271)"•
"4.0.2 beta 1 (r2783)"•

Euphoria v4.0 svn3379

Parameters: 643

2.0.0.731 version_string_long

include info.e
public function version_string_long()

Get a long version string

Returns:

Same value, as version_string with the addition of the platform name.

Example return values:

"4.0.0 alpha 3 for Windows"•
"4.0.0 release for Linux"•
"5.6.2 release for OS X"•

2.0.0.732 version_string_short

include info.e
public function version_string_short()

Get a short version string

Returns:

A sequence, representing the Major, Minor and Patch all in one string.

Example return values:

"4.0.0"•
"4.0.2"•
"5.6.2"•

2.0.0.733 version_type

include info.e
public function version_type()

Euphoria v4.0 svn3379

Parameters: 644

Get the type version of the hosting Euphoria

Returns:

A sequence, representing the Type version string. Version 4.0.0 alpha 1 will return alpha 1. 4.0.0 beta 2
will return beta 2. 4.0.0 final, or release, will return release.

2.0.0.734 video_config

include std/graphcst.e
public function video_config()

Return a description of the current video configuration:

Returns:

A sequence, of 10 non-negative integers, laid out as follows:

color monitor? -- 1 0 if monochrome, 1 otherwise1.
current video mode2.
number of text rows in console buffer3.
number of text columns in console buffer4.
screen width in pixels5.
screen height in pixels6.
number of colors7.
number of display pages8.
number of text rows for current screen size9.
number of text columns for current screen size10.

Comments:

A public enum is available for convenient access to the returned configuration data:

VC_COLOR•
VC_MODE•
VC_LINES•
VC_COLUMNS•
VC_XPIXELS•
VC_YPIXELS•
VC_NCOLORS•
VC_PAGES•
VC_LINES•
VC_COLUMNS•

Euphoria v4.0 svn3379

Parameters: 645

VC_SCRNLINES•
VC_SCRNCOLS•

This routine makes it easy for you to parameterize a program so it will work in many different graphics
modes.

Example:

vc = video_config()
-- vc could be {1, 3, 300, 132, 0, 0, 32, 8, 37, 90}

See Also:

graphics_mode

2.0.0.735 vlookup

include std/search.e
public function vlookup(object find_item, sequence grid_data, integer source_col, integer target_col, object def_value = 0)

If the supplied item is in a source grid column, this returns the corresponding element from the target column.

Parameters:

find_item: an object that might exist in source_col.1.
grid_data: a 2D grid sequence that might contain pITem.2.
source_col: an integer. The column number to look for find_item.3.
target_col: an integer. The column number from which the corresponding item will be returned.4.
def_value: an object (defaults to zero). This is returned when find_item is not found in the
source_col column, or if found but the target column does not exist.

5.

Comments:

If a row in the grid is actually a single atom, the row is ignored.•
If a row's length is less than the source_col, the row is ignored.•

Euphoria v4.0 svn3379

Parameters: 646

Returns:

an object

If find_item is found in the source_col column then this is the corresponding element from the
target_col column.

•

Examples:

sequence grid
grid = {
 {"ant", "spider", "mortein"},
 {"bear", "seal", "gun"},
 {"cat", "dog", "ranger"},
 $
 }
vlookup("ant", grid, 1, 2, "?") --> "spider"
vlookup("ant", grid, 1, 3, "?") --> "mortein"
vlookup("seal", grid, 2, 3, "?") --> "gun"
vlookup("seal", grid, 2, 1, "?") --> "bear"
vlookup("mouse", grid, 2, 3, "?") --> "?"

2.0.0.736 vslice

include std/sequence.e
public function vslice(sequence source, atom colno, object error_control = 0)

Perform a vertical slice on a nested sequence

Parameters:

source : the sequence to take a vertical slice from1.
colno : an atom, the column number to extract (rounded down)2.
error_control : an object which says what to do if some element does not exist. Defaults to 0
(crash in such a circumstance).

3.

Returns:

A sequence, usually of the same length as source, made of all the source[x][colno].

Euphoria v4.0 svn3379

Parameters: 647

Errors:

If an element is not defined and error_control is 0, an error occurs. If colno is less than 1, it cannot be
any valid column, and an error occurs.

Comments:

If it is not possible to return the sequence of all source[x][colno]] for all available x, the outcome is
decided by error_control:

If 0 (the default), program is aborted.•
If a nonzero atom, the short vertical slice is returned.•
Otherwise, elements of error_control will be taken to make for any missing element. A short
vertical slice is returned if error_control is exhausted.

•

Example 1:

s = vslice({{5,1}, {5,2}, {5,3}}, 2)
-- s is {1,2,3}

s = vslice({{5,1}, {5,2}, {5,3}}, 1)
-- s is {5,5,5}

See Also:

slice, project

2.0.0.737 w32_name_canonical

include std/localeconv.e
public constant w32_name_canonical

Canonical locale names for WIN32:

Afrikaans_South Africa Afrikaans_South Africa Afrikaans_South Africa
Afrikaans_South Africa Afrikaans_South Africa Afrikaans_South Africa
Afrikaans_South Africa Afrikaans_South Africa Afrikaans_South Africa
Afrikaans_South Africa Afrikaans_South Africa Afrikaans_South Africa
Afrikaans_South Africa Afrikaans_South Africa Afrikaans_South Africa
Afrikaans_South Africa Afrikaans_South Africa Afrikaans_South Africa
Afrikaans_South Africa Afrikaans_South Africa Afrikaans_South Africa
Afrikaans_South Africa Afrikaans_South Africa Afrikaans_South Africa
Basque_Spain Basque_Spain Belarusian_Belarus
Belarusian_Belarus Belarusian_Belarus Belarusian_Belarus

Euphoria v4.0 svn3379

Parameters: 648

Belarusian_Belarus Belarusian_Belarus Catalan_Spain
Catalan_Spain Catalan_Spain Catalan_Spain
Catalan_Spain Catalan_Spain Catalan_Spain
Catalan_Spain Catalan_Spain Catalan_Spain
Danish_Denmark Danish_Denmark Danish_Denmark
Danish_Denmark Danish_Denmark English_Australia
English_United States English_United States English_United States
English_United States English_United States English_United States
English_United States English_United States English_United States
English_United States English_United States English_United States
English_United States English_United States English_United States
English_United States English_United States English_United States
Finnish_Finland French_France French_France
French_France French_France French_France
French_France French_France French_France
French_France French_France French_France
French_France French_France French_France
French_France French_France French_France
French_France French_France French_France
Hungarian_Hungary Hungarian_Hungary Hungarian_Hungary
Hungarian_Hungary Hungarian_Hungary Hungarian_Hungary
Hungarian_Hungary Italian_Italy Italian_Italy
Italian_Italy Italian_Italy Italian_Italy
Italian_Italy Italian_Italy Italian_Italy
Italian_Italy Italian_Italy Italian_Italy
Italian_Italy Italian_Italy Italian_Italy
Italian_Italy Italian_Italy Italian_Italy
Italian_Italy Italian_Italy Italian_Italy
Italian_Italy Italian_Italy Italian_Italy
Italian_Italy Italian_Italy Italian_Italy
Italian_Italy Italian_Italy Italian_Italy
Italian_Italy Italian_Italy Italian_Italy
Italian_Italy Italian_Italy Italian_Italy
Italian_Italy Italian_Italy Italian_Italy
Italian_Italy Italian_Italy Italian_Italy
Italian_Italy Romanian_Romania Romanian_Romania
Russian_Russia Russian_Russia Russian_Russia
Russian_Russia Serbian (Cyrillic)_Serbia Serbian (Cyrillic)_Serbia
Serbian (Cyrillic)_Serbia Serbian (Cyrillic)_Serbia Serbian (Cyrillic)_Serbia
Serbian (Cyrillic)_Serbia Serbian (Cyrillic)_Serbia Serbian (Cyrillic)_Serbia
Serbian (Cyrillic)_Serbia Serbian (Cyrillic)_Serbia Serbian (Cyrillic)_Serbia

Euphoria v4.0 svn3379

Parameters: 649

Serbian (Cyrillic)_Serbia Serbian (Cyrillic)_Serbia Serbian (Cyrillic)_Serbia
Serbian (Cyrillic)_Serbia Slovak_Slovakia Estonian_Estonia
Estonian_Estonia Estonian_Estonia Estonian_Estonia
Estonian_Estonia Estonian_Estonia Estonian_Estonia
Estonian_Estonia Estonian_Estonia Estonian_Estonia
Estonian_Estonia Estonian_Estonia Estonian_Estonia
Estonian_Estonia Estonian_Estonia Estonian_Estonia
Estonian_Estonia Estonian_Estonia Estonian_Estonia
Estonian_Estonia Estonian_Estonia Swedish_Sweden
Swedish_Sweden Swedish_Sweden Swedish_Sweden
Swedish_Sweden Swedish_Sweden Swedish_Sweden
Swedish_Sweden Swedish_Sweden Swedish_Sweden
Swedish_Sweden Swedish_Sweden Swedish_Sweden
Swedish_Sweden Swedish_Sweden Ukrainian_Ukraine
Ukrainian_Ukraine Ukrainian_Ukraine Ukrainian_Ukraine
Ukrainian_Ukraine Ukrainian_Ukraine Ukrainian_Ukraine
Ukrainian_Ukraine Ukrainian_Ukraine Ukrainian_Ukraine
Ukrainian_Ukraine Ukrainian_Ukraine Ukrainian_Ukraine
Ukrainian_Ukraine

2.0.0.738 w32_names

include std/localeconv.e
public constant w32_names

2.0.0.739 wait_key

include std/console.e
public function wait_key()

Waits for user to press a key, unless any is pending, and returns key code.

Returns:

An integer, which is a key code. If one is waiting in keyboard buffer, then return it. Otherwise, wait for one to
come up.

Euphoria v4.0 svn3379

Parameters: 650

See Also:

get_key, getc

2.0.0.740 walk_dir

include std/filesys.e
public function walk_dir(sequence path_name, object your_function, integer scan_subdirs = FALSE, object dir_source = NO_ROUTINE_ID)

Generalized Directory Walker

Parameters:

path_name : a sequence, the name of the directory to walk through1.
your_function : the routine id of a function that will receive each path returned from the result of
dir_source, one at a time.

2.

scan_subdirs : an optional integer, 1 to also walk though subfolders, 0 (the default) to skip them
all.

3.

dir_source : an optional integer. A routine_id of a user-defined routine that returns the list of
paths to pass to your_function. If omitted, the dir() function is used.

4.

Returns:

An object,

0 on success•
W_BAD_PATH: an error occurred•
anything else: the custom function returned something to stop walk_dir().•

Comments:

This routine will "walk" through a directory named path_name. For each entry in the directory, it will call a
function, whose routine_id is your_function. If scan_subdirs is non-zero (TRUE), then the
subdirectories in path_name will be walked through recursively in the very same way.

The routine that you supply should accept two sequences, the path name and dir() entry for each file and
subdirectory. It should return 0 to keep going, or non-zero to stop walk_dir(). Returning W_BAD_PATH is
taken as denoting some error.

This mechanism allows you to write a simple function that handles one file at a time, while walk_dir()
handles the process of walking through all the files and subdirectories.

By default, the files and subdirectories will be visited in alphabetical order. To use a different order, use the
dir_source to pass the routine_id of your own modified dir function that sorts the directory entries
differently.

Euphoria v4.0 svn3379

Parameters: 651

The path that you supply to walk_dir() must not contain wildcards (* or ?). Only a single directory (and
its subdirectories) can be searched at one time.

For non-unix systems, any '/' characters in path_name are replaced with '\'.

All trailing slash and whitespace characters are removed from path_name.

Example 1:

function look_at(sequence path_name, sequence item)
-- this function accepts two sequences as arguments
-- it displays all C/C++ source files and their sizes
 if find('d', item[D_ATTRIBUTES]) then
 return 0 -- Ignore directories
 end if
 if not find(fileext(item[D_NAME]), {"c","h","cpp","hpp","cp"}) then
 return 0 -- ignore non-C/C++ files
 end if
 printf(STDOUT, "%s%s%s: %d\n",
 {path_name, {SLASH}, item[D_NAME], item[D_SIZE]})
 return 0 -- keep going
end function

function mysort(sequence path)
 object d

 d = dir(path)
 if atom(d) then
 return d
 end if
 -- Sort in descending file size.
 return sort_columns(d, {-D_SIZE})
end function

exit_code = walk_dir("C:\\MYFILES\\", routine_id("look_at"), TRUE, routine_id("mysort"))

See Also:

dir, sort, sort_columns

2.0.0.741 warning

<built-in> procedure warning(sequence message)

Causes the specified warning message to be displayed as a regular warning.

Euphoria v4.0 svn3379

Parameters: 652

Parameters:

message : a double quoted literal string, the text to display.1.

Comments:

Writing a library has specific requirements, since the code you write will be mainly used inside code you
didn't write. It may be desirable then to influence, from inside the library, that code you didn't write.

This is what warning(), in a limited way, does. It enables to generate custom warnings in code that will
include yours. Of course, you can also generate warnings in your own code, for instance as a kind of memo.
The without warning top level statement disables such warnings.

The warning is issued with the custom_warning level. This level is enabled by default, but can be turned
off any time.

Using any kind of expression in message will result in a blank warning text.

Example 1:

-- mylib.e
procedure foo(integer n)
 warning("The foo() procedure is obsolete, use bar() instead.")
 ? n
end procedure

-- some_app.exw
include mylib.e
foo(123)

will result, when some_app.exw is run with warning, in the following text being displayed in the console
window

123
Warning: (custom_warning):
The foo() procedure is obsolete, use bar() instead.

Press Enter...

See Also:

warning_file

2.0.0.742 warning_file

include std/error.e
public procedure warning_file(object file_path)

Euphoria v4.0 svn3379

Parameters: 653

Specify a file path where to output warnings.

Parameters:

file_path : an object indicating where to dump any warning that were produced.1.

Comments:

By default, warnings are displayed on the standard error, and require pressing the Enter key to keep going.
Redirecting to a file enables skipping the latter step and having a console window open, while retaining ability
to inspect the warnings in case any was issued.

Any atom >= 0 causes standard error to be used, thus reverting to default behaviour.

Any atom < 0 suppresses both warning generation and output. Use this latter in extreme cases only.

On an error, some output to the console is performed anyway, so that whatever warning file was specified is
ignored then.

Example 1:

warning_file("warnings.lst")
-- some code
warning_file(0)
-- changed opinion: warnings will go to standard error as usual

See Also:

without warning, warning

2.0.0.743 weeks_day

include std/datetime.e
public function weeks_day(datetime dt)

Get the day of week of the datetime dt.

Parameters:

dt : a datetime to be queried.1.

Euphoria v4.0 svn3379

Parameters: 654

Returns:

An integer, between 1 (Sunday) and 7 (Saturday).

Example 1:

d = new(2008, 5, 2, 0, 0, 0)
day = weeks_day(d) -- day is 6 because May 2, 2008 is a Friday.

2.0.0.744 where

include std/io.e
public function where(file_number fn)

Retrieves the current file position for an opened file or device.

Parameters:

fn : an integer, the handle to the file or device to query.1.

Returns:

An atom, the current byte position in the file.

Errors:

The target file or device must be open.

Comments:

The file position is is the place in the file where the next byte will be read from, or written to. It is updated by
reads, writes and seeks on the file. This procedure always counts Windows end of line sequences (CR LF) as
two bytes even when the file number has been opened in text mode.

2.0.0.745 which_bit

include std/flags.e
public function which_bit(object theValue)

Tests if the supplied value has only a single bit on in its representation.

Euphoria v4.0 svn3379

Parameters: 655

Parameters:

theValue : an object to test.1.

Returns:

An integer, either 0 if it contains multiple bits, zero bits or is an invalid value, otherwise the bit number set.
The right-most bit is position 1 and the leftmost bit is position 32.

Examples:

? which_bit(2) --> 2
? which_bit(0) --> 0
? which_bit(3) --> 0
? which_bit(4) --> 3
? which_bit(17) --> 0
? which_bit(1.7) --> 0
? which_bit(-2) --> 0
? which_bit("one") --> 0
? which_bit(0x80000000) --> 32

2.0.0.746 wildcard_file

include std/wildcard.e
public function wildcard_file(sequence pattern, sequence filename)

Determine whether a file name matches a wildcard pattern.

Parameters:

pattern : a string, the pattern to match1.
filename : the string to be matched against2.

Returns:

An integer, TRUE if filename matches pattern, else FALSE.

Comments:

* matches any 0 or more characters, ? matches any single character. On Unix the character comparisons are
case sensitive. On Windows they are not.

You might use this function to check the output of the dir() routine for file names that match a pattern
supplied by the user of your program.

Euphoria v4.0 svn3379

Parameters: 656

Example 1:

i = wildcard_file("AB*CD.?", "aB123cD.e")
-- i is set to 1 on Windows, 0 on Linux or FreeBSD

Example 2:

i = wildcard_file("AB*CD.?", "abcd.ex")
-- i is set to 0 on all systems,
-- because the file type has 2 letters not 1

Example 3:

bin/search.ex

See Also:

is_match, dir

2.0.0.747 Header

byte 0: magic number for this file-type: 77•
byte 1: version number (major)•
byte 2: version number (minor)•
byte 3: 4-byte pointer to block of table headers•
byte 7: number of free blocks•
byte 11: 4-byte pointer to block of free blocks•

2.0.0.748 Block of table headers

-4: allocated size of this block (for possible reallocation)•
0: number of table headers currently in use•
4: table header1•
16: table header2•
28: etc.•

2.0.0.749 Table header

0: pointer to the name of this table•
4: total number of records in this table•
8: number of blocks of records•

Euphoria v4.0 svn3379

Parameters: 657

12: pointer to the index block for this table•

There are two levels of pointers. The logical array of key pointers is split up across many physical blocks. A
single index block is used to select the correct small block. This allows inserts and deletes to be made without
having to shift a large number of key pointers. Only one small block needs to be adjusted. This is particularly
helpful when the table contains many thousands of records.

2.0.0.750 Index block

one per table

-4: allocated size of index block•
0: number of records in 1st block of key pointers•
4: pointer to 1st block•
8: number of records in 2nd " "•
12: pointer to 2nd block•
16: etc.•

2.0.0.751 Block of key pointers

many per table

-4: allocated size of this block in bytes•
0: key pointer 1•
4: key pointer 2•
8: etc.•

2.0.0.752 Free list

in ascending order of address

-4: allocated size of block of free blocks•
0: address of 1st free block•
4: size of 1st free block•
8: address of 2nd free block•
12: size of 2nd free block•
16: etc.•

The key value and the data value for a record are allocated space as needed. A pointer to the data value is
stored just before the key value. Euphoria objects, key and data, are stored in a compact form.

All allocated blocks have the size of the block in bytes, stored in the four bytes just before the address.

Euphoria v4.0 svn3379

Parameters: 658

2.0.0.753 wrap

include std/graphics.e
public procedure wrap(boolean on)

Determine whether text will wrap when hitting the rightmost column.

Parameters:

on : a boolean, 0 to truncate text, nonzero to wrap.1.

Comments:

By default text will wrap.

Use wrap() in text modes or pixel-graphics modes when you are displaying long lines of text.

Example:

puts(1, repeat('x', 100) & "\n\n")
-- now have a line of 80 'x' followed a line of 20 more 'x'
wrap(0)
puts(1, repeat('x', 100) & "\n\n")
-- creates just one line of 80 'x'

See Also:

puts, position

2.0.0.754 write

include std/pipeio.e
public function write(atom fd, sequence str)

2.0.0.755 write_file

include std/io.e
public function write_file(object file, sequence data, integer as_text = BINARY_MODE)

Write a sequence of bytes to a file.

Euphoria v4.0 svn3379

Parameters: 659

Parameters:

file : an object, either a file path or the handle to an open file.1.
data : the sequence of bytes to write2.
as_text : integer

BINARY_MODE (the default) assumes binary mode that causes every byte to be written out
as is,

♦

TEXT_MODE assumes text mode that causes a NewLine to be written out according to the
operating system's end of line convention. In Unix this is Ctrl-J and in Windows this is the
pair {Ctrl-L, Ctrl-J}.

♦

UNIX_TEXT ensures that lines are written out with unix style line endings (Ctrl-J).♦
DOS_TEXT ensures that lines are written out with Windows style line endings {Ctrl-L,
Ctrl-J}.

♦

3.

Returns:

An integer, 1 on success, -1 on failure.

Errors:

If puts cannot write data, a runtime error will occur.

Comments:

When file is a file handle, the file is not closed after writing is finished. When file is a file name,
it is opened, written to and then closed.

•

Note that when writing the file in ony of the text modes, the file is truncated at the first Ctrl-Z
character in the input data.

•

Example 1:

if write_file("data.txt", "This is important data\nGoodbye") = -1 then
 puts(STDERR, "Failed to write data\n")
end if

See Also:

read_file, write_lines

2.0.0.756 write_lines

include std/io.e
public function write_lines(object file, sequence lines)

Euphoria v4.0 svn3379

Parameters: 660

Write a sequence of lines to a file.

Parameters:

file : an object, either a file path or the handle to an open file.1.
lines : the sequence of lines to write2.

Returns:

An integer, 1 on success, -1 on failure.

Errors:

If puts() cannot write some line of text, a runtime error will occur.

Comments:

If file was a sequence, the file will be closed on completion. Otherwise, it will remain open, but at end of
file.

Whatever integer the lines in lines holds will be truncated to its 8 lowest bits so as to fall in the 0.255
range.

Example 1:

if write_lines("data.txt", {"This is important data", "Goodbye"}) != -1 then
 puts(STDERR, "Failed to write data\n")
end if

See Also:

read_lines, write_file, puts

2.0.0.757 writef

include std/io.e
public procedure writef(object fm, object data = {}, object fn = 1, object data_not_string = 0)

Write formatted text to a file..

Euphoria v4.0 svn3379

Parameters: 661

Parameters:

There are two ways to pass arguments to this function,

Traditional way with first arg being a file handle.
: integer, The file handle.1.
: sequence, The format pattern.2.
: object, The data that will be formatted.3.
data_not_string: object, If not 0 then the data is not a string. By default this is 0
meaning that data could be a single string.

4.

1.

Alternative way with first argument being the format pattern.
: sequence, Format pattern.1.
: sequence, The data that will be formatted,2.
: object, The file to receive the formatted output. Default is to the STDOUT device (console).3.
data_not_string: object, If not 0 then the data is not a string. By default this is 0
meaning that data could be a single string.

4.

2.

Comments:

With the traditional arguments, the first argument must be an integer file handle.•
With the alternative arguments, the thrid argument can be a file name string, in which case it is
opened for output, written to and then closed.

•

With the alternative arguments, the third argument can be a two-element sequence containing a file
name string and an output type ("a" for append, "w" for write), in which case it is opened accordingly,
written to and then closed.

•

With the alternative arguments, the third argument can a file handle, in which case it is written to only•
The format pattern uses the formatting codes defined in text:format.•
When the data to be formatted is a single text string, it does not have to be enclosed in braces,•

Example 1:

-- To console
writef("Today is [4], [u2:3] [3:02], [1:4].", {Year, MonthName, Day, DayName})
-- To "sample.txt"
writef("Today is [4], [u2:3] [3:02], [1:4].", {Year, MonthName, Day, DayName}, "sample.txt")
-- To "sample.dat"
integer dat = open("sample.dat", "w")
writef("Today is [4], [u2:3] [3:02], [1:4].", {Year, MonthName, Day, DayName}, dat)
-- Appended to "sample.log"
writef("Today is [4], [u2:3] [3:02], [1:4].", {Year, MonthName, Day, DayName}, {"sample.log", "a"})
-- Simple message to console
writef("A message")
-- Another console message
writef(STDERR, "This is a []", "message")
-- Outputs two numbers
writef(STDERR, "First [], second []", {65, 100},, 1) -- Note that {65, 100} is also "Ad"

Euphoria v4.0 svn3379

Parameters: 662

See Also:

text:format, writefln, write_lines

2.0.0.758 writefln

include std/io.e
public procedure writefln(object fm, object data = {}, object fn = 1, object data_not_string = 0)

Write formatted text to a file, ensuring that a new line is also output.

Parameters:

fm : sequence, Format pattern.1.
data : sequence, The data that will be formatted,2.
fn : object, The file to receive the formatted output. Default is to the STDOUT device (console).3.
data_not_string: object, If not 0 then the data is not a string. By default this is 0 meaning that
data could be a single string.

4.

Comments:

This is the same as writef, except that it always adds a New Line to the output.•
When fn is a file name string, it is opened for output, written to and then closed.•
When fn is a two-element sequence containing a file name string and an output type ("a" for append,
"w" for write), it is opened accordingly, written to and then closed.

•

When fn is a file handle, it is written to only•
The fm uses the formatting codes defined in text:format.•

Example 1:

-- To console
writefln("Today is [4], [u2:3] [3:02], [1:4].", {Year, MonthName, Day, DayName})
-- To "sample.txt"
writefln("Today is [4], [u2:3] [3:02], [1:4].", {Year, MonthName, Day, DayName}, "sample.txt")
-- Appended to "sample.log"
writefln("Today is [4], [u2:3] [3:02], [1:4].", {Year, MonthName, Day, DayName}, {"sample.log", "a"})

See Also:

text:format, writef, write_lines

Euphoria v4.0 svn3379

Parameters: 663

2.0.0.759 xor_bits

<built-in> function xor_bits(object a, object b)

Perform the logical XOR operation on corresponding bits in two objects. A bit in the result will be 1 only if
the corresponding bits in both arguments are different.

Parameters:

a : one of the objects involved1.
b : the second object2.

Returns:

An object, whose shape depends on the shape of both arguments. Each atom in this object is obtained by
logical XOR between atoms on both objects.

Comments:

The arguments must be representable as 32-bit numbers, either signed or unsigned.

If you intend to manipulate full 32-bit values, you should declare your variables as atom, rather than integer.
Euphoria's integer type is limited to 31-bits.

Results are treated as signed numbers. They will be negative when the highest-order bit is 1.

Example 1:

a = xor_bits(#0110, #1010)
-- a is #1100

See Also:

and_bits, or_bits, not_bits, int_to_bits

2.0.0.760 years_day

include std/datetime.e
public function years_day(datetime dt)

Euphoria v4.0 svn3379

Parameters: 664

Get the Julian day of year of the supplied date.

Parameters:

dt : a datetime to be queried.1.

Returns:

An integer, between 1 and 366.

Comments:

For dates earlier than 1800, this routine may give inaccurate results if the date applies to a country other than
United Kingdom or a former colony thereof. The change from Julian to Gregorian calendar took place much
earlier in some other European countries.

Example 1:

d = new(2008, 5, 2, 0, 0, 0)
day = years_day(d) -- day is 123

safe.e This file is not normally included directly. The normal approach is to include std/machine.e,
which will automatically include either this file or std/safe.e if the SAFE symbol has been defined.

Warning: Some of these routines require a knowledge of machine-level programming. You could crash your
system!

These routines, along with peek(), poke() and call(), let you access all of the features of your computer. You
can read and write to any memory location, and you can create and execute machine code subroutines.

If you are manipulating 32-bit addresses or values, remember to use variables declared as atom. The integer
type only goes up to 31 bits.

Writing characters to screen memory with poke() is much faster than using puts(). Address of start of text
screen memory:

mono: #B0000•
color: #B8000•

If you choose to call machine_proc() or machine_func() directly (to save a bit of overhead) you *must* pass
valid arguments or Euphoria could crash.

Euphoria v4.0 svn3379

Parameters: 665

Some example programs to look at:

demo/callmach.ex -- calling a machine language routine•

See also include/safe.e. It's a safe, debugging version of this file.

These constant names are taken right from Microsoft's Memory Protection constants.

1 Constants
2 Routines

Euphoria v4.0 svn3379

Parameters: 666

Subject and Routine Index
 0 A B C D E F G H
 I J K L M N O P Q
 R S T U V W X Y

0 MB_APPLMODAL (Constants)

0.0.0.1 ? () MB_DEFAULT_DESKTOP_ONLY (Constants)

A MB_DEFBUTTON1 (Constants)

A_EXECUTE (Constants) MB_DEFBUTTON2 (Constants)
A_WRITE (Constants) MB_DEFBUTTON3 (Constants)
abort (Routines) MB_DEFBUTTON4 (Constants)
abs (Routines) MB_HELP (Constants)
absolute_path (Routines) MB_ICONASTERISK (Constants)
accept (Routines) MB_ICONERROR (Constants)
add (Routines) MB_ICONEXCLAMATION (Constants)
ADD (Constants) MB_ICONHAND (Constants)
ADD_APPEND (Constants) MB_ICONINFORMATION (Constants)
add_item (Routines) MB_ICONQUESTION (Constants)
ADD_PREPEND (Constants) MB_ICONSTOP (Constants)
ADD_SORT_DOWN (Constants) MB_ICONWARNING (Constants)
ADD_SORT_UP (Constants) MB_OK (Constants)
add_to (Routines) MB_OKCANCEL (Constants)
ADDR_ADDRESS (Constants) MB_RETRYCANCEL (Constants)
ADDR_FAMILY (Constants) MB_RIGHT (Constants)
ADDR_FLAGS (Constants) MB_RTLREADING (Constants)
ADDR_PROTOCOL (Constants) MB_SERVICE_NOTIFICATION (Constants)
ADDR_TYPE (Constants) MB_SETFOREGROUND (Constants)
ADLER32 (Constants) MB_SYSTEMMODAL (Constants)
AF_APPLETALK (Constants) MB_TASKMODAL (Constants)
AF_BTH (Constants) MB_YESNO (Constants)
AF_INET (Constants) MB_YESNOCANCEL (Constants)
AF_INET6 (Constants) MD5 (Constants)
AF_UNIX (Constants) median (Routines)
AF_UNSPEC (Constants) MEM_COMMIT (Constants)
all_copyrights (Routines) mem_copy (Routines)
all_left_units (Routines) mem_copy (Routines)
all_matches (Routines) MEM_RELEASE (Constants)
all_right_units (Routines) MEM_RESERVE (Constants)

Euphoria v4.0 svn3379

Subject and Routine Index 667

allocate (Routines) MEM_RESET (Constants)
allocate_code (Routines) mem_set (Routines)
allocate_data (Routines) mem_set (Routines)
allocate_pointer_array (Routines) memDLL_id (Routines)
allocate_protect (Routines) memory_used (Routines)
allocate_string (Routines) merge (Routines)
allocate_string_pointer_array (Routines) message_box (Routines)
allocate_wstring (Routines) mid (Routines)
allocations (Routines) MIDDLE_DOWN (Constants)
allow_break (Routines) MIDDLE_UP (Constants)
amalgamated_sum (Routines) min (Routines)
ampm (Routines) MIN_ASCII (Constants)
ANCHORED (Constants) MINF (Constants)
and_bits (Routines) minsize (Routines)
any_key (Routines) MISSING_END (Constants)
ANY_UP (Constants) mixture (Routines)
append (Routines) mlock (Routines)
APPEND (Constants) mmap (Routines)
append_lines (Routines) mod (Routines)
apply (Routines) mode (Routines)
approx (Routines) money (Routines)
arccos (Routines) month_abbrs (Routines)
arccosh (Routines) month_names (Routines)
arcsin (Routines) mouse_events (Routines)
arcsinh (Routines) mouse_pointer (Routines)
arctan (Routines) movavg (Routines)
arctanh (Routines) MOVE (Constants)
ASCENDING (Constants) move_file (Routines)
ascii_string (Routines) mprotect (Routines)
assert (Routines) MSG_CONFIRM (Constants)
at (Routines) MSG_CTRUNC (Constants)
AT_EXPANSION (Constants) MSG_DONTROUTE (Constants)
atan2 (Routines) MSG_DONTWAIT (Constants)
atom (Routines) MSG_EOR (Constants)
atom_to_float32 (Routines) MSG_ERRQUEUE (Constants)
atom_to_float64 (Routines) MSG_FIN (Constants)
attr_to_colors (Routines) MSG_MORE (Constants)
AUTO_CALLOUT (Constants) MSG_NOSIGNAL (Constants)
avedev (Routines) MSG_OOB (Constants)
average (Routines) MSG_PEEK (Constants)

MSG_PROXY (Constants)

Euphoria v4.0 svn3379

Subject and Routine Index 668

B
BAD_FILE (Constants) MSG_RST (Constants)
BAD_RECNO (Constants) MSG_SYN (Constants)
BAD_SEEK (Constants) MSG_TRUNC (Constants)
begins (Routines) MSG_TRYHARD (Constants)
belongs_to (Routines) MSG_WAITALL (Constants)
BINARY_MODE (Constants) MULTILINE (Constants)
binary_search (Routines) MULTIPLE (Constants)
bind (Routines) MULTIPLY (Constants)
bits_to_int (Routines) munlock (Routines)
bk_color (Routines) munmap (Routines)
BK_LEN (Constants) my_dir (Routines)

BK_PIECES (Constants) N
BLACK (Constants) NESTED_ALL (Constants)
BLINKING (Constants) NESTED_ANY (Constants)
Block of key pointers (Routines) NESTED_BACKWARD (Constants)
Block of table headers (Routines) nested_get (Routines)
BLOCK_CURSOR (Constants) NESTED_INDEX (Constants)
BLUE (Constants) nested_put (Routines)
BMP_INVALID_MODE (Constants) NETBSD (Constants)
BMP_OPEN_FAILED (Constants) new (Routines)
BMP_SUCCESS (Constants) new (Routines)
BMP_UNEXPECTED_EOF (Constants) new (Routines)
BMP_UNSUPPORTED_FORMAT (Constants) new (Routines)
boolean (Routines) new (Routines)
BORDER_SPACE (Constants) new_extra (Routines)
BORDER_SPACE (Constants) new_from_kvpairs (Routines)
bordered_address (Routines) new_from_string (Routines)
bordered_address (Routines) new_time (Routines)
breakup (Routines) NEWLINE_ANY (Constants)
BRIGHT_BLUE (Constants) NEWLINE_ANYCRLF (Constants)
BRIGHT_CYAN (Constants) NEWLINE_CR (Constants)
BRIGHT_GREEN (Constants) NEWLINE_CRLF (Constants)
BRIGHT_MAGENTA (Constants) NEWLINE_LF (Constants)
BRIGHT_RED (Constants) next_prime (Routines)
BRIGHT_WHITE (Constants) NO_AT_EXPANSION (Constants)
BROWN (Constants) NO_AUTO_CAPTURE (Constants)
BSR_ANYCRLF (Constants) NO_CASE (Constants)
BSR_UNICODE (Constants) NO_CURSOR (Constants)

Euphoria v4.0 svn3379

Subject and Routine Index 669

build_commandline (Routines) NO_DATABASE (Constants)
build_list (Routines) NO_HELP (Constants)
builtins (Routines) NO_PARAMETER (Constants)
byte_range (Routines) NO_ROUTINE_ID (Constants)
BYTES_PER_CHAR (Constants) NO_TABLE (Constants)
BYTES_PER_SECTOR (Constants) NO_UTF8_CHECK (Constants)
bytes_to_int (Routines) NO_VALIDATION (Constants)

C
NO_VALIDATION_AFTER_FIRST_EXTRA
(Constants)

C_BOOL (Constants) NORMAL_ORDER (Constants)
C_BYTE (Constants) not_bits (Routines)
C_CHAR (Constants) NOTBOL (Constants)
C_DOUBLE (Constants) NOTEMPTY (Constants)
C_DWORD (Constants) NOTEOL (Constants)
C_DWORDLONG (Constants) Notes (Routines)
C_FLOAT (Constants) now (Routines)
c_func (Routines) now_gmt (Routines)
c_func (Routines) NS_C_ANY (Constants)
C_HANDLE (Constants) NS_C_IN (Constants)
C_HRESULT (Constants) NS_KT_DH (Constants)
C_HWND (Constants) NS_KT_DSA (Constants)
C_INT (Constants) NS_KT_PRIVATE (Constants)
C_LONG (Constants) NS_KT_RSA (Constants)
C_LPARAM (Constants) NS_T_A (Constants)
C_POINTER (Constants) NS_T_A6 (Constants)
c_proc (Routines) NS_T_AAAA (Constants)
c_proc (Routines) NS_T_ANY (Constants)
C_SHORT (Constants) NS_T_MX (Constants)
C_SIZE_T (Constants) NS_T_NS (Constants)
C_UBYTE (Constants) NS_T_PTR (Constants)
C_UCHAR (Constants) NULL (Constants)
C_UINT (Constants) NULLDEVICE (Constants)
C_ULONG (Constants) NUM_ENTRIES (Constants)
C_USHORT (Constants) number (Routines)
C_WORD (Constants) number_array (Routines)
C_WPARAM (Constants) NUMBER_OF_FREE_CLUSTERS (Constants)

calc_hash (Routines) O
calc_primes (Routines) OBJ_ATOM (Constants)
call (Routines) OBJ_INTEGER (Constants)
call (Routines) OBJ_SEQUENCE (Constants)

Euphoria v4.0 svn3379

Subject and Routine Index 670

call_back (Routines) OBJ_UNASSIGNED (Constants)
call_func (Routines) object (Routines)
call_proc (Routines) OK (Constants)
can_add (Routines) ONCE (Constants)
canon2win (Routines) open (Routines)
canonical (Routines) open_dll (Routines)
canonical_path (Routines) OPENBSD (Constants)
cardinal (Routines) operation (Routines)
CASELESS (Constants) OPT_CNT (Constants)
ceil (Routines) OPT_IDX (Constants)
central_moment (Routines) OPT_REV (Constants)
chance (Routines) OPT_VAL (Constants)
change_target (Routines) optimize (Routines)
char_test (Routines) option_spec (Routines)
chdir (Routines) option_spec_to_string (Routines)
check_all_blocks (Routines) option_switches (Routines)
check_all_blocks (Routines) OPTIONAL (Constants)
check_break (Routines) or_all (Routines)
check_calls (Routines) or_bits (Routines)
check_calls (Routines) OSX (Constants)

check_free_list (Routines) P
checksum (Routines) pad_head (Routines)
CHILD (Constants) pad_tail (Routines)
clear (Routines) page_aligned_address (Routines)
clear (Routines) PAGE_EXECUTE (Constants)
clear_directory (Routines) PAGE_EXECUTE_READ (Constants)
clear_screen (Routines) PAGE_EXECUTE_READWRITE (Constants)
close (Routines) PAGE_EXECUTE_WRITECOPY (Constants)
close (Routines) PAGE_NOACCESS (Constants)
close (Routines) PAGE_NONE (Constants)
cmd_parse (Routines) PAGE_READ (Constants)
CMD_SWITCHES (Constants) PAGE_READ_EXECUTE (Constants)
color (Routines) PAGE_READ_WRITE (Constants)
Colors (Constants) PAGE_READ_WRITE_EXECUTE (Constants)
colors_to_attr (Routines) PAGE_READONLY (Constants)
columnize (Routines) PAGE_READWRITE (Constants)
combine (Routines) PAGE_SIZE (Constants)
combine_maps (Routines) PAGE_WRITE_COPY (Constants)
COMBINE_SORTED (Constants) PAGE_WRITE_EXECUTE_COPY (Constants)
COMBINE_UNSORTED (Constants) PAGE_WRITECOPY (Constants)

Euphoria v4.0 svn3379

Subject and Routine Index 671

command_line (Routines) pairs (Routines)
compare (Routines) PARENT (Constants)
compare (Routines) parse (Routines)
Compile Time and Match Time (Routines) parse (Routines)
compose_map (Routines) parse_commandline (Routines)
CONCAT (Constants) parse_ip_address (Routines)
connect (Routines) parse_querystring (Routines)
Constants parse_recvheader (Routines)
copy (Routines) parse_url (Routines)
copy_file (Routines) PARTIAL (Constants)
cos (Routines) patch (Routines)
cosh (Routines) PATH_BASENAME (Constants)
count (Routines) PATH_DIR (Constants)
COUNT_DIRS (Constants) PATH_DRIVEID (Constants)
COUNT_FILES (Constants) PATH_FILEEXT (Constants)
COUNT_SIZE (Constants) PATH_FILENAME (Constants)
COUNT_TYPES (Constants) pathinfo (Routines)
crash (Routines) pathname (Routines)
crash_file (Routines) PATHSEP (Constants)
crash_message (Routines) PAUSE_MSG (Constants)
crash_routine (Routines) pcre_copyright (Routines)
create (Routines) peek (Routines)
create (Routines) peek (Routines)
create_directory (Routines) peek2s (Routines)
create_file (Routines) peek2s (Routines)
CS_FIRST (Constants) peek2u (Routines)
curdir (Routines) peek2u (Routines)
current_dir (Routines) peek4s (Routines)
cursor (Routines) peek4s (Routines)
custom_sort (Routines) peek4u (Routines)
CYAN (Constants) peek4u (Routines)

D peek_end (Routines)

D_ALTNAME (Constants) peek_string (Routines)
D_ATTRIBUTES (Constants) peek_string (Routines)
D_DAY (Constants) peek_top (Routines)
D_HOUR (Constants) peek_wstring (Routines)
D_MILLISECOND (Constants) peeks (Routines)
D_MINUTE (Constants) peeks (Routines)
D_MONTH (Constants) PHI (Constants)
D_NAME (Constants) PI (Constants)

Euphoria v4.0 svn3379

Subject and Routine Index 672

D_SECOND (Constants) PID (Constants)
D_SIZE (Constants) PINF (Constants)
D_YEAR (Constants) PISQR (Constants)
date (Routines) pivot (Routines)
datetime (Routines) platform (Routines)
datetime (Routines) platform_locale (Routines)
day_abbrs (Routines) platform_name (Routines)
day_names (Routines) poke (Routines)
days_in_month (Routines) poke (Routines)
days_in_year (Routines) poke2 (Routines)
db_cache_clear (Routines) poke2 (Routines)
db_clear_table (Routines) poke4 (Routines)
db_close (Routines) poke4 (Routines)
db_compress (Routines) poke_string (Routines)
db_create (Routines) poke_wstring (Routines)
db_create_table (Routines) pop (Routines)
db_current (Routines) position (Routines)
db_current_table (Routines) positive_int (Routines)
db_delete_record (Routines) positive_int (Routines)
db_delete_table (Routines) positive_int (Routines)
db_dump (Routines) posix_names (Routines)
DB_EXISTS_ALREADY (Constants) power (Routines)
DB_FATAL_FAIL (Constants) powof2 (Routines)
db_fatal_id (Routines) prepare_block (Routines)
db_fetch_record (Routines) prepare_block (Routines)
db_find_key (Routines) prepend (Routines)
db_get_errors (Routines) PRETTY_DEFAULT (Constants)
db_get_recid (Routines) pretty_print (Routines)
db_insert (Routines) pretty_sprint (Routines)
DB_LOCK_EXCLUSIVE (Constants) prime_list (Routines)
DB_LOCK_FAIL (Constants) print (Routines)
DB_LOCK_NO (Constants) printf (Routines)
DB_LOCK_SHARED (Constants) process (Routines)
DB_OK (Constants) process_lines (Routines)
db_open (Routines) product (Routines)
DB_OPEN_FAIL (Constants) product (Routines)
db_record_data (Routines) product_map (Routines)
db_record_key (Routines) project (Routines)
db_record_recid (Routines) prompt_number (Routines)
db_rename_table (Routines) prompt_string (Routines)
db_replace_data (Routines) proper (Routines)

Euphoria v4.0 svn3379

Subject and Routine Index 673

db_replace_recid (Routines) PROT_EXEC (Constants)
db_select (Routines) PROT_NONE (Constants)
db_select_table (Routines) PROT_READ (Constants)
db_set_caching (Routines) PROT_WRITE (Constants)
db_table_list (Routines) push (Routines)
db_table_size (Routines) PUT (Constants)
deallocate (Routines) put (Routines)
deallocate (Routines) put_integer16 (Routines)
decanonical (Routines) put_integer32 (Routines)
decode (Routines) put_screen_char (Routines)
DEFAULT (Constants) puts (Routines)

defaulted_value (Routines) Q
defaultext (Routines) QUARTPI (Constants)
define_c_func (Routines) quote (Routines)

define_c_proc (Routines) R
define_c_var (Routines) rad2deg (Routines)
define_map (Routines) RADIANS_TO_DEGREES (Constants)
define_operation (Routines) ram_space (Routines)
deg2rad (Routines) rand (Routines)
DEGREES_TO_RADIANS (Constants) rand_range (Routines)
delete (Routines) range (Routines)
delete_file (Routines) range (Routines)
delete_routine (Routines) raw_frequency (Routines)
delta (Routines) RD_INPLACE (Constants)
DEP_on (Constants) read (Routines)
DEP_really_works (Constants) read_bitmap (Routines)
dep_works (Routines) read_file (Routines)
dep_works (Routines) read_lines (Routines)
dequote (Routines) receive (Routines)
DESCENDING (Constants) receive_from (Routines)
deserialize (Routines) RED (Constants)
DFA_RESTART (Constants) regex (Routines)
DFA_SHORTEST (Constants) register_block (Routines)
diagram_commutes (Routines) register_block (Routines)
diff (Routines) rehash (Routines)
difference (Routines) remainder (Routines)
dir (Routines) remove (Routines)
dir_size (Routines) remove (Routines)
direct_map (Routines) remove_all (Routines)

Euphoria v4.0 svn3379

Subject and Routine Index 674

dirname (Routines) remove_directory (Routines)
disk_metrics (Routines) remove_dups (Routines)
disk_size (Routines) remove_from (Routines)
display (Routines) remove_item (Routines)
DISPLAY_ASCII (Constants) remove_subseq (Routines)
display_text_image (Routines) rename_file (Routines)
distributes_over (Routines) repeat (Routines)
DIVIDE (Constants) repeat_pattern (Routines)
DNS_QUERY_ACCEPT_TRUNCATED_RESPONSE
(Constants) replace (Routines)

DNS_QUERY_BYPASS_CACHE (Constants) replace_all (Routines)
DNS_QUERY_DONT_RESET_TTL_VALUES
(Constants) restrict (Routines)

DNS_QUERY_NO_HOSTS_FILE (Constants) retain_all (Routines)
DNS_QUERY_NO_LOCAL_NAME (Constants) reverse (Routines)
DNS_QUERY_NO_NETBT (Constants) reverse_map (Routines)
DNS_QUERY_NO_RECURSION (Constants) REVERSE_ORDER (Constants)
DNS_QUERY_NO_WIRE_QUERY (Constants) rfind (Routines)
DNS_QUERY_RESERVED (Constants) RIGHT_DOWN (Constants)
DNS_QUERY_RETURN_MESSAGE (Constants) RIGHT_UP (Constants)
DNS_QUERY_STANDARD (Constants) rmatch (Routines)
DNS_QUERY_TREAT_AS_FQDN (Constants) rnd (Routines)
DNS_QUERY_USE_TCP_ONLY (Constants) rnd_1 (Routines)
DNS_QUERY_WIRE_ONLY (Constants) roll (Routines)
DOLLAR_ENDONLY (Constants) rotate (Routines)
DOS_TEXT (Constants) rotate_bits (Routines)
DOTALL (Constants) ROTATE_LEFT (Constants)
driveid (Routines) ROTATE_RIGHT (Constants)
dump (Routines) round (Routines)
dup (Routines) routine_id (Routines)
DUP_TABLE (Constants) Routines

DUPNAMES (Constants) S

E safe_address (Routines)

E (Constants) safe_address (Routines)
E_ATOM (Constants) safe_address_list (Routines)
E_INTEGER (Constants) sample (Routines)
E_OBJECT (Constants) save_bitmap (Routines)
E_SEQUENCE (Constants) save_map (Routines)
edges_only (Routines) save_text_image (Routines)
edges_only (Routines) SCREEN (Constants)

Euphoria v4.0 svn3379

Subject and Routine Index 675

embed_union (Routines) scroll (Routines)
embedding (Routines) SD_BOTH (Constants)
emovavg (Routines) SD_RECEIVE (Constants)
encode (Routines) SD_SEND (Constants)
ends (Routines) section (Routines)
ensure_in_list (Routines) SECTORS_PER_CLUSTER (Constants)
ensure_in_range (Routines) seek (Routines)
EOF (Constants) select (Routines)
EOL (Constants) SELECT_IS_ERROR (Constants)
EOLSEP (Constants) SELECT_IS_READABLE (Constants)
equal (Routines) SELECT_IS_WRITABLE (Constants)
ERR_ACCESS (Constants) SELECT_SOCKET (Constants)
ERR_ADDRINUSE (Constants) send (Routines)
ERR_ADDRNOTAVAIL (Constants) send_to (Routines)
ERR_AFNOSUPPORT (Constants) SEQ_NOALT (Constants)
ERR_AGAIN (Constants) sequence (Routines)
ERR_ALREADY (Constants) sequence_array (Routines)
ERR_CLOSE_CHAR (Constants) sequence_to_set (Routines)
ERR_CONNABORTED (Constants) sequences_to_map (Routines)
ERR_CONNREFUSED (Constants) serialize (Routines)
ERR_CONNRESET (Constants) service_by_name (Routines)
ERR_DECIMAL (Constants) service_by_port (Routines)
ERR_DESTADDRREQ (Constants) set (Routines)
ERR_EOF (Constants) set (Routines)
ERR_EOF_STRING (Constants) set (Routines)
ERR_EOL_CHAR (Constants) set_accumulate_summary (Routines)
ERR_EOL_STRING (Constants) set_charsets (Routines)
ERR_ESCAPE (Constants) set_colors (Routines)
ERR_FAULT (Constants) set_decimal_mark (Routines)
ERR_HEX (Constants) set_def_lang (Routines)
ERR_HEX_STRING (Constants) set_default_charsets (Routines)
ERR_HOSTUNREACH (Constants) set_encoding_properties (Routines)
ERR_INPROGRESS (Constants) set_lang_path (Routines)
ERR_INTR (Constants) set_option (Routines)
ERR_INVAL (Constants) set_rand (Routines)
ERR_IO (Constants) set_sendheader (Routines)
ERR_ISCONN (Constants) set_sendheader_default (Routines)
ERR_ISDIR (Constants) set_sendheader_useragent_msie (Routines)
ERR_LOOP (Constants) set_test_abort (Routines)
ERR_MFILE (Constants) set_test_verbosity (Routines)
ERR_MSGSIZE (Constants) set_wait_on_summary (Routines)

Euphoria v4.0 svn3379

Subject and Routine Index 676

ERR_NAMETOOLONG (Constants) setenv (Routines)
ERR_NETDOWN (Constants) SHA256 (Constants)
ERR_NETRESET (Constants) SHARED_LIB_EXT (Constants)
ERR_NETUNREACH (Constants) shift_bits (Routines)
ERR_NFILE (Constants) show_block (Routines)
ERR_NOBUFS (Constants) show_help (Routines)
ERR_NOENT (Constants) SHOW_ONLY_OPTIONS (Constants)
ERR_NOTCONN (Constants) shuffle (Routines)
ERR_NOTDIR (Constants) shutdown (Routines)
ERR_NOTINITIALISED (Constants) SIDE_NONE (Constants)
ERR_NOTSOCK (Constants) sign (Routines)
ERR_OPEN (Constants) sim_index (Routines)
ERR_OPNOTSUPP (Constants) sin (Routines)
ERR_PROTONOSUPPORT (Constants) sinh (Routines)
ERR_PROTOTYPE (Constants) size (Routines)
ERR_ROFS (Constants) size (Routines)
ERR_SHUTDOWN (Constants) skewness (Routines)
ERR_SOCKTNOSUPPORT (Constants) SLASH (Constants)
ERR_TIMEDOUT (Constants) SLASHES (Constants)
ERR_UNKNOWN (Constants) sleep (Routines)
ERR_WOULDBLOCK (Constants) slice (Routines)
ERROR_BADCOUNT (Constants) SM_TEXT (Constants)
ERROR_BADMAGIC (Constants) small (Routines)
ERROR_BADNEWLINE (Constants) smallest (Routines)
ERROR_BADOPTION (Constants) SMALLMAP (Constants)
ERROR_BADPARTIAL (Constants) SND_ASTERISK (Constants)
ERROR_BADUTF8 (Constants) SND_DEFAULT (Constants)
ERROR_BADUTF8_OFFSET (Constants) SND_EXCLAMATION (Constants)
ERROR_CALLOUT (Constants) SND_QUESTION (Constants)
error_code (Routines) SND_STOP (Constants)
ERROR_DFA_RECURSE (Constants) SO_ACCEPTCONN (Constants)
ERROR_DFA_UCOND (Constants) SO_BINDTODEVICE (Constants)
ERROR_DFA_UITEM (Constants) SO_BROADCAST (Constants)
ERROR_DFA_UMLIMIT (Constants) SO_CONNDATA (Constants)
ERROR_DFA_WSSIZE (Constants) SO_CONNDATALEN (Constants)
ERROR_INTERNAL (Constants) SO_CONNOPT (Constants)
ERROR_MATCHLIMIT (Constants) SO_CONNOPTLEN (Constants)
error_message (Routines) SO_DEBUG (Constants)
error_names (Routines) SO_DISCDATA (Constants)
error_no (Routines) SO_DISCDATALEN (Constants)
ERROR_NOMATCH (Constants) SO_DISCOPT (Constants)

Euphoria v4.0 svn3379

Subject and Routine Index 677

ERROR_NOMEMORY (Constants) SO_DISCOPTLEN (Constants)
ERROR_NOSUBSTRING (Constants) SO_DONTLINGER (Constants)
ERROR_NULL (Constants) SO_DONTROUTE (Constants)
ERROR_NULLWSLIMIT (Constants) SO_ERROR (Constants)
ERROR_PARTIAL (Constants) SO_KEEPALIVE (Constants)
ERROR_RECURSIONLIMIT (Constants) SO_LINGER (Constants)
error_to_string (Routines) SO_MAXDG (Constants)
ERROR_UNKNOWN_NODE (Constants) SO_MAXPATHDG (Constants)
ERROR_UNKNOWN_OPCODE (Constants) SO_OOBINLINE (Constants)
escape (Routines) SO_OPENTYPE (Constants)
escape (Routines) SO_PASSCRED (Constants)
ET_ERR_COLUMN (Constants) SO_PEERCRED (Constants)
ET_ERR_LINE (Constants) SO_RCVBUF (Constants)
ET_ERROR (Constants) SO_RCVLOWAT (Constants)
et_error_string (Routines) SO_RCVTIMEO (Constants)
et_keep_blanks (Routines) SO_REUSEADDR (Constants)
et_keep_comments (Routines) SO_REUSEPORT (Constants)

et_string_numbers (Routines) SO_SECURITY_AUTHENTICATION
(Constants)

et_tokenize_file (Routines) SO_SECURITY_ENCRYPTION_NETWORK
(Constants)

et_tokenize_string (Routines) SO_SECURITY_ENCRYPTION_TRANSPORT
(Constants)

ET_TOKENS (Constants) SO_SNDBUF (Constants)
EULER_GAMMA (Constants) SO_SNDLOWAT (Constants)
euphoria_copyright (Routines) SO_SNDTIMEO (Constants)
exec (Routines) SO_SYNCHRONOUS_ALTERT (Constants)
exp (Routines) SO_SYNCHRONOUS_NONALERT (Constants)
EXT_COUNT (Constants) SO_TYPE (Constants)
EXT_NAME (Constants) SO_USELOOPBACK (Constants)
EXT_SIZE (Constants) SOCK_DGRAM (Constants)
EXTENDED (Constants) SOCK_RAW (Constants)
EXTRA (Constants) SOCK_RDM (Constants)
extract (Routines) SOCK_SEQPACKET (Constants)

F SOCK_STREAM (Constants)

FALSE (Constants) socket (Routines)
fetch (Routines) SOCKET_SOCKADDR_IN (Constants)
fib (Routines) SOCKET_SOCKET (Constants)
fiber_over (Routines) SOL_SOCKET (Constants)
fiber_product (Routines) sort (Routines)
FIFO (Constants) sort_columns (Routines)

Euphoria v4.0 svn3379

Subject and Routine Index 678

file_exists (Routines) splice (Routines)
file_length (Routines) split (Routines)
file_number (Routines) split (Routines)
file_position (Routines) split_any (Routines)
file_timestamp (Routines) split_limit (Routines)
file_type (Routines) sprint (Routines)
filebase (Routines) sprintf (Routines)
fileext (Routines) sqrt (Routines)
filename (Routines) SQRT2 (Constants)
FILETYPE_DIRECTORY (Constants) SQRT3 (Constants)
FILETYPE_FILE (Constants) SQRT5 (Constants)
FILETYPE_NOT_FOUND (Constants) SQRTE (Constants)
FILETYPE_UNDEFINED (Constants) ST_ALLNUM (Constants)
filter (Routines) ST_FULLPOP (Constants)
find (Routines) ST_IGNSTR (Constants)
find (Routines) ST_SAMPLE (Constants)
find_all (Routines) ST_ZEROSTR (Constants)
find_all (Routines) stack (Routines)
find_any (Routines) START_COLUMN (Constants)
find_each (Routines) statistics (Routines)
find_from (Routines) std_library_address (Routines)
find_nested (Routines) STDERR (Constants)
find_replace (Routines) STDERR (Constants)
find_replace (Routines) stdev (Routines)
find_replace_callback (Routines) STDFLTR_ALPHA (Constants)
find_replace_limit (Routines) STDIN (Constants)
FIRSTLINE (Constants) STDIN (Constants)
flags_to_string (Routines) STDOUT (Constants)
flatten (Routines) STDOUT (Constants)
FLETCHER32 (Constants) store (Routines)
float32_to_atom (Routines) string (Routines)
float64_to_atom (Routines) STRING_OFFSETS (Constants)
floor (Routines) subsets (Routines)
flush (Routines) SUBTRACT (Constants)
for_each (Routines) subtract (Routines)
format (Routines) sum (Routines)
format (Routines) sum (Routines)
FP_FORMAT (Constants) sum_central_moments (Routines)
frac (Routines) SUNOS (Constants)
free (Routines) swap (Routines)
free (Routines) SyntaxColor (Constants)

Euphoria v4.0 svn3379

Subject and Routine Index 679

Free list (Routines) system (Routines)
FREE_BYTES (Constants) system_exec (Routines)

free_code (Routines) T
free_code (Routines) t_alnum (Routines)
free_code (Routines) t_alpha (Routines)
free_console (Routines) t_ascii (Routines)
free_pointer_array (Routines) T_BLANK (Constants)
FREE_RID (Constants) t_boolean (Routines)
FREEBSD (Constants) t_bytearray (Routines)
from_date (Routines) T_CHAR (Constants)
from_unix (Routines) t_cntrl (Routines)

G T_COLON (Constants)

gcd (Routines) T_COMMA (Constants)
geomean (Routines) T_COMMENT (Constants)
get (Routines) T_CONCAT (Constants)
get (Routines) T_CONCATEQ (Constants)
get (Routines) t_consonant (Routines)
get_active_id (Routines) T_DELIMITER (Constants)
get_bytes (Routines) t_digit (Routines)
get_charsets (Routines) t_display (Routines)
get_def_lang (Routines) T_DIVIDE (Constants)
get_dstring (Routines) T_DIVIDEEQ (Constants)
get_encoding_properties (Routines) T_DOLLAR (Constants)
GET_EOF (Constants) T_DOUBLE_OPS (Constants)
GET_FAIL (Constants) T_EOF (Constants)
get_http (Routines) T_EQ (Constants)
get_http_use_cookie (Routines) t_graph (Routines)
get_integer16 (Routines) T_GT (Constants)
get_integer32 (Routines) T_GTEQ (Constants)
get_key (Routines) t_identifier (Routines)
get_key (Routines) T_IDENTIFIER (Constants)
get_lang_path (Routines) T_KEYWORD (Constants)
GET_LONG_ANSWER (Constants) T_LBRACE (Constants)
get_mouse (Routines) T_LBRACKET (Constants)
GET_NOTHING (Constants) t_lower (Routines)
get_option (Routines) T_LPAREN (Constants)
get_ovector_size (Routines) T_LT (Constants)
get_page_size (Routines) T_LTEQ (Constants)
get_pid (Routines) T_MINUS (Constants)

Euphoria v4.0 svn3379

Subject and Routine Index 680

get_position (Routines) T_MINUSEQ (Constants)
get_recvheader (Routines) T_MULTIPLY (Constants)
get_screen_char (Routines) T_MULTIPLYEQ (Constants)
get_sendheader (Routines) T_NOT (Constants)
GET_SHORT_ANSWER (Constants) T_NOTEQ (Constants)
GET_SUCCESS (Constants) T_NULL (Constants)
get_text (Routines) T_NUMBER (Constants)
get_url (Routines) T_PERIOD (Constants)
getc (Routines) T_PLUS (Constants)
getenv (Routines) T_PLUSEQ (Constants)
GetLastError_rid (Constants) t_print (Routines)
gets (Routines) t_punct (Routines)
GetSystemInfo_rid (Constants) T_QPRINT (Constants)
graphics_mode (Routines) T_RBRACE (Constants)
graphics_point (Routines) T_RBRACKET (Constants)
GRAY (Constants) T_RPAREN (Constants)
GREEN (Constants) T_SHBANG (Constants)

H T_SINGLE_OPS (Constants)

HALF_BLOCK_CURSOR (Constants) T_SLICE (Constants)
HALFPI (Constants) t_space (Routines)
HALFSQRT2 (Constants) t_specword (Routines)
harmean (Routines) T_STRING (Constants)
has (Routines) t_text (Routines)
HAS_CASE (Constants) t_upper (Routines)
has_inverse (Routines) t_vowel (Routines)
has_match (Routines) t_xdigit (Routines)
HAS_PARAMETER (Constants) Table header (Routines)
has_unit (Routines) tail (Routines)
hash (Routines) tan (Routines)
head (Routines) tanh (Routines)
Header (Routines) task_clock_start (Routines)
HELP (Constants) task_clock_stop (Routines)
HELP_RID (Constants) task_create (Routines)
hex_text (Routines) task_delay (Routines)
HOST_ALIASES (Constants) task_list (Routines)
host_by_addr (Routines) task_schedule (Routines)
host_by_name (Routines) task_self (Routines)
HOST_IPS (Constants) task_status (Routines)
HOST_OFFICIAL_NAME (Constants) task_suspend (Routines)
HOST_TYPE (Constants) task_yield (Routines)

Euphoria v4.0 svn3379

Subject and Routine Index 681

HSIEH32 (Constants) TDATA (Constants)
HTTP_HEADER_ACCEPT (Constants) temp_file (Routines)
HTTP_HEADER_ACCEPTCHARSET (Constants) test_equal (Routines)
HTTP_HEADER_ACCEPTENCODING (Constants) test_exec (Routines)
HTTP_HEADER_ACCEPTLANGUAGE (Constants) test_fail (Routines)
HTTP_HEADER_ACCEPTRANGES (Constants) test_false (Routines)
HTTP_HEADER_AUTHORIZATION (Constants) test_not_equal (Routines)
HTTP_HEADER_CACHECONTROL (Constants) test_pass (Routines)
HTTP_HEADER_CONNECTION (Constants) TEST_QUIET (Constants)
HTTP_HEADER_CONTENTLENGTH (Constants) test_read (Routines)
HTTP_HEADER_CONTENTTYPE (Constants) test_report (Routines)
HTTP_HEADER_DATE (Constants) TEST_SHOW_ALL (Constants)
HTTP_HEADER_FROM (Constants) TEST_SHOW_FAILED_ONLY (Constants)
HTTP_HEADER_GET (Constants) test_true (Routines)
HTTP_HEADER_HOST (Constants) test_write (Routines)
HTTP_HEADER_HTTPVERSION (Constants) text_color (Routines)
HTTP_HEADER_IFMODIFIEDSINCE (Constants) TEXT_MODE (Constants)
HTTP_HEADER_KEEPALIVE (Constants) text_rows (Routines)
HTTP_HEADER_POST (Constants) TF_ATOM (Constants)
HTTP_HEADER_POSTDATA (Constants) TF_HEX (Constants)
HTTP_HEADER_REFERER (Constants) TF_INT (Constants)
HTTP_HEADER_USERAGENT (Constants) TFORM (Constants)

I THICK_UNDERLINE_CURSOR (Constants)

IDABORT (Constants) threshold (Routines)
IDCANCEL (Constants) time (Routines)
IDIGNORE (Constants) TLNUM (Constants)
IDNO (Constants) TLPOS (Constants)
IDOK (Constants) to_integer (Routines)
IDRETRY (Constants) to_number (Routines)
IDYES (Constants) to_unix (Routines)
iff (Routines) top (Routines)
image (Routines) TOTAL_BYTES (Constants)
include_paths (Routines) TOTAL_NUMBER_OF_CLUSTERS (Constants)
INDENT (Constants) trailer (Routines)
Index block (Routines) trailer (Routines)
info (Routines) transform (Routines)
init_class (Routines) translate (Routines)
init_curdir (Routines) transmute (Routines)
insert (Routines) trim (Routines)
INSERT_FAILED (Constants) trim_head (Routines)

Euphoria v4.0 svn3379

Subject and Routine Index 682

insertion_sort (Routines) trim_tail (Routines)
instance (Routines) trsprintf (Routines)
INT_FORMAT (Constants) TRUE (Constants)
int_to_bits (Routines) true_color (Routines)
int_to_bytes (Routines) trunc (Routines)
intdiv (Routines) TTYPE (Constants)
integer (Routines) TWOPI (Constants)
integer_array (Routines) type_of (Routines)

intersection (Routines) U
INVALID_ROUTINE_ID (Constants) uname (Routines)
INVLN10 (Constants) UNDERLINE_CURSOR (Constants)
INVLN2 (Constants) UNGREEDY (Constants)
INVSQ2PI (Constants) union (Routines)
is_associative (Routines) UNIX_TEXT (Constants)
is_bijective (Routines) unlock_file (Routines)
is_DEP_supported (Routines) unregister_block (Routines)
is_empty (Routines) unregister_block (Routines)
is_even (Routines) unsetenv (Routines)
is_even_obj (Routines) upper (Routines)
is_in_list (Routines) URL_ENTIRE (Constants)
is_in_range (Routines) URL_HOSTNAME (Constants)
is_inetaddr (Routines) URL_HTTP_DOMAIN (Constants)
is_injective (Routines) URL_HTTP_PATH (Constants)
is_leap_year (Routines) URL_HTTP_QUERY (Constants)
is_match (Routines) URL_MAIL_ADDRESS (Constants)
is_match (Routines) URL_MAIL_DOMAIN (Constants)
is_page_aligned_address (Routines) URL_MAIL_QUERY (Constants)
is_subset (Routines) URL_MAIL_USER (Constants)
is_surjective (Routines) URL_PASSWORD (Constants)
is_symmetric (Routines) URL_PATH (Constants)
is_unit (Routines) URL_PORT (Constants)
is_using_DEP (Routines) URL_PROTOCOL (Constants)
is_valid_memory_protection_constant (Routines) URL_PROTOCOL (Constants)
is_win_nt (Routines) URL_QUERY_STRING (Constants)

J URL_USER (Constants)

join (Routines) USED_BYTES (Constants)

K UTF8 (Constants)

kernel_dll (Routines) V

Euphoria v4.0 svn3379

Subject and Routine Index 683

keys (Routines) valid (Routines)
keyvalues (Routines) valid_index (Routines)
keywords (Routines) valid_memory_protection_constant (Routines)
kill (Routines) valid_memory_protection_constant (Routines)
kurtosis (Routines) valid_wordsize (Routines)

L VALIDATE_ALL (Constants)

lang_load (Routines) value (Routines)
largest (Routines) values (Routines)
last (Routines) VC_COLOR (Constants)
LAST_ERROR_CODE (Constants) VC_COLUMNS (Constants)
LEAVE (Constants) VC_LINES (Constants)
LEFT_DOWN (Constants) VC_MODE (Constants)
LEFT_UP (Constants) VC_NCOLORS (Constants)
length (Routines) VC_PAGES (Constants)
LINE_BREAKS (Constants) VC_SCRNCOLS (Constants)
linear (Routines) VC_SCRNLINES (Constants)
LINUX (Constants) VC_XPIXELS (Constants)
listen (Routines) VC_YPIXELS (Constants)
LN10 (Constants) version (Routines)
LN2 (Constants) version_major (Routines)
load (Routines) version_minor (Routines)
load_map (Routines) version_patch (Routines)
locale_canonical (Routines) version_revision (Routines)
locate_file (Routines) version_string (Routines)
LOCK_EXCLUSIVE (Constants) version_string_long (Routines)
lock_file (Routines) version_string_short (Routines)
LOCK_SHARED (Constants) version_type (Routines)
lock_type (Routines) video_config (Routines)
log (Routines) VirtualAlloc_rid (Constants)
log10 (Routines) VirtualFree_rid (Constants)
lookup (Routines) VirtualFree_rid (Constants)
lower (Routines) VirtualLock_rid (Constants)

M VirtualProtect_rid (Constants)

M_ALLOC (Constants) VirtualUnlock_rid (Constants)
M_FREE (Constants) vlookup (Routines)
machine_addr (Routines) vslice (Routines)

machine_addr (Routines) W
machine_func (Routines) w32_name_canonical (Routines)

Euphoria v4.0 svn3379

Subject and Routine Index 684

machine_proc (Routines) w32_names (Routines)
MAGENTA (Constants) W_BAD_PATH (Constants)
malloc (Routines) wait_key (Routines)
Managing Records (Routines) walk_dir (Routines)
Managing tables (Routines) warning (Routines)
MANDATORY (Constants) warning_file (Routines)
map (Routines) weeks_day (Routines)
map (Routines) where (Routines)
MAP_ANONYMOUS (Constants) which_bit (Routines)
MAP_FILE (Constants) WHITE (Constants)
MAP_FIXED (Constants) wildcard_file (Routines)
MAP_PRIVATE (Constants) WIN32 (Constants)
MAP_SHARED (Constants) wrap (Routines)
MAP_TYPE (Constants) WRAP (Constants)
mapping (Routines) write (Routines)
match (Routines) write_file (Routines)
match_all (Routines) write_lines (Routines)
match_any (Routines) writef (Routines)
match_from (Routines) writefln (Routines)

match_replace (Routines) X
matches (Routines) xor_bits (Routines)

max (Routines) Y
MAX_ASCII (Constants) YEAR (Constants)
MAX_LINES (Constants) YEARS (Constants)
maybe_any_key (Routines) years_day (Routines)
MB_ABORTRETRYIGNORE (Constants) YELLOW (Constants)

Euphoria v4.0 svn3379

Subject and Routine Index 685

	Table of Contents
	1 Constants
	1.0.0.1 ADD
	1.0.0.2 ADDR_ADDRESS

	2 Routines
	2.0.0.1 abort
	Parameters:

	Subject and Routine Index

