
Euphoria 4 API Reference

This file documents the Euphoria 4 standard library API.

Created 16 April 2012

Caution

There are some formatting problems with this build.

Undocumented Include Files

Directories excluded:

/include/euphoria

/include/std/net

/include/std/win32

Specific files excluded:

machine.e

safe.e

scinot.e

Legacy files from Euphoria 3.1 (found in /std) are only documented in the Euphoria 3.1
distribution.

Built-in Methods
These routines are built into Euphoria and require no includes.

? abort and_bits append

arctan atom c_func c_proc

call call_func call_proc clear_screen

close command_line compare cos

date delete delete_routine equal

find floor get_key getc

getenv gets hash head

include_paths insert integer length

log machine_func machine_proc match

mem_copy mem_set not_bits object

open option_switches or_bits peek

peek2s peek2u peek4s peek4u

peek_string peeks pixel platform

poke poke2 poke4 position

power prepend print printf

puts rand remainder remove

repeat replace routine_id sequence

sin splice sprintf sqrt

system system_exec tail tan

task_clock_start task_clock_stop task_create task_list

task_schedule task_self task_status task_suspend

task_yield time trace xor_bits

unresolved.html
unresolved.html
unresolved.html
unresolved.html
unresolved.html
unresolved.html
unresolved.html
unresolved.html
unresolved.html
unresolved.html
unresolved.html
unresolved.html
unresolved.html
unresolved.html
unresolved.html
unresolved.html
unresolved.html
unresolved.html

base64

Routines
encode
decode

base64 API

decode

Decode to base64 (See also RFC 2045)
Signature:

decode(sequence in)

public function
include base64.e
namespace base64

Arguments: ≡ in - must be a simple sequence of length 4 to 76.

encode

Encode to base64 (See also RFC 2045)
Signature:

encode(sequence in, integer wrap_column = 0)

public function
include base64.e
namespace base64

Arguments: ≡ in - must be a simple sequence
≡ wrap_column - column to wrap the base64 encoded message to. defaults to 0,
which is do not wrap

Returns: a base64 encoded sequence representing in.

cmdline

Constants
NO_PARAMETER
HAS_PARAMETER
NO_CASE
HAS_CASE
MANDATORY
OPTIONAL
ONCE
MULTIPLE
HELP
VERSIONING

HELP_RID
VALIDATE_ALL
NO_VALIDATION
NO_VALIDATION_AFTER_FIRST_EXTRA
SHOW_ONLY_OPTIONS
AT_EXPANSION
NO_AT_EXPANSION
PAUSE_MSG
NO_HELP
NO_HELP_ON_ERROR
OPT_IDX
OPT_CNT
OPT_VAL
OPT_REV
EXTRAS

Routines
command_line
option_switches
show_help
cmd_parse
build_commandline
parse_commandline

cmdline API

AT_EXPANSION

Expand arguments that begin with '@' into the command line. (default)
Signature:

AT_EXPANSION

public enum
include cmdline.e
namespace cmdline

EXTRAS

The extra parameters on the cmd line, not associated with any
Signature:

EXTRAS

public constant
include cmdline.e
namespace cmdline

HAS_CASE

This option switch is case sensitive. See cmd_parse
Signature:

HAS_CASE

public constant
include cmdline.e
namespace cmdline

HAS_PARAMETER

This option switch does have a parameter. See cmd_parse
Signature:

HAS_PARAMETER

public constant
include cmdline.e
namespace cmdline

HELP

This option switch triggers the 'help' display. See cmd_parse
Signature:

HELP

public constant
include cmdline.e
namespace cmdline

HELP_RID

Additional help routine id. See cmd_parse
Signature:

HELP_RID

public enum
include cmdline.e
namespace cmdline

MANDATORY

This option switch must be supplied on command line. See cmd_parse
Signature:

MANDATORY

public constant
include cmdline.e
namespace cmdline

MULTIPLE

This option switch may occur multiple times on a command line. See cmd_parse
Signature:

MULTIPLE

public constant
include cmdline.e
namespace cmdline

NO_AT_EXPANSION

Do not expand arguments that begin with '@' into the command line.
Signature:

NO_AT_EXPANSION

public enum
include cmdline.e
namespace cmdline

NO_CASE

This option switch is not case sensitive. See cmd_parse
Signature:

NO_CASE

public constant
include cmdline.e
namespace cmdline

NO_HELP

Disable the automatic inclusion of -h, -? and --help as help switches.
Signature:

NO_HELP

public enum
include cmdline.e
namespace cmdline

NO_HELP_ON_ERROR

Disable the automatic display of all of the possible options on error.
Signature:

NO_HELP_ON_ERROR

public enum
include cmdline.e
namespace cmdline

NO_PARAMETER

This option switch does not have a parameter. See cmd_parse

Signature:

NO_PARAMETER

public constant
include cmdline.e
namespace cmdline

NO_VALIDATION

Do not cause an error for an invalid parameter. See cmd_parse
Signature:

NO_VALIDATION

public enum
include cmdline.e
namespace cmdline

NO_VALIDATION_AFTER_FIRST_EXTRA

Do not cause an error for an invalid parameter after the
Signature:

NO_VALIDATION_AFTER_FIRST_EXTRA

public enum
include cmdline.e
namespace cmdline

ONCE

This option switch must only occur once on the command line. See cmd_parse
Signature:

ONCE

public constant
include cmdline.e
namespace cmdline

OPTIONAL

This option switch does not have to be on command line. See cmd_parse
Signature:

OPTIONAL

public constant
include cmdline.e
namespace cmdline

OPT_CNT

The number of times that the routine has been called
Signature:

OPT_CNT

public enum
include cmdline.e
namespace cmdline

OPT_IDX

An index into the opts list. See cmd_parse
Signature:

OPT_IDX

public enum
include cmdline.e
namespace cmdline

OPT_REV

The value 1 if the command line indicates that this option is to remove
Signature:

OPT_REV

public enum
include cmdline.e
namespace cmdline

OPT_VAL

The option's value as found on the command line. See cmd_parse
Signature:

OPT_VAL

public enum
include cmdline.e
namespace cmdline

PAUSE_MSG

Supply a message to display and pause just prior to abort() being called.
Signature:

PAUSE_MSG

public enum
include cmdline.e
namespace cmdline

SHOW_ONLY_OPTIONS

Only display the option list in show_help. Do not display other
Signature:

SHOW_ONLY_OPTIONS

public enum
include cmdline.e
namespace cmdline

VALIDATE_ALL

Validate all parameters (default). See cmd_parse
Signature:

VALIDATE_ALL

public enum
include cmdline.e
namespace cmdline

VERSIONING

This option switch sets the program version information. If this optionis chosen by the
user cmd_parse will display the program version information

Signature:

VERSIONING

public constant
include cmdline.e
namespace cmdline

build_commandline

returns a text string based on the set of supplied strings. Typically, this
Signature:

build_commandline(sequence cmds)

public function
include cmdline.e
namespace cmdline

Arguments: ≡ cmds : A sequence. Contains zero or more strings.

Returns: A sequence, which is a text string. Each of the strings in cmds is quoted if they
contain spaces, and then concatenated to form a single string.

Comments: Though this function does the quoting for you it is not going to protect your programs
from globing *, ?. And it is not specied here what happens if you pass redirection or
piping characters.

When passing a result from with build_commandline to system_exec, file arguments
will benefit from using canonical_path with the TO_SHORT. On Windows, this is
required for file arguments to always work. There is a complication with files that
contain spaces. On other platforms, this call will also return a useable filename.

Alternatively, you can leave out calls to canonical_path and use system instead.

See Also: parse_commandline, system, system_exec, command_line, canonical_path,
TO_SHORT

Example 1:

s=build_commandline({"-d",canonical_path("/usr/my docs/",,TO_SHORT)})
-- s now contains a short name equivalent to '-d "/usr/my docs/"'

Example 2:

s = build_commandline({ "awk", "-e", "'{ print $1"x"$2; }'" })
system(s,0)

cmd_parse

parses command line options and optionally calls procedures based on these
options.

Signature:

cmd_parse(sequence opts, object parse_options = {},
sequence cmds = command_line())

public function
include cmdline.e
namespace cmdline

Arguments: ≡ opts : a sequence of records that define the various command line switches and
options that are valid for the application: See Comments section for details
≡ parse_options : an optional list of special behavior modifiers: See Parse Options
section for details
≡ cmds : an optional sequence of command line arguments. If omitted the output from
command_line() is used.

Returns: A map, containing the set of actual options used in cmds. The returned map has one
special key, EXTRAS that are values passed on the command line that are not part of
any of the defined options. This is commonly used to get the list of files entered on
the command line.

For example: if the command line used was myprog -verbose file1.txt file2.txt
then the EXTRAS data value would be {"file1.txt", "file2.txt"}.

When any command item begins with an @ symbol then it is assumed that it prefixes
a file name. That file will then be opened and its contents used to add to the
command line, as if the file contents had actually been entered as part of the original
command line.

Parse Options: parse_options is used to provide a set of behavior modifiers that
change the default rules for parsing the command line. If used, it is a list of values
that will affect the parsing of the command line options.

These modifers can be any combination of:

VALIDATE_ALL -- The default. All options will be validated for all possible errors.

NO_VALIDATION -- Do not validate any parameter.

NO_VALIDATION_AFTER_FIRST_EXTRA -- Do not validate any parameter after the first
extra was encountered. This is helpful for programs such as the Interpreter itself: eui
-D TEST greet.ex -name John. -D TEST should be validated but anything after
"greet.ex" should not as it is meant for greet.ex to handle, not eui.

HELP_RID -- The next Parse Option must either a routine id or a set of text strings.

The routine is called or the text is displayed when a parse error (invalid option
given, mandatory option not given, no parameter given for an option that requires a
parameter, etc...) occurs. This can be used to provide additional help text. By
default, just the option switches and their descriptions will be displayed. However
you can provide additional text by either supplying a routine_id of a procedure that
accepts no parameters, or a sequence containing lines of text (one line per
element). The procedure is expected to write text to the stdout device.

NO_HELP_ON_ERROR -- Do not show a list of options on a command line error.

NO_HELP -- Do not automatically add the switches '-h', '-?', and '--help' to display the
help text (if any).

NO_AT_EXPANSION -- Do not expand arguments that begin with '@.'

AT_EXPANSION -- Expand arguments that begin with '@'. The name that follows @
will be opened as a file, read, and each trimmed non-empty line that does not begin
with a '#' character will be inserted as arguments in the command line. These lines
replace the original '@' argument as if they had been entered on the original
command line.

…… ♦ If the name following the '@' begins with another '@', the extra '@' is removed
and the remainder is the name of the file. However, if that file cannot be read, it is
simply ignored. This allows optional files to be included on the command line.
Normally, with just a single '@', if the file cannot be found the program aborts.

…… ♦ Lines whose first non-whitespace character is '#' are treated as a comment
and thus ignored.

…… ♦ Lines enclosed with double quotes will have the quotes stripped off and the
result is used as an argument. This can be used for arguments that begin with a '#'
character, for example.

…… ♦ Lines enclosed with single quotes will have the quotes stripped off and the
line is then further split up use the space character as a delimiter. The resulting
'words' are then all treated as individual arguments on the command line.

An example of parse options:

{ HELP_RID, routine_id("my_help"), NO_VALIDATION }

Comments: Token types recognized on the command line: # a single '-'. Simply added to the
'extras' list # a single "--". This signals the end of command line options. What
remains of the command line is added to the 'extras' list, and the parsing terminates.
-shortName. The option will be looked up in the short name field of opts.
/shortName. Same as -shortName. # -!shortName. If the 'shortName' has already
been found the option is removed. # /!shortName. Same as -!shortName # --
longName. The option will be looked up in the long name field of opts. # --
!longName. If the 'longName' has already been found the option is removed. #
anything else. The word is simply added to the 'extras' list.

For those options that require a parameter to also be supplied, the parameter can be
given as either the next command line argument, or by appending '=' or ':' to the
command option then appending the parameter data.
For example, -path=/usr/local or as -path /usr/local.

On a failed lookup, the program shows the help by calling show_help(opts,
add_help_rid, cmds) and terminates with status code 1.

If you do not explicitly define the switches -h, -?, or --help, these will be
automatically added to the list of valid switches and will be set to call the show_help
routine.

You can remove any of these as default 'help' switches simply by explicitly using
them for something else.

You can also remove all of these switches as automatic help switches by using the
NO_HELP parsing option. This just means that these switches are not automatically
used as 'help' switches, regardless of whether they are used explicitly or not. So if
NO_HELP is used, and you want to give the user the ability to display the 'help' then
you must explicitly set up your own switch to do so. N.B, the 'help' is still displayed if
an invalid command line switch is used at runtime, regardless of whether NO_HELP is
used or not.

Option records have the following structure:

a sequence representing the (short name) text that will follow the "-" option format.
Use an atom if not relevant # a sequence representing the (long name) text that will
follow the "--" option format. Use an atom if not relevant # a sequence, text that
describes the option's purpose. Usually short as it is displayed when "-h"/"

See Also: show_help, command_line
Example 1:

sequence option_definition
integer gVerbose = 0
sequence gOutFile = {}
sequence gInFile = {}
function opt_verbose(sequence value)
 if value[OPT_VAL] = -1 then -- (-!v used on command line)
 gVerbose = 0
 else
 if value[OPT_CNT] = 1 then
 gVerbose = 1
 else
 gVerbose += 1
 end if
 end if
 return 1
end function

function opt_output_filename(sequence value)
 gOutFile = value[OPT_VAL]
 return 1
end function

function extras(sequence value)
 if not file_exists(value[OPT_VAL]) then
 show_help(option_definition, sprintf("Cannot find '%s'",
 {value[OPT_VAL]}))
 abort(1)
 end if
 gInFile = append(gInFile, value[OPT_VAL])
 return 1
end function

option_definition = {
{ "v", "verbose", "Verbose output",
 { NO_PARAMETER }, routine_id("opt_verbose") },
{ "h", "hash", "Calc hash values",
 { NO_PARAMETER }, -1 },
{ "o", "output", "Output filename",
 { MANDATORY, HAS_PARAMETER, ONCE } ,
 routine_id("opt_output_filename") },
{ "i", "import", "An import path", { HAS_PARAMETER, MULTIPLE}, -1 },
{ "e", "version", "Display version", { VERSIONING, "myprog v1.0" } },
{ 0, 0, 0, 0, routine_id("extras")}
}

map:map opts = cmd_parse(option_definition, NO_HELP)

-- When run as:
-- eui myprog.ex -v @output.txt -i /etc/app input1.txt input2.txt
-- and the file "output.txt" contains the two lines ...
-- -- output=john.txt

-- '-i /usr/local'
--
-- map:get(opts, "verbose") --> 1
-- map:get(opts, "hash") --> 0 (not supplied on command line)
-- map:get(opts, "output") --> "john.txt"
-- map:get(opts, "import") --> {"/usr/local", "/etc/app"}
-- map:get(opts, EXTRAS) --> {"input1.txt", "input2.txt"}

command_line

returns sequence of strings containing each word entered at the command-line that
started your program.

Signature:

command_line()

<built-in> function

Returns: # The path, to either the Euphoria executable, (eui, eui.exe, euid.exe euiw.exe) or to
your bound executable file. # The next word, is either the name of your Euphoria
main file, or (again) the path to your bound executable file. # Any extra words, typed
by the user. You can use these words in your program.

There are as many entries as words, plus the two mentioned above.

The Euphoria interpreter itself does not use any command-line options. You are free
to use any options for your own program. It does have command line switches
though.

The user can put quotes around a series of words to make them into a single
argument.

If you convert your program into an executable file, either by binding it, or translating it
to C, you will find that all command-line arguments remain the same, except for the
first two, even though your user no longer types "eui" on the command-line (see
examples below).

See Also: build_commandline, option_switches, getenv, cmd_parse, show_help
Example
1:

-- The user types: eui myprog myfile.dat 12345 "the end"

cmd = command_line()

-- cmd will be:
 {
 "myprog",
 "myfile.dat",
 "12345",
 "the end"}

Example 2:

-- Your program is bound with the name "myprog.exe"
-- and is stored in the directory c:\myfiles
-- The user types: myprog myfile.dat 12345 "the end"

cmd = command_line()

-- cmd will be:
 {

 "myfile.dat",
 "12345",
 "the end"
 }

unresolved.html

-- Note that all arguments remain the same as example 1
-- except for the first two. The second argument is always
-- the same as the first and is inserted to keep the numbering
-- of the subsequent arguments the same, whether your program
-- is bound or translated as a .exe, or not.

option_switches

retrieves the list of switches passed to the interpreter on the command line.
Signature:

option_switches()

<built-in> function

Returns: A sequence, of strings, each containing a word related to switches.

Comments: All switches are recorded in upper case.

See Also: Command line switches
Example 1:

euiw -d helLo
-- will result in
-- option_switches() being {"-D","helLo"}

parse_commandline

parses a command line string breaking it into a sequence of command line
Signature:

parse_commandline(sequence cmdline)

public function
include cmdline.e
namespace cmdline

Arguments: ≡ cmdline : Command line sequence (string)

Returns: A sequence, of command line options

See Also: build_commandline
Example 1:

sequence opts = parse_commandline("-v -f '%Y-%m-%d %H:%M'")
-- opts = { "-v", "-f", "%Y-%m-%d %H:%M" }

show_help

shows the help message for the given command options.
Signature:

show_help(sequence opts, object add_help_rid = - 1,
sequence cmds = command_line(), object parse_options = {})

public procedure
include cmdline.e
namespace cmdline

Arguments: ≡ opts : a sequence of options. See the cmd_parse for details.
≡ add_help_rid : an object. Either a routine_id or a set of text strings. The default is -
1 meaning that no additional help text will be used.

unresolved.html

≡ cmds : a sequence of strings. By default this is the output from command_line()
≡ parse_options : An option set of behavior modifiers. See the cmd_parse for
details.

Comments:
• opts is identical to the one used by cmd_parse
• add_help_rid can be used to provide additional help text. By default, just the
option switches and their descriptions will be displayed. However you can provide
additional text by either supplying a routine_id of a procedure that accepts no
parameters; this procedure is expected to write text to the stdout device. Or you can
supply one or more lines of text that will be displayed.

Example 1:

-- in myfile.ex
constant description = {
 "Creates a file containing an analysis of the weather.",
 "The analysis includes temperature and rainfall data",
 "for the past week."
 }

show_help({
 {"q","silent","Suppresses any output to console",NO_PARAMETER,-1},
 {"r", 0, "Sets how many lines the console should display",
 {HAS_PARAMETER,"lines"}, -1}}, description)

--> Outputs:

-- myfile.ex options:
-- -q, --silent Suppresses any output to console
-- -r lines Sets how many lines the console should display

-- Creates a file containing an analysis of the weather.
-- The analysis includes temperature and rainfall data
-- for the past week.

Example 2:

-- in myfile.ex
constant description = {
 "Creates a file containing an analysis of the weather.",
 "The analysis includes temperature and rainfall data",
 "for the past week."
 }
procedure sh()
 for i = 1 to length(description) do
 printf(1, " >> %s <<\n", {description[i]})
 end for
end procedure

show_help({
 {"q","silent","Suppresses any output to console",NO_PARAMETER,-1},
 {"r", 0, "Sets how many lines the console should display",
 {HAS_PARAMETER,"lines"}, -1}}, routine_id("sh"))

Outputs:

myfile.ex options:
-q, --silent Suppresses any output to console
-r lines Sets how many lines the console should display

>> Creates a file containing an analysis of the weather. <<
>> The analysis includes temperature and rainfall data <<
>> for the past week. <<

console

Information

has_console
key_codes

Key Code names.
KC_LBUTTON
set_keycodes

Cursor Style Constants
NO_CURSOR
UNDERLINE_CURSOR
THICK_UNDERLINE_CURSOR
HALF_BLOCK_CURSOR
BLOCK_CURSOR

Keyboard related routines
get_key
allow_break
check_break
wait_key
any_key
maybe_any_key
prompt_number
prompt_string

Cross Platform Text Graphics
positive_int
clear_screen
get_screen_char
put_screen_char
attr_to_colors
colors_to_attr
display_text_image
save_text_image
text_rows
cursor
free_console
display

Key Code names. These are the names of the index values for each of the 256 key code values.

See Also:

key_codes

Cursor Style Constants

In the cursor constants below, the second and fourth hex digits (from the left) determine the top
and bottom row of pixels in the cursor. The first digit controls whether the cursor will be visible or
not. For example: #0407 turns on the 4th through 7th rows.

See Also:

cursor

console API

BLOCK_CURSOR

Signature:

BLOCK_CURSOR

public constant
include console.e
namespace console

HALF_BLOCK_CURSOR

Signature:

HALF_BLOCK_CURSOR

public constant
include console.e
namespace console

KC_LBUTTON

Signature:

KC_LBUTTON

public constant
include console.e
namespace console

NO_CURSOR

Signature:

NO_CURSOR

public constant
include console.e
namespace console

THICK_UNDERLINE_CURSOR

Signature:

THICK_UNDERLINE_CURSOR

public constant
include console.e
namespace console

UNDERLINE_CURSOR

Signature:

UNDERLINE_CURSOR

public constant
include console.e
namespace console

allow_break

sets the response to Control+C and Control+Break key presses.
Signature:

allow_break(types :boolean b)

public procedure
include console.e
namespace console

Arguments: ≡ b : a boolean, TRUE (!= 0) to enable the trapping of Control-C or Control-Break;
FALSE (0) to disable it.

Comments: When b is 1 (true), Control+C and Control+Break can terminate your program when
it tries to read input from the keyboard. When b is 0 (false) your program will not be
terminated by Control+C or Control+Break.

Initially your program can be terminated at any point where it tries to read from the
keyboard.

You can find out if the user has pressed Control-C or Control-Break by calling
check_break.

See Also: check_break
Example 1:

allow_break(0) -- don't let the user kill the program!

any_key

displays a prompt to the user and waits for any key.
Signature:

any_key(sequence prompt = "Press Any Key to continue...", integer con = 1)

public procedure
include console.e
namespace console

Arguments: ≡ prompt : Prompt to display, defaults to "Press Any Key to continue..."
≡ con : Either 1 (stdout), or 2 (stderr). Defaults to 1.

Comments: This wraps wait_key by giving a clue that the user should press a key, and perhaps
do some other things as well.

See Also: wait_key
Example 1:

any_key() -- "Press Any Key to continue..."

Example 2:

any_key("Press Any Key to quit")

attr_to_colors

converts an attribute code to its foreground and background color components.

Signature:

attr_to_colors(integer attr_code)

public function
include console.e
namespace console

Arguments: ≡ attr_code : integer, an attribute code.

Returns: A sequence of two elements -- {fgcolor, bgcolor}

See Also: get_screen_char, colors_to_attr
Example 1:

? attr_to_colors(92) --> {12, 5}

check_break

returns the number of Control-C and Control-Break key presses.
Signature:

check_break()

public function
include console.e
namespace console

Returns: An integer, the number of times that Control+C or Control+Break have been
pressed since the last call to check_break or since the beginning of the program if
this is the first call.

Comments: This is useful after you have called allow_break(0) which prevents Control+C or
Control+Break from terminating your program. You can use check_break to find out if
the user has pressed one of these keys. You might then perform some action such
as a graceful shutdown of your program.

Neither Control+C nor Control+Break will be returned as input characters when you
read the keyboard. You can only detect them by calling check_break.

See Also: allow_break
Example 1:

k = get_key()
if check_break() then -- ^C or ^Break was hit once or more
 temp = graphics_mode(-1)
 puts(STDOUT, "Shutting down...")
 save_all_user_data()
 abort(1)
end if

clear_screen

clears the screen using the current background color (which may be set by bk_color).
Signature:

clear_screen()

<built-in> procedure

See Also: bk_color

colors_to_attr

colors_to_attr

converts a foreground and background color set to its attribute code format.
Signature:

colors_to_attr(object fgbg, integer bg = 0)

public function
include console.e
namespace console

Arguments: ≡ fgbg : Either a sequence of {fgcolor, bgcolor} or just an integer fgcolor.
≡ bg : An integer bgcolor. Only used when fgbg is an integer.

Returns: An integer attribute code.

See Also: get_screen_char, put_screen_char, attr_to_colors
Example 1:

? colors_to_attr({12, 5}) --> 92
? colors_to_attr(12, 5) --> 92

cursor

selects a style of cursor.
Signature:

cursor(integer style)

public procedure
include console.e
namespace console

Arguments: ≡ style : an integer defining the cursor shape.

Platform: windows
Comments: In pixel-graphics modes no cursor is displayed.

See Also: graphics_mode, text_rows
Example 1:

cursor(BLOCK_CURSOR)

display

displays the supplied data on the console screen at the current cursor position.
Signature:

display(object data_in, object args = 1, integer finalnl = - 918_273_645)

public procedure
include console.e
namespace console

Arguments: ≡ data_in : Any object.
≡ args : Optional arguments used to format the output. Default is 1.
≡ finalnl : Optional. Determines if a new line is output after the data. Default is to
output a new line.

Comments:
• If data_in is an atom or integer, it is simply displayed.

• If data_in is a simple text string, then args can be used to produce a formatted
output with data_in providing the text:format string and args being a sequence
containing the data to be formatted.
…… ♦ If the last character of data_in is an underscore character then it is stripped
off and finalnl is set to zero. Thus ensuring that a new line is not output.
…… ♦ The formatting codes expected in data_in are the ones used by text:format. It
is not mandatory to use formatting codes, and if data_in does not contain any then it
is simply displayed and anything in args is ignored.

• If data_in is a sequence containing floating-point numbers, sub-sequences or
integers that are not characters, then data_in is forwarded on to the pretty_print to
display.
…… ♦ If args is a non-empty sequence, it is assumed to contain the pretty_print
formatting options.
…… ♦ if args is an atom or an empty sequence, the assumed pretty_print
formatting options are assumed to be {2}.

After the data is displayed, the routine will normally output a New Line. If you want to
avoid this, ensure that the last parameter is a zero. Or to put this another way, if the
last parameter is zero then a New Line will not be output.

See Also: pretty_print , text:format
Example 1:

display("Some plain text")
 -- Displays this string on the console plus a new line.
display("Your answer:",0)
 -- Displays this string on the console without a new line.
display("cat")
display("Your answer:",,0)
 -- Displays this string on the console without a new line.
display("")
display("Your answer:_")
 -- Displays this string,
 -- except the '_', on the console without a new line.
display("dog")
display({"abc", 3.44554})
 -- Displays the contents of 'res' on the console.
display("The answer to [1] was [2]", {"'why'", 42})
 -- formats these with a new line.
display("",2)
display({51,362,71}, {1})

-- Output would be ...
-- Some plain text
-- Your answer:cat
-- Your answer:
-- Your answer:dog
-- {
-- "abc",
-- 3.44554
-- }
-- The answer to 'why' was 42
-- ""
-- {51'3',362,71'G'}

display_text_image

display a text image in any text mode.
Signature:

display_text_image(text_point xy, sequence text)

public procedure
include console.e
namespace console

Arguments: ≡ xy : a pair of 1-based coordinates representing the point at which to start writing
≡ text : a list of sequences of alternated character and attribute.

Comments: This routine displays to the active text page, and only works in text modes.

You might use save_text_image and display_text_image in a text-mode graphical
user interface, allowing pop-up dialog boxes and drop-down menus to appear and
disappear without losing what was previously on the screen.

See Also: save_text_image, put_screen_char
Example 1:

clear_screen()
display_text_image({1,1}, {{'A', WHITE, 'B', GREEN},
 {'C', RED+16*WHITE},
 {'D', BLUE}})
-- displays:
-- AB
-- C
-- D
-- at the top left corner of the screen.
-- 'A' will be white with black (0) background color,
-- 'B' will be green on black,
-- 'C' will be red on white, and
-- 'D' will be blue on black.

free_console

frees (deletes) any console window associated with your program.
Signature:

free_console()

public procedure
include console.e
namespace console

Comments: Euphoria will create a console text window for your program the first time that your
program prints something to the screen, reads something from the keyboard, or in
some way needs a console. On windows this window will automatically disappear
when your program terminates, but you can call free_console() to make it disappear
sooner. On unix the text mode console is always there, but an xterm window will
disappear after Euphoria issues a "Press Enter" prompt at the end of execution.

On unix free_console will set the terminal parameters back to normal, undoing the
effect that curses has on the screen.

In a unix terminal a call to free_console without any further printing to the screen or
reading from the keyboard, will eliminate the "Press Enter" prompt that Euphoria
normally issues at the end of execution.

After freeing the console window, you can create a new console window by printing
something to the screen, or simply calling clear_screen, position, or any other
routine that needs a console.

When you use the trace facility, or when your program has an error, Euphoria will
automatically create a console window to display trace information, error messages
etc.

There is a WINDOWS API routine, FreeConsole that does something similar to
free_console. Use free_console instead, because it lets the interpreter know that
there is no longer a console to write to or read from.

See Also: clear_screen

get_key

returns the key that was pressed by the user, without waiting. Special
Signature:

get_key()

<built-in> function

Returns: An integer, either -1 if no key waiting, or the code of the next key waiting in
keyboard buffer.

Comments: The operating system can hold a small number of key-hits in its keyboard buffer.
get_key will return the next one from the buffer, or -1 if the buffer is empty.

Run the key.bat program to see what key code is generated for each key on your
keyboard.

See Also: wait_key
Example 1:

integer n = get_key()
if n=-1 then
 puts(1, "No key waiting.\n")
end if

get_screen_char

gets the value and attribute of the character at a given screen location.
Signature:

get_screen_char(positive_atom line, positive_atom column,
integer fgbg = 0)

public function
include console.e
namespace console

Arguments: ≡ line : the 1-base line number of the location
≡ column : the 1-base column number of the location
≡ fgbg : an integer, if 0 (the default) you get an attribute_code returned otherwise
you get a foreground and background color number returned.

Returns:
• If fgbg is zero then a sequence of two elements, {character, attribute_code} for
the specified location.
• If fgbg is not zero then a sequence of three elements, {characterfg_color,
bg_color}

Comments:
• This function inspects a single character on the active page.
• The attribute_code is an atom that contains the foreground and background color
of the character, and possibly other operating-system dependant information
describing the appearance of the character on the screen.
• With get_screen_char and put_screen_char you can save and restore a character
on the screen along with its attribute_code.
• The fg_color and bg_color are integers in the range 0 to 15, which correspond to
values in the following table.

Color
Table:

color number name

0 black
1 dark blue
2 green
3 cyan
4 crimson
5 purple
6 brown
7 light gray
8 dark gray
9 blue
10 bright green
11 light blue
12 red
13 magenta
14 yellow
15 white

See Also: put_screen_char, save_text_image
Example 1:

-- read character and attributes at top left corner
s = get_screen_char(1,1)
-- s could be {'A', 92}
-- store character and attributes at line 25, column 10
put_screen_char(25, 10, s)

Example 2:

-- read character and colors at line 25, column 10.
s = get_screen_char(25,10, 1)
-- s could be {'A', 12, 5}

has_console

determines if the process has a console (or terminal) window.
Signature:

has_console()

public function
include console.e
namespace console

Returns: 1 if there is more than one process attached to the current console, 0 if a console
does not exist or only one process (EUPHORIA) is attached to the current console.

Notes: This function always returns 1 on unix systems.
Example
1:

include std/console.e

if has_console() then
 printf(1, "Hello Console!")
end if

key_codes

gets and sets the keyboard codes used internally by Euphoria.
Signature:

key_codes(object codes = 0)

public function
include console.e
namespace console

Arguments: ≡ codes : Either a sequence of exactly 256 integers or an atom (the default).

Returns: A sequence of the current 256 keyboard codes, prior to any changes that this
function might make.

Comments: When codes is a atom then no change to the existing codes is made, otherwise the
set of 256 integers in codes completely replaces the existing codes.

See Also: key_codes
Example 1:

include std/console.e
sequence kc
kc = key_codes() -- Get existing set.
kc[KC_LEFT] = 263 -- Change the code for the left-arrow press.
key_codes(kc) -- Set the new codes.

These are the names of the index values for each of the 256 key code values.

maybe_any_key

display a prompt to the user and waits for any key, but only if the user is
Signature:

maybe_any_key(sequence prompt = "Press Any Key to continue...",
integer con = 1)

public procedure
include console.e
namespace console

Arguments: ≡ prompt : Prompt to display, defaults to "Press Any Key to continue..."
≡ con : Either 1 (stdout), or 2 (stderr). Defaults to 1.

Comments: This wraps wait_key by giving a clue that the user should press a key, and perhaps
do some other things as well.

See Also: wait_key
Example 1:

any_key() -- "Press Any Key to continue..."

Example 2:

any_key("Press Any Key to quit")

positive_int

Signature:

positive_int(object x)

public type
include console.e
namespace console

prompt_number

prompts the user to enter a number, and returns only a validated input.
Signature:

prompt_number(sequence prompt, sequence range)

public function
include console.e
namespace console

Arguments: ≡ st : is a string of text that will be displayed on the screen.
≡ s : is a sequence of two values {lower, upper} which determine the range of values
that the user may enter; s can be empty, {}, if there are no restrictions.

Returns: An atom, in the assigned range which the user typed in.

Comments: As long as the user enters a number that is less than lower or greater than upper,
the user will be prompted again.

If this routine is too simple for your needs, feel free to copy it and make your own
more specialized version.

See Also: puts, prompt_string
Example 1:

age = prompt_number("What is your age? ", {0, 150})

Example 2:

t = prompt_number("Enter a temperature in Celcius:\n", {})

prompt_string

prompts the user to enter a string of text.
Signature:

prompt_string(sequence prompt)

public function
include console.e
namespace console

Arguments: ≡ st : is a string that will be displayed on the screen.

Returns: A sequence, the string that the user typed in, stripped of any new-line character.

Comments: If the user happens to type Control-Z (indicates end-of-file), "" will be returned.

See Also: prompt_number
Example 1:

name = prompt_string("What is your name? ")

put_screen_char

stores and displays a sequence of characters with attributes at a given location.
Signature:

put_screen_char(positive_atom line, positive_atom column,
sequence char_attr)

public procedure
include console.e
namespace console

Arguments: ≡ line : the 1-based line at which to start writing
≡ column : the 1-based column at which to start writing
≡ char_attr : a sequence of alternated characters and attribute codes.

Comments: char_attr must be in the form {character, attribute code, character,
attribute code, ...}.

See Also: get_screen_char, display_text_image
Example 1:

-- write AZ to the top left of the screen
-- (attributes are platform-dependent)
put_screen_char(1, 1, {'A', 152, 'Z', 131})

save_text_image

copies a rectangular block of text out of screen memory.
Signature:

save_text_image(text_point top_left, text_point bottom_right)

public function
include console.e
namespace console

Arguments: ≡ top_left : the coordinates, given as a pair, of the upper left corner of the area to
save.
≡ bottom_right : the coordinates, given as a pair, of the lower right corner of the
area to save.

Returns: A sequence, of {character, attribute, character, ...} lists.

Comments: The returned value is appropriately handled by display_text_image.

This routine reads from the active text page, and only works in text modes.

You might use this function in a text-mode graphical user interface to save a portion
of the screen before displaying a drop-down menu, dialog box, alert box, and so on.

See Also: display_text_image, get_screen_char
Example 1:

-- Top 2 lines are: Hello and World
s = save_text_image({1,1}, {2,5})

-- s is something like: {"H-e-l-l-o-", "W-o-r-l-d-"}

set_keycodes

changes the default codes returned by the keyboard.
Signature:

set_keycodes(object kcfile)

public function
include console.e
namespace console

Arguments: ≡ kcfile : Either the name of a text file or the handle of an open (for reading) text file.

Returns: When this function completes without error, zero (0) is returned, otherwise an error
code is returned:
• 0 means without error
• -1 means that the supplied file could not me loaded in to a map.

• -2 means that a new key value was not an integer
• -3 means that an unknown key name was found in the file.

Comments: The text file is expected to contain bindings for one or more keyboard codes.

The format of the files is a set of lines, one line per key binding, in the form KEYNAME
= NEWVALUE. The keyname is the same as the constants but without the "KC_" prefix.
The key bindings can be in any order.

See Also: key_codes

In the cursor constants below, the second and fourth hex digits (from the left)
determine the top and bottom row of pixels in the cursor. The first digit controls
whether the cursor will be visible or not. For example: #0407 turns on the 4th
through 7th rows.

Example 1:

-- doskeys.txt file containing some key bindings
F1 = 260
F2 = 261
INSERT = 456

set_keycodes("doskeys.txt")

text_rows

sets the number of lines on a text-mode screen.
Signature:

text_rows(positive_int rows)

public function
include console.e
namespace console

Arguments: ≡ rows : an integer, the desired number of rows.

Returns: An integer, the actual number of text lines.

Platform: windows
Comments: Values of 25, 28, 43 and 50 lines are supported by most video cards.

See Also: graphics_mode, video_config

wait_key

waits for user to press a key, unless any is pending, and returns its key code.
Signature:

wait_key()

public function
include console.e
namespace console

Returns: An integer, which is a key code. If one is waiting in keyboard buffer, then return it.
Otherwise, wait for one to come up.

See Also: get_key, getc

See Also: get_key, getc

convert

Routines
int_to_bytes
bytes_to_int
int_to_bits
bits_to_int
atom_to_float64
atom_to_float80
float80_to_atom
atom_to_float32
float64_to_atom
float32_to_atom
hex_text
set_decimal_mark
to_number
to_integer
to_string

convert API

atom_to_float32

converts an atom to a sequence of 4 bytes in IEEE 32-bit format.
Signature:

atom_to_float32(atom a)

public function
include convert.e
namespace convert

Arguments: ≡ a : the atom to convert:

Returns: A sequence, of 4 bytes, which can be poked in memory to represent a.

Comments: Euphoria atoms can have values which are 64-bit IEEE floating-point numbers, so
you may lose precision when you convert to 32-bits (16 significant digits versus 7).
The range of exponents is much larger in 64-bit format (10 to the 308, versus 10 to
the 38), so some atoms may be too large or too small to represent in 32-bit format. In
this case you will get one of the special 32-bit values: inf or -inf (infinity or -infinity).
To avoid this, you can use atom_to_float64().

Integer values will also be converted to 32-bit floating-point format.

On modern computers, computations on 64 bit floats are no slower than on 32 bit
floats. Internally, the PC stores them in 80 bit registers anyway. Euphoria does not
support these so called long doubles. Not all C compilers do.

See Also: float32_to_atom, int_to_bytes, atom_to_float64
Example 1:

fn = open("numbers.dat", "wb")
puts(fn, atom_to_float32(157.82)) -- write 4 bytes to a file

atom_to_float64

converts an atom to a sequence of 8 bytes in IEEE 64-bit format.
Signature:

atom_to_float64(atom a)

public function
include convert.e
namespace convert

Arguments: ≡ a : the atom to convert.

Returns: A sequence, of 8 bytes, which can be poked in memory to represent a.

Comments: All Euphoria atoms have values which can be represented as 64-bit IEEE floating-
point numbers, so you can convert any atom to 64-bit format without losing any
precision.

Integer values will also be converted to 64-bit floating-point format.

See Also: float64_to_atom, int_to_bytes, atom_to_float32
Example 1:

fn = open("numbers.dat", "wb")
puts(fn, atom_to_float64(157.82)) -- write 8 bytes to a file

atom_to_float80

Signature:

atom_to_float80(atom a)

public function
include convert.e
namespace convert

bits_to_int

converts a sequence of bits to an atom that has no fractional part.
Signature:

bits_to_int(sequence bits)

public function
include convert.e
namespace convert

Arguments: ≡ bits : the sequence to convert.

Returns: A positive atom, whose machine representation was given by bits.

Comments: An element in bits can be any atom. If nonzero, it counts for 1, else for 0.

The first elements in bits represent the bits with the least weight in the returned
value. Only the 52 last bits will matter, as the PC hardware cannot hold an integer
with more digits than this.

If you print s the bits will appear in "reverse" order, but it is convenient to have
increasing subscripts access bits of increasing significance.

See Also: bytes_to_int, int_to_bits, operations on sequences
Example 1:

a = bits_to_int({1,1,1,0,1})
-- a is 23 (binary 10111)

bytes_to_int

converts a sequence of at most 4 bytes into an atom.
Signature:

bytes_to_int(sequence s)

public function
include convert.e
namespace convert

Arguments: ≡ s : the sequence to convert

Returns: An atom, the value of the concatenated bytes of s.

Comments: This performs the reverse operation from int_to_bytes

An atom is being returned, because the converted value may be bigger than what
can fit in an Euphoria integer.

See Also: bits_to_int, float64_to_atom, int_to_bytes, peek, peek4s, peek4u, poke4
Example 1:

atom int32

int32 = bytes_to_int({37,1,0,0})
-- int32 is 37 + 256*1 = 293

float32_to_atom

converts a sequence of 4 bytes in IEEE 32-bit format to an atom.
Signature:

float32_to_atom(sequence_4 ieee32)

public function
include convert.e
namespace convert

Arguments: ≡ ieee32 : the sequence to convert:

Returns: An atom, the same value as the FPU would see by peeking ieee64 from RAM.

Comments: Any 32-bit IEEE floating-point number can be converted to an atom.

See Also: float64_to_atom, bytes_to_int, atom_to_float32
Example 1:

f = repeat(0, 4)
fn = open("numbers.dat", "rb") -- read binary
f[1] = getc(fn)
f[2] = getc(fn)
f[3] = getc(fn)
f[4] = getc(fn)
a = float32_to_atom(f)

float64_to_atom

converts a sequence of 8 bytes in IEEE 64-bit format to an atom.

unresolved.html
unresolved.html
unresolved.html
unresolved.html

Signature:

float64_to_atom(sequence_8 ieee64)

public function
include convert.e
namespace convert

Arguments: ≡ ieee64 : the sequence to convert:

Returns: An atom, the same value as the FPU would see by peeking ieee64 from RAM.

Comments: Any 64-bit IEEE floating-point number can be converted to an atom.

See Also: float32_to_atom, bytes_to_int, atom_to_float64
Example 1:

f = repeat(0, 8)
fn = open("numbers.dat", "rb") -- read binary
for i = 1 to 8 do
 f[i] = getc(fn)
end for
a = float64_to_atom(f)

float80_to_atom

Signature:

float80_to_atom(sequence bytes)

public function
include convert.e
namespace convert

hex_text

converts a text representation of a hexadecimal number to an atom.
Signature:

hex_text(sequence text)

public function
include convert.e
namespace convert

Arguments: ≡ text : the text to convert.

Returns: An atom, the numeric equivalent to text

Comments:
• The text can optionally begin with '#' which is ignored.
• The text can have any number of underscores, all of which are ignored.
• The text can have one leading '-', indicating a negative number.
• The text can have any number of underscores, all of which are ignored.
• Any other characters in the text stops the parsing and returns the value thus far.

See Also: value
Example 1:

atom h = hex_text("-#3_4FA.00E_1BD")
 -- h is now -13562.003444492816925
 atom h = hex_text("DEADBEEF")
 -- h is now 3735928559

int_to_bits

extracts the lower bits from an integer.
Signature:

int_to_bits(atom x, integer nbits = 32)

public function
include convert.e
namespace convert

Arguments: ≡ x : the atom to convert
≡ nbits : the number of bits requested. The default is 32.

Returns: A sequence, of length nbits, made of 1's and 0's.

Comments: x should have no fractional part. If it does, then the first "bit" will be an atom between
0 and 2.

The bits are returned lowest first.

For negative numbers the two's complement bit pattern is returned.

You can use subscripting, slicing, and/or/xor/not of entire sequences etc. to
manipulate sequences of bits. Shifting of bits and rotating of bits are easy to perform.

See Also: bits_to_int, int_to_bytes, Relational operators, operations on sequences
Example 1:

s = int_to_bits(177, 8)
-- s is {1,0,0,0,1,1,0,1} -- "reverse" order

int_to_bytes

converts an atom that represents an integer to a sequence of 4 bytes.
Signature:

int_to_bytes(atom x, integer size = 4)

public function
include convert.e
namespace convert

Arguments: ≡ x : an atom, the value to convert.

Returns: A sequence, of 4 bytes, lowest significant byte first.

Comments: If the atom does not fit into a 32-bit integer, things may still work right:
• If there is a fractional part, the first element in the returned value will carry it. If you
poke the sequence to RAM, that fraction will be discarded anyway.
• If x is simply too big, the first three bytes will still be correct, and the 4th element
will be floor(x/power(2,24)). If this is not a byte sized integer, some truncation
may occur, but usually no error.

The integer can be negative. Negative byte-values will be returned, but after poking
them into memory you will have the correct (two's complement) representation for
the 386+.

See Also: bytes_to_int, int_to_bits, atom_to_float64, poke4
Example 1:

s = int_to_bytes(999)
-- s is {231, 3, 0, 0}

unresolved.html
unresolved.html
unresolved.html

Example 2:

s = int_to_bytes(-999)
-- s is {-231, -4, -1, -1}

set_decimal_mark

gets, and possibly sets, the decimal mark that to_number() uses.
Signature:

set_decimal_mark(integer new_mark)

public function
include convert.e
namespace convert

Arguments: ≡ new_mark : An integer: Either a comma (,), a period (.) or any other integer.

Returns: An integer, The current value, before new_mark changes it.

Comments:
• When new_mark is a period it will cause to_number() to interpret a dot (.) as the
decimal point symbol. The pre-changed value is returned.
• When new_mark is a comma it will cause to_number() to interpret a comma (,) as
the decimal point symbol. The pre-changed value is returned.
• Any other value does not change the current setting. Instead it just returns the
current value.
• The initial value of the decimal marker is a period.

to_integer

converts an object into an integer.
Signature:

to_integer(object data_in, integer def_value = 0)

public function
include convert.e
namespace convert

Arguments: ≡ data_in : Any Euphoria object.
≡ def_value : An integer. This is returned if data_in cannot be converted into an
integer. If omitted, zero is returned.

Returns: An integer, either the integer rendition of data_in or def_value if it has no integer
value.

Comments: The returned value is guaranteed to be a valid Euphoria integer.
Example 1:

? to_integer(12) --> 12
? to_integer(12.4) --> 12
? to_integer("12") --> 12
? to_integer("12.9") --> 12

? to_integer("a12") --> 0 (not a valid number)
? to_integer("a12",-1) --> -1 (not a valid number)
? to_integer({"12"}) --> 0 (sub-sequence found)
? to_integer(#3FFFFFFF) --> 1073741823
? to_integer(#3FFFFFFF + 1) --> 0 (too big for a Euphoria integer)

to_number

converts the text into a number.

Signature:

to_number(sequence text_in, integer return_bad_pos = 0)

public function
include convert.e
namespace convert

Arguments: ≡ text_in : A string containing the text representation of a number.
≡ return_bad_pos : An integer.
…… ♦ If 0 (the default) then this will return a number based on the supplied text and
it will not return any position in text_in that caused an incomplete conversion.
…… ♦ If return_bad_pos is -1 then if the conversion of text_in was complete the
resulting number is returned otherwise a single-element sequence containing the
position within text_in where the conversion stopped.
…… ♦ If not 0 then this returns both the converted value up to the point of failure (if
any) and the position in text_in that caused the failure. If that position is 0 then
there was no failure.

Returns:
• an atom, If return_bad_pos is zero, the number represented by text_in. If text_in
contains invalid characters, zero is returned.

• a sequence, If return_bad_pos is non-zero. If return_bad_pos is -1 it returns a 1-
element sequence containing the spot inside text_in where conversion stopped.
Otherwise it returns a 2-element sequence containing the number represented by
text_in and either 0 or the position in text_in where conversion stopped.

Comments: # You can supply Hexadecimal values if the value is preceded by a '#' character,
Octal values if the value is preceded by a '@' character, and Binary values if the
value is preceded by a '!' character. With hexadecimal values, the case of the digits
'A' - 'F' is not important. Also, any decimal marker embedded in the number is used
with the correct base.

Any underscore characters or thousands separators, that are embedded in the text
number are ignored. These can be used to help visual clarity for long numbers. The
thousands separator is a ',' when the decimal mark is '.' (the default), or '.' if the
decimal mark is ','. You inspect and set it using set_decimal_mark().

You can supply a single leading or trailing sign. Either a minus (-) or plus (+).

You can supply one or more trailing adjacent percentage signs. The first one
causes the resulting value to be divided by 100, and each subsequent one divides
the result by a further 10. Thus 3845% gives a value of (3845 / 100) ==> 38.45, and
3845%% gives a value of (3845 / 1000) ==> 3.845.

You can have single currency symbol before the first digit or after the last digit. A
currency symbol is any character of the string: "$����".

You can have any number of whitespace characters before the first digit and after
the last digit.

The currency, sign and base symbols can appear in any order. Thus "$ -21.10" is
the same as " -$21.10 ", which is also the same as "21.10$-", etc.

This function can optionally return information about invalid numbers. If
return_bad_pos is not zero, a two-element sequence is returned. The first element is
the converted number value , and the second is the position in the text where
conversion stopped. If no errors were found then the second element is zero.

When converting floating point text numbers to atoms, you need to be aware that
many numbers cannot be accurately converted to the exact value expected due to
the limitations of the 64-bit IEEEE Floating point format.

Example 1:

object val
val = to_number("12.34") ---> 12.34 -- No errors
val = to_number("12.34", 1) ---> {12.34, 0} -- No errors
val = to_number("12.34", -1) ---> 12.34 -- No errors
val = to_number("12.34a", 1) ---> {12.34, 6} -- Error at position 6
val = to_number("12.34a", -1) ---> {6} -- Error at position 6
val = to_number("12.34a") ---> 0 because its not a valid number

val = to_number("#f80c") --> 63500
val = to_number("#f80c.7aa") --> 63500.47900390625
val = to_number("@1703") --> 963
val = to_number("!101101") --> 45
val = to_number("12_583_891") --> 12583891
val = to_number("12_583_891%") --> 125838.91
val = to_number("12,583,891%%") --> 12583.891

to_string

converts an object into a text string.
Signature:

to_string(object data_in, integer string_quote = 0,
integer embed_string_quote = '"')

public function
include convert.e
namespace convert

Arguments: ≡ data_in : Any Euphoria object.
≡ string_quote : An integer. If not zero (the default) this will be used to enclose
data_in, if it is already a string.
≡ embed_string_quote : An integer. This will be used to enclose any strings
embedded inside data_in. The default is '"'

Returns: A sequence. This is the string repesentation of data_in.

Comments:
• The returned value is guaranteed to be a displayable text string.
• string_quote is only used if data_in is already a string. In this case, all
occurances of string_quote already in data_in are prefixed with the '\' escape
character, as are any preexisting escape characters. Then string_quote is added to
both ends of data_in, resulting in a quoted string.
• embed_string_quote is only used if data_in is a sequence that contains strings. In
this case, it is used as the enclosing quote for embedded strings.

Example 1:

include std/console.e
display(to_string(12)) --> 12
display(to_string("abc")) --> abc
display(to_string("abc",'"')) --> "abc"
display(to_string(`abc\"`,'"')) --> "abc\\\""
display(to_string({12,"abc",{4.5, -99}})) --> {12, "abc", {4.5, -99}}
display(to_string({12,"abc",{4.5, -99}},,0)) --> {12, abc, {4.5, -99}}

datetime

Localized Variables
month_names
month_abbrs
day_names

day_abbrs
ampm

Date and Time Type Accessors
YEAR
MONTH
DAY
HOUR
MINUTE
SECOND

Intervals
YEARS
MONTHS
WEEKS
DAYS
HOURS
MINUTES
SECONDS
DATE

Types
datetime

Routines
time
date
from_date
now
now_gmt
new
new_time
weeks_day
years_day
is_leap_year
days_in_month
days_in_year
to_unix
from_unix
format
parse
add
subtract
diff

Date and Time Type Accessors

These accessors can be used with the datetime type.

Intervals

These constant enums are to be used with the add and subtract routines.

datetime API

DATE

Date
Signature:

DATE

public enum
include datetime.e
namespace datetime

DAY

Day (1-31)
Signature:

DAY

public enum
include datetime.e
namespace datetime

DAYS

Days
Signature:

DAYS

public enum
include datetime.e
namespace datetime

HOUR

Hour (0-23)
Signature:

HOUR

public enum
include datetime.e
namespace datetime

HOURS

Hours
Signature:

HOURS

public enum
include datetime.e
namespace datetime

MINUTE

Minute (0-59)
Signature:

MINUTE

public enum
include datetime.e
namespace datetime

MINUTES

Minutes
Signature:

MINUTES

public enum
include datetime.e
namespace datetime

MONTH

Month (1-12)
Signature:

MONTH

public enum
include datetime.e
namespace datetime

MONTHS

Months
Signature:

MONTHS

public enum
include datetime.e
namespace datetime

SECOND

Second (0-59)
Signature:

SECOND

public enum
include datetime.e
namespace datetime

SECONDS

Seconds
Signature:

SECONDS

public enum
include datetime.e
namespace datetime

WEEKS

Weeks
Signature:

WEEKS

public enum
include datetime.e
namespace datetime

YEAR

Year (full year, for example: 2010, 1922)
Signature:

YEAR

public enum
include datetime.e
namespace datetime

YEARS

Years
Signature:

YEARS

public enum
include datetime.e
namespace datetime

add

adds a number of intervals to a datetime.
Signature:

add(datetime dt, object qty, integer interval)

public function
include datetime.e
namespace datetime

Arguments: ≡ dt : the base datetime
≡ qty : the number of intervals to add. It should be positive.
≡ interval : which kind of interval to add.

Returns: A sequence, more precisely a datetime representing the new moment in time.

Comments: Please see Constants for Date and Time for a reference of valid intervals.

Do not confuse the item access constants such as YEAR, MONTH, DAY, etc... with
the interval constants YEARS, MONTHS, DAYS, and so on.

When adding MONTHS, it is a calendar based addition. For instance, a date of
5/2/2008 with 5 MONTHS added will become 10/2/2008. MONTHS does not
compute the number of days per each month and the average number of days per
month.

When adding YEARS, leap year is taken into account. Adding 4 YEARS to a date
may result in a different day of month number due to leap year.

See Also: subtract, diff
Example 1:

d2 = add(d1, 35, SECONDS) -- add 35 seconds to d1
d2 = add(d1, 7, WEEKS) -- add 7 weeks to d1
d2 = add(d1, 19, YEARS) -- add 19 years to d1

ampm

AM/PM
Signature:

ampm

public sequence
include datetime.e
namespace datetime

date

return a sequence with information on the current date.
Signature:

date()

<built-in> function

Returns: A sequence of length 8, laid out as follows: # year -- since 1900 # month -- January
= 1 # day -- day of month, starting at 1 # hour -- 0 to 23 # minute -- 0 to 59 # second --
0 to 59 # day of the week -- Sunday = 1 # day of the year -- January 1st = 1

Comments: The value returned for the year is actually the number of years since 1900 (not the
last 2 digits of the year). In the year 2000 this value was 100. In 2001 it was 101, etc.

See Also: time, now
Example 1:

now = date()
-- now has: {95,3,24,23,47,38,6,83}
-- i.e. Friday March 24, 1995 at 11:47:38pm, day 83 of the year

datetime

is the datetime type.
Signature:

datetime(object o)

public type
include datetime.e
namespace datetime

Arguments: ≡ obj : any object, so no crash takes place.

Comments: A datetime type consists of a sequence of length 6 in the form {year, month,
day_of_month, hour, minute, second}. Checks are made to guarantee those
values are in range.

day_abbrs

Abbreviations of day names
Signature:

day_abbrs

public sequence
include datetime.e
namespace datetime

day_names

Names of the days
Signature:

day_names

public sequence
include datetime.e
namespace datetime

days_in_month

returns the number of days in the month of dt.
Signature:

days_in_month(datetime dt)

public function
include datetime.e
namespace datetime

Arguments: ≡ dt : a datetime to be queried.

Comments: This takes into account leap years.

See Also: is_leap_year
Example 1:

d = new(2008, 1, 1, 0, 0, 0)
? days_in_month(d) -- 31
d = new(2008, 2, 1, 0, 0, 0) -- Leap year
? days_in_month(d) -- 29

days_in_year

returns the number of days in the year of dt.
Signature:

days_in_year(datetime dt)

public function
include datetime.e
namespace datetime

Arguments: ≡ dt : a datetime to be queried.

See Also: is_leap_year, days_in_month
Example 1:

d = new(2007, 1, 1, 0, 0, 0)
? days_in_year(d) -- 365
d = new(2008, 1, 1, 0, 0, 0) -- leap year
? days_in_year(d) -- 366

diff

computes the difference, in seconds, between two dates.
Signature:

diff(datetime dt1, datetime dt2)

public function
include datetime.e
namespace datetime

Arguments: ≡ dt1 : the end datetime
≡ dt2 : the start datetime

Returns: An atom, the number of seconds elapsed from dt2 to dt1.

Comments: dt2 is subtracted from dt1, therefore, you can come up with a negative value.

See Also: add, subtract
Example 1:

d1 = now()
sleep(15) -- sleep for 15 seconds
d2 = now()

i = diff(d1, d2) -- i is 15

format

formats the date according to the format pattern string.
Signature:

format(datetime d, sequence pattern = "%Y-%m-%d %H:%M:%S")

public function
include datetime.e
namespace datetime

Arguments: ≡ d : a datetime which is to be printed out
≡ pattern : a format string, similar to the ones sprintf() uses, but with some Unicode
encoding. The default is "%Y-%m-%d %H:%M:%S".

Returns: A string, with the date d formatted according to the specification in pattern.

Comments: Pattern string can include the following specifiers:

• %% -- a literal %
• %a -- locale's abbreviated weekday name (e.g., Sun)
• %A -- locale's full weekday name (e.g., Sunday)
• %b -- locale's abbreviated month name (e.g., Jan)
• %B -- locale's full month name (e.g., January)
• %C -- century; like %Y, except omit last two digits (e.g., 21)
• %d -- day of month (e.g, 01)
• %H -- hour (00..23)
• %I -- hour (01..12)
• %j -- day of year (001..366)
• %k -- hour (0..23)
• %l -- hour (1..12)
• %m -- month (01..12)
• %M -- minute (00..59)
• %p -- locale's equivalent of either AM or PM; blank if not known
• %P -- like %p, but lower case
• %s -- seconds since 1970-01-01 00:00:00 UTC
• %S -- second (00..60)
• %u -- day of week (1..7); 1 is Monday
• %w -- day of week (0..6); 0 is Sunday
• %y -- last two digits of year (00..99)
• %Y -- year

See Also: to_unix, parse
Example 1:

d = new(2008, 5, 2, 12, 58, 32)
s = format(d, "%Y-%m-%d %H:%M:%S")
-- s is "2008-05-02 12:58:32"

Example 2:

d = new(2008, 5, 2, 12, 58, 32)
s = format(d, "%A, %B %d '%y %H:%M%p")
-- s is "Friday, May 2 '08 12:58PM"

from_date

converts a sequence formatted according to the built-in date() function to a valid
datetime

Signature:

from_date(sequence src)

public function
include datetime.e
namespace datetime

Arguments: ≡ src : a sequence which date() might have returned

Returns: A sequence, more precisely a datetime corresponding to the same moment in time.

See Also: date, from_unix, now, new
Example 1:

d = from_date(date())
-- d is the current date and time

from_unix

from_unix

creates a datetime value from the unix numeric format (seconds since EPOCH).
Signature:

from_unix(atom unix)

public function
include datetime.e
namespace datetime

Arguments: ≡ unix : an atom, counting seconds elapsed since EPOCH.

Returns: A sequence, more precisely a datetime representing the same moment in time.

See Also: to_unix, from_date, now, new
Example 1:

d = from_unix(0)
-- d is 1970-01-01 00:00:00 (zero seconds since EPOCH)

is_leap_year

tests if dt falls within leap year.
Signature:

is_leap_year(datetime dt)

public function
include datetime.e
namespace datetime

Arguments: ≡ dt : a datetime to be queried.

Returns: An integer, of 1 if leap year, otherwise 0.

See Also: days_in_month
Example 1:

d = new(2008, 1, 1, 0, 0, 0)
? is_leap_year(d) -- prints 1
d = new(2005, 1, 1, 0, 0, 0)
? is_leap_year(d) -- prints 0

month_abbrs

Abbreviations of month names
Signature:

month_abbrs

public sequence
include datetime.e
namespace datetime

month_names

Names of the months
Signature:

month_names

public sequence
include datetime.e
namespace datetime

new

creates a new datetime value.
Signature:

new(integer year = 0, integer month = 0, integer day = 0, integer hour = 0,
integer minute = 0, atom second = 0)

public function
include datetime.e
namespace datetime

Arguments: ≡ year -- the full year.
≡ month -- the month (1-12).
≡ day -- the day of the month (1-31).
≡ hour -- the hour (0-23) (defaults to 0)
≡ minute -- the minute (0-59) (defaults to 0)
≡ second -- the second (0-59) (defaults to 0)

See Also: from_date, from_unix, now, new_time
Example 1:

dt = new(2010, 1, 1, 0, 0, 0)
-- dt is Jan 1st, 2010

new_time

creates a new datetime value with a date of zeros.
Signature:

new_time(integer hour, integer minute, atom second)

public function
include datetime.e
namespace datetime

Arguments: ≡ hour : is the hour (0-23)
≡ minute : is the minute (0-59)
≡ second : is the second (0-59)

See Also: from_date, from_unix, now, new
Example 1:

dt = new_time(10, 30, 55)
dt is 10:30:55 AM

now

creates a new datetime value initialized with the current date and time.
Signature:

now()

public function
include datetime.e
namespace datetime

Returns: A sequence, more precisely a datetime corresponding to the current moment in
time.

See Also: from_date, from_unix, new, new_time, now_gmt
Example
1:

dt = now()
-- dt is the current date and time

now_gmt

creates a new datetime value that falls into the Greenwich Mean Time (GMT)
timezone.

Signature:

now_gmt()

public function
include datetime.e
namespace datetime

See Also: now
Example
1:

dt = now_gmt()
-- If local time was July 16th, 2008 at 10:34pm CST
-- dt would be July 17th, 2008 at 03:34pm GMT

parse

parses a datetime string according to the given format.
Signature:

parse(sequence val, sequence fmt = "%Y-%m-%d %H:%M:%S",
integer yylower = - 80)

public function
include datetime.e
namespace datetime

Arguments: ≡ val : string datetime value
≡ fmt : datetime format. Default is "%Y-%m-%d %H:%M:%S"
≡ yysplit : Set the maximum difference from the current year when parsing a two
digit year. Defaults to -80/+20.

Returns: A datetime, value.

Comments: Only a subset of the format specification is currently supported:

• %d -- day of month (e.g, 01)
• %H -- hour (00..23)
• %m -- month (01..12)
• %M -- minute (00..59)
• %S -- second (00..60)
• %y -- 2-digit year (YY)
• %Y -- 4-digit year (CCYY)

More format codes will be added in future versions.

All non-format characters in the format string are ignored and are not matched
against the input string.

All non-digits in the input string are ignored.

Parsing Two Digit Years:

When parsing a two digit year parse has to make a decision if a given year is in the
past or future. For example, 10/18/44. Is that Oct 18, 1944 or Oct 18, 2044. A
common rule has come about for this purpose and that is the -80/+20 rule. Based on
research it was found that more historical events are recorded than future events,
thus it favors history rather than future. Some other applications may require a
different rule, thus the yylower parameter can be supplied.

Assuming today is 12/22/2010 here is an example of the -80/+20 rule.

YY	Diff	CCYY
18	-92/+8	2018
95	-15/+85	1995
33	-77/+23	1933

| 29 | -81/+19 | 2029 |

Another rule in use is the -50/+50 rule. Therefore, if you supply -50 to the yylower to
set the lower bounds, some examples may be (given that today is 12/22/2010).

YY	Diff	CCYY
18	-92/+8	2018
95	-15/+85	1995
33	-77/+23	2033
29	-81/+19	2029

See Also: format
Example 1:

datetime d = parse("05/01/2009 10:20:30", "%m/%d/%Y %H:%M:%S")
-- d is { 2009, 5, 1, 10, 20, 30 }

Example 2:

datetime d = parse("05/01/44", "%m/%d/%y", -50) -- -50/+50 rule
-- d is { 2044, 5, 14, 0, 0, 0 }

subtract

subtracts a number of intervals to a base datetime.
Signature:

subtract(datetime dt, atom qty, integer interval)

public function
include datetime.e
namespace datetime

Arguments: ≡ dt : the base datetime
≡ qty : the number of intervals to subtract. It should be positive.
≡ interval : which kind of interval to subtract.

Returns: A sequence, more precisely a datetime representing the new moment in time.

Comments: Please see Constants for Date/Time for a reference of valid intervals.

See the function add() for more information on adding and subtracting date intervals

See Also: add, diff
Example 1:

dt2 = subtract(dt1, 18, MINUTES) -- subtract 18 minutes from dt1
dt2 = subtract(dt1, 7, MONTHS) -- subtract 7 months from dt1
dt2 = subtract(dt1, 12, HOURS) -- subtract 12 hours from dt1

time

return the number of seconds since some fixed point in the past.
Signature:

time()

<built-in> function

Returns: An atom, which represents an absolute number of seconds.

Comments: Take the difference between two readings of time(), to measure, for example, how
long a section of code takes to execute.

On some machines, time() can return a negative number. However, you can still use
the difference in calls to time() to measure elapsed time.

See Also: date, now
Example 1:

constant ITERATIONS = 1000000
integer p
atom t0, loop_overhead

t0 = time()
for i = 1 to ITERATIONS do
 -- time an empty loop
end for
loop_overhead = time() - t0

t0 = time()
for i = 1 to ITERATIONS do
 p = power(2, 20)
end for
? (time() - t0 - loop_overhead)/ITERATIONS
-- calculates time (in seconds) for one call to power

to_unix

converts a datetime value to the unix numeric format (seconds since EPOCH_1970).
Signature:

to_unix(datetime dt)

public function
include datetime.e
namespace datetime

Arguments: ≡ dt : a datetime to be queried.

Returns: An atom, so this will not overflow during the winter 2038-2039.

See Also: from_unix, format
Example 1:

secs_since_epoch = to_unix(now())
-- secs_since_epoch is equal to the current seconds since epoch

weeks_day

gets the day of week of the datetime dt.

Signature:

weeks_day(datetime dt)

public function
include datetime.e
namespace datetime

Arguments: ≡ dt : a datetime to be queried.

Returns: An integer, between 1 (Sunday) and 7 (Saturday).
Example 1:

d = new(2008, 5, 2, 0, 0, 0)
day = weeks_day(d) -- day is 6 because May 2, 2008 is a Friday.

years_day

gets the Julian day of year of the supplied date.
Signature:

years_day(datetime dt)

public function
include datetime.e
namespace datetime

Arguments: ≡ dt : a datetime to be queried.

Returns: An integer, between 1 and 366.

Comments: For dates earlier than 1800, this routine may give inaccurate results if the date
applies to a country other than United Kingdom or a former colony thereof. The
change from Julian to Gregorian calendar took place much earlier in some other
European countries.

Example 1:

d = new(2008, 5, 2, 0, 0, 0)
day = years_day(d) -- day is 123

dll

C Type Constants
C_CHAR
C_BYTE
C_UCHAR
C_UBYTE
C_SHORT
C_WORD
C_USHORT
C_INT
C_BOOL
C_UINT
C_LONG
C_ULONG
C_SIZE_T
C_POINTER

C_HANDLE
C_HWND
C_DWORD
C_WPARAM
C_LPARAM
C_HRESULT
C_FLOAT
C_DOUBLE
C_DWORDLONG
C_LONGLONG

External Euphoria Type Constants
E_INTEGER
E_ATOM
E_SEQUENCE
E_OBJECT

Constants
NULL

Routines
open_dll
define_c_var
define_c_proc
define_c_func
c_func
c_proc
call_back

C Type Constants These C type constants are used when defining external C functions in a
shared library file.

Example 1:

See define_c_proc

See Also:

define_c_proc, define_c_func, define_c_var

External Euphoria Type Constants These are used for arguments to and the return value from
a Euphoria shared library file (.dll, .so or .dylib).

dll API

C_BOOL

bool 32-bits
Signature:

C_BOOL

public constant
include dll.e
namespace dll

C_BYTE

byte 8-bits
Signature:

C_BYTE

public constant
include dll.e
namespace dll

C_CHAR

char 8-bits
Signature:

C_CHAR

public constant
include dll.e
namespace dll

C_DOUBLE

double 64-bits
Signature:

C_DOUBLE

public constant
include dll.e
namespace dll

C_DWORD

dword 32-bits
Signature:

C_DWORD

public constant
include dll.e
namespace dll

C_DWORDLONG

dwordlong 64-bits
Signature:

C_DWORDLONG

public constant
include dll.e
namespace dll

C_FLOAT

float 32-bits
Signature:

C_FLOAT

public constant
include dll.e
namespace dll

C_HANDLE

handle sizeof pointer
Signature:

C_HANDLE

public constant
include dll.e
namespace dll

C_HRESULT

hresult 32-bits
Signature:

C_HRESULT

public constant
include dll.e
namespace dll

C_HWND

hwnd sizeof pointer
Signature:

C_HWND

public constant
include dll.e
namespace dll

C_INT

int 32-bits
Signature:

C_INT

public constant
include dll.e
namespace dll

C_LONG

long 32-bits except on 64-bit *nix, where it is 64-bits
Signature:

C_LONG

public constant
include dll.e
namespace dll

C_LONGLONG

longlong 64-bits
Signature:

C_LONGLONG

public constant
include dll.e
namespace dll

C_LPARAM

lparam sizeof pointer
Signature:

C_LPARAM

public constant
include dll.e
namespace dll

C_POINTER

any valid pointer
Signature:

C_POINTER

public constant
include dll.e
namespace dll

C_SHORT

short 16-bits
Signature:

C_SHORT

public constant
include dll.e

namespace dll

C_SIZE_T

size_t unsigned long 32-bits except on 64-bit *nix, where it is 64-bits
Signature:

C_SIZE_T

public constant
include dll.e
namespace dll

C_UBYTE

ubyte 8-bits
Signature:

C_UBYTE

public constant
include dll.e
namespace dll

C_UCHAR

unsigned char 8-bits
Signature:

C_UCHAR

public constant
include dll.e
namespace dll

C_UINT

unsigned int 32-bits
Signature:

C_UINT

public constant
include dll.e
namespace dll

C_ULONG

unsigned long 32-bits except on 64-bit *nix, where it is 64-bits
Signature:

C_ULONG

public constant

include dll.e
namespace dll

C_USHORT

unsigned short 16-bits
Signature:

C_USHORT

public constant
include dll.e
namespace dll

C_WORD

word 16-bits
Signature:

C_WORD

public constant
include dll.e
namespace dll

C_WPARAM

wparam sizeof pointer
Signature:

C_WPARAM

public constant
include dll.e
namespace dll

E_ATOM

atom
Signature:

E_ATOM

public constant
include dll.e
namespace dll

E_INTEGER

integer
Signature:

E_INTEGER

public constant
include dll.e
namespace dll

E_OBJECT

object
Signature:

E_OBJECT

public constant
include dll.e
namespace dll

E_SEQUENCE

sequence
Signature:

E_SEQUENCE

public constant
include dll.e
namespace dll

NULL

C's NULL pointer
Signature:

NULL

public constant
include dll.e
namespace dll

c_func

calls a C function, or machine code function, or translated or compiled Euphoria
function by routine id.

Signature:

c_func(integer rid, sequence args={})

<built-in> function

Arguments: ≡ rid : an integer, the routine_id of the external function being called.
≡ args : a sequence, the list of parameters to pass to the function

Returns: An object, whose type and meaning was defined on calling define_c_func().

Comments: rid must have been returned by define_c_func(), not by routine_id(). The type
checks are different, and you would get a machine level exception in the best case.

If the function does not take any arguments then args should be {}.

If you pass an argument value which contains a fractional part, where the C function
expects a C integer type, the argument will be rounded towards 0. e.g. 5.9 will be
passed as 5, -5.9 will be passed as -5.

The function could be part of a .dll or .so created by the Euphoria To C Translator. In
this case, a Euphoria atom or sequence could be returned. C and machine code
functions can only return integers, or more generally, atoms (IEEE floating-point
numbers).

See Also: c_proc, define_c_proc, open_dll, Platform-Specific Issues
Example 1:

atom user32, hwnd, ps, hdc
integer BeginPaint

-- open user32.dll - it contains the BeginPaint C function
user32 = open_dll("user32.dll")

-- the C function BeginPaint takes a C int argument and
-- a C pointer, and returns a C int as a result:
BeginPaint = define_c_func(u""BeginPaint
 {C_INT, C_POINTER}, C_INT)

-- call BeginPaint, passing hwnd and ps as the arguments,
-- hdc is assigned the result:
hdc = c_func(BeginPaint, {hwnd, ps})

c_proc

calls a C void function, machine code function, or translated/compiled Euphoria
procedure by routine id.

Signature:

c_proc(integer rid, sequence args={})

<built-in> procedure

Arguments: ≡ rid : an integer, the routine_id of the external function being called.
≡ args : a sequence, the list of parameters to pass to the function

Comments: rid must have been returned by define_c_proc(), not by routine_id(). The type
checks are different, and you would get a machine level exception in the best case.

If the procedure does not take any arguments then args should be {}.

If you pass an argument value which contains a fractional part, where the C void
function expects a C integer type, the argument will be rounded towards 0. (for
example: 5.9 will be passed as 5, -5.9 will be passed as -5).

See Also: c_func, define_c_func, open_dll, Platform-Specific Issues
Example 1:

atom user32, hwnd, rect
integer GetClientRect

-- open user32.dll - it contains the GetClientRect C function
user32 = open_dll("user32.dll")

-- GetClientRect is a VOID C function that takes a C int
-- and a C pointer as its arguments:
GetClientRect = define_c_proc(user32, "GetClientRect",
 {C_INT, C_POINTER})

-- pass hwnd and rect as the arguments
c_proc(GetClientRect, {hwnd, rect})

call_back

unresolved.html
unresolved.html

gets a machine address for an Euphoria procedure.
Signature:

call_back(object id)

public function
include dll.e
namespace dll

Arguments: ≡ id : an object, either the id returned by routine_id for the function/procedure, or a
pair {'+', id}.

Returns: An atom, the address of the machine code of the routine. It can be used by windows
or an external C routine in a windows .dll or unix shared library (.so), as a 32-bit
"call-back" address for calling your Euphoria routine.

Comments: By default, your routine will work with the stdcall convention. On Windows, you can
specify its id as {'+', id}, in which case it will work with the cdecl calling convention
instead. On non-Microsoft platforms, you should only use simple IDs, as there is just
one standard calling convention, i.e. cdecl.

You can set up as many call-back functions as you like, but they must all be
Euphoria functions (or types) with 0 to 9 arguments. If your routine has nothing to
return (it should really be a procedure), just return 0 (say), and the calling C routine
can ignore the result.

When your routine is called, the argument values will all be 32-bit unsigned
(positive) values. You should declare each parameter of your routine as atom,
unless you want to impose tighter checking. Your routine must return a 32-bit integer
value.

You can also use a call-back address to specify a Euphoria routine as an exception
handler in the unix signal() function. For example, you might want to catch the
SIGTERM signal, and do a graceful shutdown. Some Web hosts send a SIGTERM
to a CGI process that has used too much CPU time.

A call-back routine that uses the cdecl convention and returns a floating-point result,
might not work with euiw. This is because the Watcom C compiler (used to build
euiw) has a non-standard way of handling cdecl floating-point return values.

See Also: routine_id
Example 1:

define_c_func

defines the characteristics of either a C function, or a machine-code routine that
returns

Signature:

define_c_func(object lib, object routine_name, sequence arg_types,
atom return_type)

public function
include dll.e
namespace dll

Arguments: ≡ lib : an object, either an entry point returned as an atom by open_dll(), or "" to
denote a routine the RAM address is known.
≡ routine_name : an object, either the name of a procedure in a shared object or the
machine address of the procedure.
≡ argtypes : a sequence of type constants.
≡ return_type : an atom, indicating what type the function will return.

Returns: A small integer, known as a routine id, will be returned.

Comments: Use the returned routine id as the first argument to c_proc() when you wish to call
the routine from Euphoria.

A returned value of -1 indicates that the procedure could not be found or linked to.

On windows you can add a '+' character as a prefix to the function name. This
indicates to Euphoria that the function uses the cdecl calling convention. By default,
Euphoria assumes that C routines accept the stdcall convention.

When defining a machine code routine, x1 must be the empty sequence, "" or {}, and
x2 indicates the address of the machine code routine. You can poke the bytes of
machine code into a block of memory reserved using allocate(). On windows the
machine code routine is normally expected to follow the stdcall calling convention,
but if you wish to use the cdecl convention instead, you can code {'+', address}
instead of address for x2.

The C function that you define could be one created by the Euphoria To C
Translator, in which case you can pass Euphoria data to it, and receive Euphoria
data back. A list of Euphoria types is contained in dll.e:

• E_INTEGER = #06000004
• E_ATOM = #07000004
• E_SEQUENCE= #08000004
• E_OBJECT = #09000004

You can pass or return any C integer type or pointer type. You can also pass a
Euphoria atom as a C double or float, and get a C double or float returned to you as
a Euphoria atom.

Parameter types which use 4 bytes or less are all passed the same way, so it is not
necessary to be exact when choosing a 4-byte parameter type. However the
distinction between signed and unsigned may be important when you specify the
return type of a function.

Currently, there is no way to pass a C structure by value or get a C structure as a
return result. You can only pass a pointer to a structure and get a pointer to a
structure as a result. However, you can pass a 64 bit integer as two C_LONG
instead. On calling the routine, pass low doubleword first, then high doubleword.

If you are not interested in using the value returned by the C function, you should
instead define it with define_c_proc() and call it with c_proc().

If you use euiw to call a cdecl C routine that returns a floating-point value, it might
not work. This is because the Watcom C compiler (used to build euiw) has a non-
standard way of handling cdecl floating-point return values.

Passing floating-point values to a machine code routine will be faster if you use
c_func() rather than call() to call the routine, since you will not have to use
atom_to_float64() and poke() to get the floating-point values into memory.

See Also: demo\callmach.ex, c_func, define_c_proc, c_proc, open_dll
Example 1:

atom user32
integer LoadIcon

-- open user32.dll - it contains the LoadIconA C function
user32 = open_dll("user32.dll")

-- It takes a C pointer and a C int as parameters.
-- It returns a C int as a result.
LoadIcon = define_c_func(u""LoadIconA

 {C_POINTER, C_INT}, C_INT)
-- We use "LoadIconA" here because we know that LoadIconA
-- needs the stdcall convention, as do
-- all standard .dll routines in the WINDOWS API.
-- To specify the cdecl convention, we would have used "+LoadIconA".

if LoadIcon = -1 then
 puts(1, "LoadIconA could not be found!\n")
end if

define_c_proc

defines the characteristics of either a C function or a machine-code routine, that you
Signature:

define_c_proc(object lib, object routine_name, sequence arg_types)

public function
include dll.e
namespace dll

Arguments: ≡ lib : an object, either an entry point returned as an atom by open_dll(), or "" to
denote a routine the RAM address is known.
≡ routine_name : an object, either the name of a procedure in a shared object or the
machine address of the procedure.
≡ argtypes : a sequence of type constants.

Returns: A small integer, known as a routine id, will be returned.

Comments: Use the returned routine id as the first argument to c_proc() when you wish to call
the routine from Euphoria.

A returned value of -1 indicates that the procedure could not be found or linked to.

On windows you can add a '+' character as a prefix to the procedure name. This tells
Euphoria that the function uses the cdecl calling convention. By default, Euphoria
assumes that C routines accept the stdcall convention.

When defining a machine code routine, lib must be the empty sequence, "" or {},
and routine_name indicates the address of the machine code routine. You can poke
the bytes of machine code into a block of memory reserved using allocate(). On
windows the machine code routine is normally expected to follow the stdcall calling
convention, but if you wish to use the cdecl convention instead, you can code {'+',
address} instead of address.

argtypes is made of type constants, which describe the C types of arguments to the
procedure. They may be used to define machine code parameters as well.

The C function that you define could be one created by the Euphoria To C
Translator, in which case you can pass Euphoria data to it, and receive Euphoria
data back. A list of Euphoria types is shown above.

You can pass any C integer type or pointer type. You can also pass a Euphoria
atom as a C double or float.

Parameter types which use 4 bytes or less are all passed the same way, so it is not
necessary to be exact.

Currently, there is no way to pass a C structure by value. You can only pass a
pointer to a structure. However, you can pass a 64 bit integer by pretending to pass
two C_LONG instead. When calling the routine, pass low doubleword first, then high
doubleword.

The C function can return a value but it will be ignored. If you want to use the value

returned by the C function, you must instead define it with define_c_func() and call it
with c_func().

See Also: c_proc, define_c_func, c_func, open_dll
Example 1:

atom user32
integer ShowWindow

-- open user32.dll - it contains the ShowWindow C function
user32 = open_dll("user32.dll")

-- It has 2 parameters that are both C int.
ShowWindow = define_c_proc(user32, "ShowWindow", {C_INT, C_INT})
-- If ShowWindow used the cdecl convention,
-- we would have coded "+ShowWindow" here

if ShowWindow = -1 then
 puts(1, "ShowWindow not found!\n")
end if

define_c_var

gets the address of a symbol in a shared library or in RAM.
Signature:

define_c_var(atom lib, sequence variable_name)

public function
include dll.e
namespace dll

Arguments: ≡ lib : an atom, the address of a Linux or FreeBSD shared library, or Windows .dll,
as returned by open_dll().
≡ variable_name : a sequence, the name of a public C variable defined within the
library.

Returns: An atom, the memory address of variable_name.

Comments: Once you have the address of a C variable, and you know its type, you can use
peek() and poke() to read or write the value of the variable. You can in the same way
obtain the address of a C function and pass it to any external routine that requires a
callback address.

See Also: c_proc, define_c_func, c_func, open_dll
Example 1:

open_dll

opens a windows dynamic link library (.dll) file, or a unix shared library
Signature:

open_dll(sequence file_name)

public function
include dll.e
namespace dll

Arguments: ≡ file_name : a sequence, the name of a shared libray file or a sequence of names
of shared library files to be opened.

Returns: An atom, actually a 32-bit address. 0 is returned if the .dll can not be found.

Comments: file_name can be a relative or an absolute file name. Most operating systems will
use the normal search path for locating non-relative files.

file_name can be a list of file names to try. On different Linux platforms especially,
the filename will not always be the same. For instance, you may wish to try opening
libmylib.so, libmylib.so.1, libmylib.so.1.0, libmylib.so.1.0.0. If given a sequence of
file names to try, the first successful library loaded will be returned. If no library could
be loaded, 0 will be returned after exhausting the entire list of file names.

The value returned by open_dll() can be passed to define_c_proc(),
define_c_func(), or define_c_var().

You can open the same .dll or .so file multiple times. No extra memory is used and
you will get the same number returned each time.

Euphoria will close the .dll or .so for you automatically at the end of execution.

See Also: define_c_func, define_c_proc, define_c_var, c_func, c_proc
Example 1:

atom user32
user32 = open_dll("user32.dll")
if user32 = 0 then
 puts(1, "Couldn't open user32.dll!\n")
end if

Example 2:

atom mysql_lib
mysql_lib = open_dll({"libmysqlclient.so", "libmysqlclient.so.15",
 "libmysqlclient.so.15.0"})
if mysql_lib = 0 then
 puts(1, "Couldn't find the mysql client library\n")
end if

eds

Error Status Constants
DB_OK
DB_OPEN_FAIL
DB_EXISTS_ALREADY
DB_LOCK_FAIL
DB_BAD_NAME
DB_FATAL_FAIL

Lock Type Constants
DB_LOCK_NO
DB_LOCK_SHARED
DB_LOCK_EXCLUSIVE
DB_LOCK_READ_ONLY

Error Code Constants
MISSING_END
NO_DATABASE
BAD_SEEK
NO_TABLE
DUP_TABLE
BAD_RECNO
INSERT_FAILED
LAST_ERROR_CODE
BAD_FILE

Indexes for connection option structure.

CONNECT_LOCK
CONNECT_TABLES
CONNECT_FREE

Database connection options
DISCONNECT
LOCK_METHOD
INIT_TABLES
INIT_FREE
CONNECTION

Variables
db_fatal_id

Routines
db_get_errors
db_dump
check_free_list

Managing databases
db_connect
db_create
db_open
db_select
db_close

Managing tables
db_select_table
db_current_table
db_create_table
db_delete_table
db_clear_table
db_rename_table
db_table_list

Managing Records
db_find_key
db_insert
db_delete_record
db_replace_data
db_table_size
db_record_data
db_fetch_record
db_record_key
db_compress
db_current
db_cache_clear
db_set_caching
db_replace_recid
db_record_recid
db_get_recid

eds API

BAD_FILE

bad file

Signature:

BAD_FILE

public enum
include eds.e
namespace eds

BAD_RECNO

unknown key_location index was supplied.
Signature:

BAD_RECNO

public enum
include eds.e
namespace eds

BAD_SEEK

io:seek() failed.
Signature:

BAD_SEEK

public enum
include eds.e
namespace eds

CONNECTION

Fetch the details about the alias
Signature:

CONNECTION

public constant
include eds.e
namespace eds

CONNECT_FREE

Initial number of free pointers to create
Signature:

CONNECT_FREE

public enum
include eds.e
namespace eds

CONNECT_LOCK

Locking method
Signature:

CONNECT_LOCK

public enum
include eds.e
namespace eds

CONNECT_TABLES

Initial number of tables to create
Signature:

CONNECT_TABLES

public enum
include eds.e
namespace eds

DB_BAD_NAME

An invalid name suppled when creating a table.
Signature:

DB_BAD_NAME

public enum
include eds.e
namespace eds

DB_EXISTS_ALREADY

The database could not be created, it already exists.
Signature:

DB_EXISTS_ALREADY

public enum
include eds.e
namespace eds

DB_FATAL_FAIL

A fatal error has occurred.
Signature:

DB_FATAL_FAIL

public enum
include eds.e
namespace eds

DB_LOCK_EXCLUSIVE

Open the database with read and write access.
Signature:

DB_LOCK_EXCLUSIVE

public enum
include eds.e
namespace eds

DB_LOCK_FAIL

A lock could not be gained on the database.
Signature:

DB_LOCK_FAIL

public enum
include eds.e
namespace eds

DB_LOCK_NO

Do not lock the file.
Signature:

DB_LOCK_NO

public enum
include eds.e
namespace eds

DB_LOCK_READ_ONLY

Open the database with read-only access and ignore others updating it
Signature:

DB_LOCK_READ_ONLY

public enum
include eds.e
namespace eds

DB_LOCK_SHARED

Open the database with read-only access but allow others to update it.
Signature:

DB_LOCK_SHARED

public enum
include eds.e
namespace eds

DB_OK

Database is OK, not error has occurred.
Signature:

DB_OK

public enum
include eds.e
namespace eds

DB_OPEN_FAIL

The database could not be opened.
Signature:

DB_OPEN_FAIL

public enum
include eds.e
namespace eds

DISCONNECT

Disconnect a connected database
Signature:

DISCONNECT

public constant
include eds.e
namespace eds

DUP_TABLE

this table already exists.
Signature:

DUP_TABLE

public enum
include eds.e
namespace eds

INIT_FREE

The initial number of free space pointers to reserve space for when creating a
database.

Signature:

INIT_FREE

public constant
include eds.e
namespace eds

INIT_TABLES

The initial number of tables to reserve space for when creating a database.
Signature:

INIT_TABLES

public constant
include eds.e
namespace eds

INSERT_FAILED

could not insert a new record.
Signature:

INSERT_FAILED

public enum
include eds.e
namespace eds

LAST_ERROR_CODE

last error code
Signature:

LAST_ERROR_CODE

public enum
include eds.e
namespace eds

LOCK_METHOD

Locking method to use
Signature:

LOCK_METHOD

public constant
include eds.e
namespace eds

MISSING_END

Missing 0 terminator
Signature:

MISSING_END

public enum
include eds.e

namespace eds

NO_DATABASE

current_db is not set
Signature:

NO_DATABASE

public enum
include eds.e
namespace eds

NO_TABLE

no table was found.
Signature:

NO_TABLE

public enum
include eds.e
namespace eds

check_free_list

detects corruption of the free list in a Euphoria database.
Signature:

check_free_list()

public procedure
include eds.e
namespace eds

Comments: This is a debug routine used by RDS to detect corruption of the free list. Users do
not normally call this.

db_cache_clear

forces the database index cache to be cleared.
Signature:

db_cache_clear()

public procedure
include eds.e
namespace eds

Comments:
• This is not normally required to the run. You might run it to set up a predetermined
state for performance timing, or to release some memory back to the application.

Example 1:

db_cache_clear() -- Clear the cache.

db_clear_table

clears a table of all its records, in the current database.
Signature:

db_clear_table(sequence name, integer init_records = DEF_INIT_RECORDS)

public procedure
include eds.e
namespace eds

Arguments: ≡ name : a sequence, the name of the table to clear.

Comments: If there is no table with the name given by name, then nothing happens. On success,
all records are deleted and all space used by the table is freed up. If this is the
current table, after this operation it will still be the current table.

See Also: db_table_list, db_select_table, db_delete_table

db_close

unlocks and closes the current database.
Signature:

db_close()

public procedure
include eds.e
namespace eds

Comments: Call this procedure when you are finished with the current database. Any lock will
be removed, allowing other processes to access the database file. The current
database becomes undefined.

db_compress

compresses the current database.
Signature:

db_compress()

public function
include eds.e
namespace eds

Returns: An integer, either DB_OK on success or an error code on failure.

Comments: The current database is copied to a new file such that any blocks of unused space
are eliminated. If successful, the return value will be set to DB_OK, and the new
compressed database file will retain the same name. The current table will be
undefined. As a backup, the original, uncompressed file will be renamed with an
extension of .t0 (or .t1, .t2, ..., .t99). In the highly unusual case that the compression
is unsuccessful, the database will be left unchanged, and no backup will be made.

When you delete items from a database, you create blocks of free space within the
database file. The system keeps track of these blocks and tries to use them for
storing new data that you insert. db_compress() will copy the current database
without copying these free areas. The size of the database file may therefore be
reduced. If the backup filenames reach .t99 you will have to delete some of them.

Example 1:

if db_compress() != DB_OK then
 puts(2, "compress failed!\n")
end if

db_connect

defines a symbolic name for a database, and its default attributes.
Signature:

db_connect(sequence dbalias, sequence path = "", sequence dboptions = {})

public function
include eds.e
namespace eds

Arguments: ≡ dbalias : a sequence. This is the symbolic name that the database can be referred
to by.
≡ path : a sequence, the path to the file that will contain the database.
≡ dboptions: a sequence. Contains the set of attributes for the database. The default
is {} meaning it will use the various EDS default values.

Returns: An integer, status code, either DB_OK if creation successful or anything else on an
error.

Comments:
• This does not create or open a database. It only associates a symbolic name with
a database path. This name can then be used in the calls to db_create(), db_open(),
and db_select() instead of the physical database name.
• If the file in the path does not have an extention, ".edb" will be added
automatically.
• The dboptions can contain any of the options detailed below. These can be given
as a single string of the form "option=value, option=value, ..." or as as
sequence containing option-value pairs, { {option,value}, {option,value}, ...
}

See Also: db_create, db_open, db_select
Example 1:

db_connect("myDB", "/usr/data/myapp/customer.edb", {{LOCK_METHOD,DB_LOCK_NO},
 {INIT_TABLES,1}})
db_open("myDB")

Example 2:

db_connect("myDB", "/usr/data/myapp/customer.edb",
 sprintf("init_tables=1,lock_method=%d",DB_LOCK_NO))
db_open("myDB")

Example 3:

db_connect("myDB", "/usr/data/myapp/customer.edb",
 sprintf("init_tables=1,lock_method=%d",DB_LOCK_NO))
db_connect("myDB",,CONNECTION) --> {"/usr/data/myapp/customer.edb", {0,1,1}}
db_connect("myDB",,DISCONNECT) -- The name 'myDB' is removed from EDS.

db_create

creates a new database, given a file path and a lock method.
Signature:

db_create(sequence path, integer lock_method = DB_LOCK_NO,
integer init_tables = DEF_INIT_TABLES, integer init_free = DEF_INIT_FREE)

public function
include eds.e

namespace eds

Arguments: ≡ path : a sequence, the path to the file that will contain the database.
≡ lock_method : an integer specifying which type of access can be granted to the
database. The value of lock_method can be either DB_LOCK_NO (no lock) or
DB_LOCK_EXCLUSIVE (exclusive lock).
≡ init_tables : an integer giving the initial number of tables to reserve space for.
The default is 5 and the minimum is 1.
≡ init_free : an integer giving the initial amount of free space pointers to reserve
space for. The default is 5 and the minimum is 0.

Returns: An integer, status code, either DB_OK if creation successful or anything else on an
error.

Comments: On success, the newly created database becomes the current database to which
all other database operations will apply.

If the file in the path does not have an extention, ".edb" will be added automatically.

A version number is stored in the database file so future versions of the database
software can recognize the format, and possibly read it and deal with it in some way.

If the database already exists, it will not be overwritten. db_create() will return
DB_EXISTS_ALREADY.

See Also: db_open, db_select
Example 1:

if db_create("mydata", DB_LOCK_NO) != DB_OK then
 puts(2, "Couldn't create the database!\n")
 abort(1)
end if

db_create_table

creates a new table within the current database.
Signature:

db_create_table(sequence name, integer init_records = DEF_INIT_RECORDS)

public function
include eds.e
namespace eds

Arguments: ≡ name : a sequence, the name of the new table.
≡ init_records : The number of records to initially reserve space for. (Default is 50)

Returns: An integer, either DB_OK on success or DB_EXISTS_ALREADY on failure.

Comments:
• The supplied name must not exist already on the current database.
• The table that you create will initially have 0 records. However it will reserve some
space for a number of records, which will improve the initial data load for the table.
• It becomes the current table.

See Also: db_select_table, db_table_list
Example 1:

if db_create_table("my_new_table") != DB_OK then
 puts(2, "Could not create my_new_table!\n")
end if

db_current

gets the name of the currently selected database.

Signature:

db_current()

public function
include eds.e
namespace eds

Returns: A sequence, the name of the current database. An empty string means that no
database is currently selected.

Comments: The actual name returned is the path as supplied to the db_open routine.

See Also: db_select
Example 1:

s = db_current_database()

db_current_table

gets the name of the currently selected table.
Signature:

db_current_table()

public function
include eds.e
namespace eds

Arguments: # None.

Returns: A sequence, the name of the current table. An empty string means that no table is
currently selected.

See Also: db_select_table, db_table_list
Example 1:

s = db_current_table()

db_delete_record

deletes a record number key_location from the current table.
Signature:

db_delete_record(integer key_location,
object table_name = current_table_name)

public procedure
include eds.e
namespace eds

See Also: db_find_key
Example 1:

db_delete_record(55)

db_delete_table

deletes a table in the current database.
Signature:

db_delete_table(sequence name)

public procedure
include eds.e
namespace eds

Arguments: ≡ name : a sequence, the name of the table to delete.

Comments: If there is no table with the name given by name, then nothing happens. On success,
all records are deleted and all space used by the table is freed up. If the table was
the current table, the current table becomes undefined.

See Also: db_table_list, db_select_table, db_clear_table

db_dump

prints the current database in readable form to file fn.
Signature:

db_dump(object file_id, integer low_level_too = 0)

public procedure
include eds.e
namespace eds

Arguments: ≡ fn : the destination file for printing the current Euphoria database.
≡ low_level_too : a boolean. If TRUE, a byte-by-byte binary dump is presented as
well; otherwise this step is skipped. If omitted, FALSE is assumed.

Comments:
• All records in all tables are shown.
• If low_level_too is non-zero, then a low-level byte-by-byte dump is also shown.
The low-level dump will only be meaningful to someone who is familiar with the
internal format of a Euphoria database.

Example 1:

if db_open("mydata", DB_LOCK_SHARED) != DB_OK then
 puts(2, "Couldn't open the database!\n")
 abort(1)
end if
fn = open("db.txt", "w")
db_dump(fn) -- Simple output
db_dump("lowlvl_db.txt", 1) -- Full low-level dump created.

db_fatal_id

Exception handler
Signature:

db_fatal_id

public integer
include eds.e
namespace eds

Comments: Set this to a valid routine_id value for a procedure that will be called whenever the
library detects a serious error. You procedure will be passed a single text string that
describes the error. It may also call db_get_errors to get more detail about the cause
of the error.

db_fetch_record

returns the data for the record with supplied key.

Signature:

db_fetch_record(object key, object table_name = current_table_name)

public function
include eds.e
namespace eds

Arguments: ≡ key : the identifier of the record to be looked up.
≡ table_name : optional name of table to find key in

Returns: An integer,
• If less than zero, the record was not found. The returned integer is the opposite of
what the record number would have been, had the record been found.
• If equal to zero, an error occured. A sequence, the data for the record.

Comments: Each record in a Euphoria database consists of a key portion and a data portion.
Each of these can be any Euphoria atom or sequence. NOTE This function does not
support records that data consists of a single non-sequence value. In those cases
you will need to use db_find_key and db_record_data.

See Also: db_find_key, db_record_data
Example 1:

printf(1, "The record['%s'] has data value:\n", {"foo"})
? db_fetch_record("foo")

db_find_key

finds the record in the current table with supplied key.
Signature:

db_find_key(object key, object table_name = current_table_name)

public function
include eds.e
namespace eds

Arguments: ≡ key : the identifier of the record to be looked up.
≡ table_name : optional name of table to find key in

Returns: An integer, either greater or less than zero:
• If above zero, the record identified by key was found on the current table, and the
returned integer is its record number.
• If less than zero, the record was not found. The returned integer is the opposite of
what the record number would have been, had the record been found.
• If equal to zero, an error occured.

Comments: A fast binary search is used to find the key in the current table. The number of
comparisons is proportional to the log of the number of records in the table. The key
is unique--a table is more like a dictionary than like a spreadsheet.

You can select a range of records by searching for the first and last key values in the
range. If those key values do not exist, you will at least get a negative value showing
io:where they would be, if they existed.

For example: suppose you want to know which records have keys greater than
"GGG" and less than "MMM". If -5 is returned for key "GGG", it means a record with
"GGG" as a key would be inserted as record number 5. -27 for "MMM" means a
record with "MMM" as its key would be inserted as record number 27. This quickly
tells you that all records, >= 5 and < 27 qualify.

See Also: db_insert, db_replace_data, db_delete_record, db_get_recid
Example 1:

rec_num = db_find_key("Millennium")
if rec_num > 0 then
 ? db_record_key(rec_num)
 ? db_record_data(rec_num)
else
 puts(2, "Not found, but if you insert it,\n")

 printf(2, "it will be #%d\n", -rec_num)
end if

db_get_errors

fetches the most recent set of errors recorded by the library.
Signature:

db_get_errors(integer clearing = 1)

public function
include eds.e
namespace eds

Arguments: ≡ clearing : if zero the set of errors is not reset, otherwise it will be cleared out. The
default is to clear the set.

Returns: A sequence, each element is a set of four fields. # Error Code. # Error Text. # Name
of library routine that recorded the error. # Parameters passed to that routine.

Comments:
• A number of library routines can detect errors. If the routine is a function, it usually
returns an error code. However, procedures that detect an error can not do that.
Instead, they record the error details and you can query that after calling the library
routine.
• Both functions and procedures that detect errors record the details in the Last
Error Set, which is fetched by this function.

Example 1:

db_replace_data(recno, new_data)
errs = db_get_errors()
if length(errs) != 0 then
 display_errors(errs)
 abort(1)
end if

db_get_recid

returns the unique record identifier (recid) value for the record.
Signature:

db_get_recid(object key, object table_name = current_table_name)

public function
include eds.e
namespace eds

Arguments: ≡ key : the identifier of the record to be looked up.
≡ table_name : optional name of table to find key in

Returns: An atom, either greater or equal to zero:
• If above zero, it is a recid.
• If less than zero, the record was not found.
• If equal to zero, an error occured.

Comments: A recid is a number that uniquely identifies a record in the database. No two
records in a database has the same recid value. They can be used instead of keys
to quickly refetch a record, as they avoid the overhead of looking for a matching

record key. They can also be used without selecting a table first, as the recid is
unique to the database and not just a table. However, they only remain valid while a
database is open and so long as it does not get compressed. Compressing the
database will give each record a new recid value.

Because it is faster to fetch a record with a recid rather than with its key, these are
used when you know you have to refetch a record.

See Also: db_insert, db_replace_data, db_delete_record, db_find_key
Example 1:

rec_num = db_get_recid("Millennium")
if rec_num > 0 then
 ? db_record_recid(rec_num) -- fetch key and data.
else
 puts(2, "Not found\n")
end if

db_insert

inserts a new record into the current table.
Signature:

db_insert(object key, object data, object table_name = current_table_name)

public function
include eds.e
namespace eds

Arguments: ≡ key : an object, the record key, which uniquely identifies it inside the current table
≡ data : an object, associated to key.
≡ table_name : optional table name to insert record into

Returns: An integer, either DB_OK on success or an error code on failure.

Comments: Within a table, all keys must be unique. db_insert() will fail with DB_EXISTS_ALREADY
if a record already exists on current table with the same key value.

Both key and data can be any Euphoria data objects, atoms or sequences.

See Also: db_replace_data, db_delete_record
Example 1:

if db_insert("Smith", {"Peter", 100, 34.5}) != DB_OK then
 puts(2, "insert failed!\n")
end if

db_open

opens an existing Euphoria database.
Signature:

db_open(sequence path, integer lock_method = DB_LOCK_NO)

public function
include eds.e
namespace eds

Arguments: ≡ path : a sequence, the path to the file containing the database
≡ lock_method : an integer specifying which sort of access can be granted to the
database. The types of lock that you can use are: #
≡ DB_LOCK_NO : (no lock) - The default #
≡ DB_LOCK_SHARED : (shared lock for read-only access) #

≡ DB_LOCK_EXCLUSIVE : (for read/write access).

Returns: An integer, status code, either DB_OK if creation successful or anything else on an
error.

Comments: DB_LOCK_SHARED is only supported on unix platforms. It allows you to read the
database, but not write anything to it. If you request DB_LOCK_SHARED on windows it
will be treated as if you had asked for DB_LOCK_EXCLUSIVE.

If the lock fails, your program should wait a few seconds and try again. Another
process might be currently accessing the database.

See Also: db_create, db_select
Example 1:

tries = 0
while 1 do
 err = db_open("mydata", DB_LOCK_SHARED)
 if err = DB_OK then
 exit
 elsif err = DB_LOCK_FAIL then
 tries += 1
 if tries > 10 then
 puts(2, "too many tries, giving up\n")
 abort(1)
 else
 sleep(5)
 end if
 else
 puts(2, "Couldn't open the database!\n")
 abort(1)
 end if
end while

db_record_data

returns the data in a record queried by position.
Signature:

db_record_data(integer key_location,
object table_name = current_table_name)

public function
include eds.e
namespace eds

Arguments: ≡ key_location : the index of the record the data of which is being fetched.
≡ table_name : optional table name to get record data from.

Returns: An object, the data portion of requested record.
NOTE This function calls fatal() and returns a value of -1 if an error prevented the
correct data being returned.

Comments: Each record in a Euphoria database consists of a key portion and a data portion.
Each of these can be any Euphoria atom or sequence.

See Also: db_find_key, db_replace_data
Example 1:

puts(1, "The 6th record has data value: ")
? db_record_data(6)

db_record_key

Signature:

db_record_key(integer key_location,
object table_name = current_table_name)

public function
include eds.e
namespace eds

Comments: Each record in a Euphoria database consists of a key portion and a data portion.
Each of these can be any Euphoria atom or sequence.

See Also: db_record_data
Example 1:

puts(1, "The 6th record has key value: ")
? db_record_key(6)

db_record_recid

returns the key and data in a record queried by recid.
Signature:

db_record_recid(integer recid)

public function
include eds.e
namespace eds

Arguments: ≡ recid : the recid of the required record, which has been previously fetched using
db_get_recid.

Returns: An sequence, the first element is the key and the second element is the data
portion of requested record.

Comments:
• This is much faster than calling db_record_key and db_record_data.
• This does no error checking. It assumes the database is open and valid.
• This function does not need the requested record to be from the current table. The
recid can refer to a record in any table.

See Also: db_get_recid, db_replace_recid
Example 1:

rid = db_get_recid("SomeKey")
? db_record_recid(rid)

db_rename_table

renames a table in the current database.
Signature:

db_rename_table(sequence name, sequence new_name)

public procedure
include eds.e
namespace eds

Arguments: ≡ name : a sequence, the name of the table to rename
≡ new_name : a sequence, the new name for the table

Comments: The table to be renamed can be the current table, or some other table in the current
database.

See Also: db_table_list

db_replace_data

replaces the data portion of a record with new data in the current table.
Signature:

db_replace_data(integer key_location, object data,
object table_name = current_table_name)

public procedure
include eds.e
namespace eds

Arguments: ≡ key_location: an integer, the index of the record the data is to be altered.
≡ data: an object , the new value associated to the key of the record.
≡ table_name: optional table name of record to replace data in.

Comments: key_location must be from 1 to the number of records in the current table. data is an
Euphoria object of any kind, atom or sequence.

See Also: db_find_key
Example 1:

db_replace_data(67, {"Peter", 150, 34.5})

db_replace_recid

replaces the data portion of a record with new data In the current database.
Signature:

db_replace_recid(integer recid, object data)

public procedure
include eds.e
namespace eds

Arguments: ≡ recid : an atom, the recid of the record to be updated.
≡ data : an object, the new value of the record.

Comments: This procedure be used to quickly update records that have already been located by
calling db_get_recid. This operation is faster than using db_replace_data

• recid must be fetched using db_get_recid first.
• data is an Euphoria object of any kind, atom or sequence.
• The recid does not have to be from the current table.
• This does no error checking. It assumes the database is open and valid.

See Also: db_replace_data, db_find_key, db_get_recid
Example 1:

rid = db_get_recid("Peter")
rec = db_record_recid(rid)
rec[2][3] *= 1.10
db_replace_recid(rid, rec[2])

db_select

chooses a new, already open, database to be the current database.
Signature:

db_select(sequence path, integer lock_method = - 1)

public function
include eds.e

namespace eds

Arguments: ≡ path : a sequence, the path to the database to be the new current database.
≡ lock_method : an integer. Optional locking method.

Returns: An integer, DB_OK on success or an error code.

Comments:
• Subsequent database operations will apply to this database. path is the path of the
database file as it was originally opened with db_open() or db_create().

• When you create (db_create) or open (db_open) a database, it automatically
becomes the current database. Use db_select() when you want to switch back and
forth between open databases, perhaps to copy records from one to the other. After
selecting a new database, you should select a table within that database using
db_select_table().
• If the lock_method is omitted and the database has not already been opened, this
function will fail. However, if lock_method is a valid lock type for db_open and the
database is not open yet, this function will attempt to open it. It may still fail if the
database cannot be opened.

See Also: db_open, db_select
Example 1:

if db_select("employees") != DB_OK then
 puts(2, "Could not select employees database\n")
end if

Example 2:

if db_select("customer", DB_LOCK_SHARED) != DB_OK then
 puts(2, "Could not open or select Customer database\n")
end if

db_select_table

Signature:

db_select_table(sequence name)

public function
include eds.e
namespace eds

Returns: An integer, either DB_OK on success or DB_OPEN_FAIL otherwise.

Comments: All record-level database operations apply automatically to the current table.

See Also: db_table_list
Example 1:

if db_select_table("salary") != DB_OK then
 puts(2, "Couldn't find salary table!\n")
 abort(1)
end if

db_set_caching

sets the key cache behavior.
Signature:

db_set_caching(atom new_setting)

public function
include eds.e

namespace eds

Arguments: ≡ integer : 0 will turn of caching, 1 will turn it back on.

Returns: An integer, the previous setting of the option.

Comments: Initially, the cache option is turned on. This means that when possible, the keys of a
table are kept in RAM rather than read from disk each time db_select_table() is
called. For most databases, this will improve performance when you have more than
one table in it.

Notes: When caching is turned off, the current cache contents is totally cleared.
Example 1:

x = db_set_caching(0) -- Turn off key caching.

db_table_list

lists all tables on the current database.
Signature:

db_table_list()

public function
include eds.e
namespace eds

Returns: A sequence, of all the table names in the current database. Each element of this
sequence is a sequence, the name of a table.

See Also: db_select_table, db_create_table
Example
1:

sequence names = db_table_list()
for i = 1 to length(names) do
 puts(1, names[i] & '\n')
end for

db_table_size

gets the size (number of records) of the default table.
Signature:

db_table_size(object table_name = current_table_name)

public function
include eds.e
namespace eds

Arguments: ≡ table_name : optional table name to get the size of.

Returns An integer, the current number of records in the current table. If a value less
than zero is returned, it means that an error occured.

See Also: db_replace_data
Example 1:

-- look at all records in the current table
for i = 1 to db_table_size() do
 if db_record_key(i) = 0 then
 puts(1, "0 key found\n")
 exit
 end if
end for

error

Routines
crash
crash_message
crash_file
abort
warning_file
warning
crash_routine

error API

abort

aborts execution of the program.
Signature:

abort(atom error)

<built-in> procedure

Arguments: ≡ error : an integer, the exit code to return.

Comments: error is expected to lie in the 0..255 range. 0 is usually interpreted as the sign of a
successful completion.

Other values can indicate various kinds of errors. Windows batch (.bat) programs
can read this value using the errorlevel feature. Non integer values are rounded
down. A Euphoria program can read this value using system_exec().

abort() is useful when a program is many levels deep in subroutine calls, and
execution must end immediately, perhaps due to a severe error that has been
detected.

If you do not use abort(), the interpreter will normally return an exit status code of 0.
If your program fails with a Euphoria-detected compile-time or run-time error then a
code of 1 is returned.

See Also: crash_message, system_exec
Example 1:

if x = 0 then
 puts(ERR, "can't divide by 0 !!!\n")
 abort(1)
else
 z = y / x
end if

crash

crashes the running program and displays a formatted error message.
Signature:

crash(sequence fmt, object data = {})

public procedure
include error.e
namespace error

Arguments: ≡ fmt : a sequence representing the message text. It may have format specifiers in it
≡ data : an object, defaulted to {}.

Comments: Formatting follows the conventions that printf() does.

The actual message being shown, both on standard error and in ex.err (or whatever
file last passed to crash_file()), is sprintf(fmt, data). The program terminates as
for any runtime error.

See Also: crash_file, crash_message, printf
Example 1:

if PI = 3 then
 crash("The structure of universe just changed -- reload solar_system.ex")
end if

Example 2:

if token = end_of_file then
 crash("Test file #%d is bad, text read so far is %s\n",
 {file_number, read_so_far})
end if

crash_file

specifies a file path name in place of "ex.err" where you want
Signature:

crash_file(sequence file_path)

public procedure
include error.e
namespace error

Arguments: ≡ file_path : a sequence, the new error and traceback file path.

Comments: There can be as many calls to crash_file() as needed. Whatever was defined last
will be used in case of an error at runtime, whether it was triggered by crash() or not.

See Also: crash, crash_message

crash_message

specifies a final message to display for your user, in the event
Signature:

crash_message(sequence msg)

public procedure
include error.e
namespace error

Arguments: ≡ msg : a sequence to display. It must only contain printable characters.

Comments: There can be as many calls to crash_message() as needed in a program. Whatever
was defined last will be used in case of a runtime error.

See Also: crash, crash_file
Example 1:

crash_message("The password you entered must have at least 8 characters.")
pwd_key = input_text[1..8]
-- if ##input_text## is too short,
-- user will get a more meaningful message than
-- "index out of bounds".

crash_routine

specifies a function to be called when an error takes place at run time.
Signature:

crash_routine(integer func)

public procedure
include error.e
namespace error

Arguments: ≡ func : an integer, the routine_id of the function to link in.

Comments: The supplied function must have only one parameter, which should be integer or
more general. Defaulted parameters in crash routines are not supported yet.

Euphoria maintains a linked list of routines to execute upon a crash.
crash_routine() adds a new function to the list. The routines defined first are
executed last. You cannot unlink a routine once it is linked, nor inspect the crash
routine chain.

Currently, the crash routines are passed 0. Future versions may attempt to convey
more information to them. If a crash routine returns anything else than 0, the
remaining routines in the chain are skipped.

crash routines are not full fledged exception handlers, and they cannot resume
execution at current or next statement. However, they can read the generated crash
file, and might perform any action, including restarting the program.

See Also: crash_file, routine_id, Debugging and Profiling
Example 1:

function report_error(integer dummy)
 mylib:email("maintainer@remote_site.org", "ex.err")
 return 0 and dummy
end function
crash_routine(routine_id("report_error"))

warning

causes the specified warning message to be displayed as a regular warning.
Signature:

warning(sequence message)

<built-in> procedure

Arguments: ≡ message : a double quoted literal string, the text to display.

Comments: Writing a library has specific requirements, since the code you write will be mainly
used inside code you did not write. It may be desirable then to influence, from inside
the library, that code you did not write.

This is what warning(), in a limited way, does. It enables to generate custom
warnings in code that will include yours. Of course, you can also generate warnings
in your own code, for instance as a kind of memo. The On/off options|without

unresolved.html

warning top level statement disables such warnings.

The warning is issued with the custom_warning level. This level is enabled by
default, but can be turned off any time.

Using any kind of expression in message will result in a blank warning text.

See Also: warning_file
Example 1:

-- mylib.e
procedure foo(integer n)
 warning("The foo() procedure is obsolete, use bar() instead.")
 ? n
end procedure

-- some_app.exw
include mylib.e
foo(123)

will result, when some_app.exw is run with warning, in the following text being displayed in the
console window

123
Warning: (custom_warning):
The foo() procedure is obsolete, use bar() instead.

Press Enter...

warning_file

specifies a file path where to output warnings.
Signature:

warning_file(object file_path)

public procedure
include error.e
namespace error

Arguments: ≡ file_path : an object indicating where to dump any warning that were produced.

Comments: By default, warnings are displayed on the standard error, and require pressing the
Enter key to keep going. Redirecting to a file enables skipping the latter step and
having a console window open, while retaining ability to inspect the warnings in
case any was issued.

Any atom >= 0 causes standard error to be used, thus reverting to default behaviour.

Any atom < 0 suppresses both warning generation and output. Use this latter in
extreme cases only.

On an error, some output to the console is performed anyway, so that whatever
warning file was specified is ignored then.

See Also: without warning, warning
Example 1:

warning_file("warnings.lst")
-- some code
warning_file(0)
-- changed opinion: warnings will go to standard error as usual

eumem

unresolved.html

ram_space
malloc
free
valid

eumem API

free

deallocates a block of (pseudo) memory.
Signature:

free(atom mem_p)

export procedure
include eumem.e
namespace eumem

Arguments: ≡ mem_p : The handle to a previously acquired ram_space location.

Comments: This allows the location to be used by other parts of your application. You should no
longer access this location again because it could be acquired by some other
process in your application. This routine should only be called if you passed 0 as
cleanup_p to malloc.

Example 1:

my_spot = malloc(1,0)
 ram_space[my_spot] = my_data
 -- . . . do some processing . . .
 free(my_spot)

malloc

allocates a block of (pseudo) memory.
Signature:

malloc(object mem_struct_p = 1, integer cleanup_p = 1)

export function
include eumem.e
namespace eumem

Arguments: ≡ mem_struct_p : The initial structure (sequence) to occupy the allocated block. If
this is an integer, a sequence of zero this long is used. The default is the number 1,
meaning that the default initial structure is {0}
≡ cleanup_p : Identifies whether the memory should be released automatically when
the reference count for the handle for the allocated block drops to zero, or when
passed to delete(). If 0, then the block must be freed using the free procedure.

Returns: A handle, to the acquired block. Once you acquire this, you can use it as you need
to. Note that if cleanup_p is 1, then the variable holding the handle must be capable
of storing an atom as a double floating point value (i.e., not an integer).

Example 1:

my_spot = malloc()
 ram_space[my_spot] = my_data

ram_space

is the (pseudo) RAM heap space.
Signature:

ram_space

export sequence
include eumem.e
namespace eumem

Comments: Use malloc to gain ownership to a heap location and free to release it back to the
system.

valid

validates a block of (pseudo) memory.
Signature:

valid(object mem_p, object mem_struct_p = 1)

export function
include eumem.e
namespace eumem

Arguments: ≡ mem_p : The handle to a previously acquired ram_space location.
≡ mem_struct_p : If an integer, this is the length of the sequence that should be
occupying the ram_space location pointed to by mem_p.

Returns: An integer,
0 if either the mem_p is invalid or if the sequence at that location is the wrong length.
1 if the handle and contents is okay.

Comments: This can only check the length of the contents at the location. Nothing else is
checked at that location.

Example 1:

my_spot = malloc()
 ram_space[my_spot] = my_data

 if valid(my_spot, length(my_data)) then
 free(my_spot)
 end if

filesys

Constants
SLASH
SLASHES
EOLSEP
EOL
PATHSEP
NULLDEVICE
SHARED_LIB_EXT

Directory Handling
D_NAME
D_ATTRIBUTES

D_SIZE
D_YEAR
D_MONTH
D_DAY
D_HOUR
D_MINUTE
D_SECOND
D_MILLISECOND
D_ALTNAME

Bad path error code. See walk_dir
W_BAD_PATH
dir
current_dir
chdir
my_dir
walk_dir
create_directory
create_file
delete_file
curdir
init_curdir
clear_directory
remove_directory

File name parsing
PATH_DIR
PATH_FILENAME
PATH_BASENAME
PATH_FILEEXT
PATH_DRIVEID
pathinfo
dirname
pathname
filename
filebase
fileext
driveid
defaultext
absolute_path
AS_IS
TO_LOWER
CORRECT
TO_SHORT
case_flagset_type
canonical_path
abbreviate_path
split_path
join_path

File Types
FILETYPE_UNDEFINED
FILETYPE_NOT_FOUND
FILETYPE_FILE
FILETYPE_DIRECTORY

file_type
File Handling

SECTORS_PER_CLUSTER
BYTES_PER_SECTOR
NUMBER_OF_FREE_CLUSTERS
TOTAL_NUMBER_OF_CLUSTERS
TOTAL_BYTES
FREE_BYTES
USED_BYTES
COUNT_DIRS
COUNT_FILES
COUNT_SIZE
COUNT_TYPES
EXT_NAME
EXT_COUNT
EXT_SIZE
file_exists
file_timestamp
copy_file
rename_file
move_file
file_length
locate_file
disk_metrics
disk_size
dir_size
temp_file
checksum

filesys API

AS_IS

Signature:

AS_IS

public enum
include filesys.e
namespace filesys

BYTES_PER_SECTOR

Signature:

BYTES_PER_SECTOR

public enum
include filesys.e
namespace filesys

CORRECT

Signature:

CORRECT

public enum
include filesys.e
namespace filesys

COUNT_DIRS

Signature:

COUNT_DIRS

public enum
include filesys.e
namespace filesys

COUNT_FILES

Signature:

COUNT_FILES

public enum
include filesys.e
namespace filesys

COUNT_SIZE

Signature:

COUNT_SIZE

public enum
include filesys.e
namespace filesys

COUNT_TYPES

Signature:

COUNT_TYPES

public enum
include filesys.e
namespace filesys

D_ALTNAME

Signature:

D_ALTNAME

public enum
include filesys.e
namespace filesys

D_ATTRIBUTES

Signature:

D_ATTRIBUTES

public enum
include filesys.e
namespace filesys

D_DAY

Signature:

D_DAY

public enum
include filesys.e
namespace filesys

D_HOUR

Signature:

D_HOUR

public enum
include filesys.e
namespace filesys

D_MILLISECOND

Signature:

D_MILLISECOND

public enum
include filesys.e
namespace filesys

D_MINUTE

Signature:

D_MINUTE

public enum
include filesys.e
namespace filesys

D_MONTH

Signature:

D_MONTH

public enum
include filesys.e
namespace filesys

D_NAME

Signature:

D_NAME

public enum
include filesys.e
namespace filesys

D_SECOND

Signature:

D_SECOND

public enum
include filesys.e
namespace filesys

D_SIZE

Signature:

D_SIZE

public enum
include filesys.e
namespace filesys

D_YEAR

Signature:

D_YEAR

public enum
include filesys.e
namespace filesys

EOL

All platform's newline character: '\n'. When text lines are read the native

Signature:

EOL

public constant

EOLSEP

is the newline string for the current platform.
Signature:

EOLSEP

public constant

Comments: "\n" on unix or else "\r\n" on windows.

EXT_COUNT

Signature:

EXT_COUNT

public enum
include filesys.e
namespace filesys

EXT_NAME

Signature:

EXT_NAME

public enum
include filesys.e
namespace filesys

EXT_SIZE

Signature:

EXT_SIZE

public enum
include filesys.e
namespace filesys

FILETYPE_DIRECTORY

Signature:

FILETYPE_DIRECTORY

public enum

include filesys.e
namespace filesys

FILETYPE_FILE

Signature:

FILETYPE_FILE

public enum
include filesys.e
namespace filesys

FILETYPE_NOT_FOUND

Signature:

FILETYPE_NOT_FOUND

public enum
include filesys.e
namespace filesys

FILETYPE_UNDEFINED

Signature:

FILETYPE_UNDEFINED

public enum
include filesys.e
namespace filesys

FREE_BYTES

Signature:

FREE_BYTES

public enum
include filesys.e
namespace filesys

NULLDEVICE

is the null device path for the current platform.
Signature:

NULLDEVICE

public constant

Comments: /dev/null on unix or else NUL: on windows.

NUMBER_OF_FREE_CLUSTERS

Signature:

NUMBER_OF_FREE_CLUSTERS

public enum
include filesys.e
namespace filesys

PATHSEP

is the path separator character for the current platform.
Signature:

PATHSEP

public constant

Comments: : on unix, else ; on windows.

PATH_BASENAME

Signature:

PATH_BASENAME

public enum
include filesys.e
namespace filesys

PATH_DIR

Signature:

PATH_DIR

public enum
include filesys.e
namespace filesys

PATH_DRIVEID

Signature:

PATH_DRIVEID

public enum
include filesys.e
namespace filesys

PATH_FILEEXT

Signature:

PATH_FILEEXT

public enum
include filesys.e
namespace filesys

PATH_FILENAME

Signature:

PATH_FILENAME

public enum
include filesys.e
namespace filesys

SECTORS_PER_CLUSTER

Signature:

SECTORS_PER_CLUSTER

public enum
include filesys.e
namespace filesys

SHARED_LIB_EXT

is the shared library extension for the current platform.
Signature:

SHARED_LIB_EXT

public constant

Comments: For instance it can be dll (windows), so (unix) or dylib (os x) depending on the
platform.

SLASH

is the path separator character for the current.
Signature:

SLASH

public constant

Comments: When on windows, '\\'. When on unix, '/'.

SLASHES

are the possible path separators for the current platform.
Signature:

SLASHES

public constant

Comments: On unix systems, it only contains slash (/).

On windows the path separators are: the traditional backslash which must be written
as a double slash (\\) in a string sequence, the (:), and on newer versions of
windows the slash (/).

TOTAL_BYTES

Signature:

TOTAL_BYTES

public enum
include filesys.e
namespace filesys

TOTAL_NUMBER_OF_CLUSTERS

Signature:

TOTAL_NUMBER_OF_CLUSTERS

public enum
include filesys.e
namespace filesys

TO_LOWER

Signature:

TO_LOWER

public enum
include filesys.e
namespace filesys

TO_SHORT

Signature:

TO_SHORT

public enum
include filesys.e
namespace filesys

USED_BYTES

Signature:

USED_BYTES

public enum
include filesys.e
namespace filesys

W_BAD_PATH

Signature:

W_BAD_PATH

public constant
include filesys.e
namespace filesys

abbreviate_path

returns a path string to the supplied file which is shorter than the
Signature:

abbreviate_path(sequence orig_path, sequence base_paths = {})

public function
include filesys.e
namespace filesys

Arguments: ≡ orig_path : A sequence. This is the path to a file.
≡ base_paths : A sequence. This is an optional list of paths that may prefix the
original path. The default is an empty list.

Returns: A sequence, an equivalent path to orig_path which is shorter than the supplied
path. If a shorter one cannot be formed, then the original path is returned.

Comments:
• This function is primarily used to get the shortest form of a file path for output to a
file or screen.
• It works by first trying to find if the orig_path begins with any of the base_paths. If
so it returns the parameter minus the base path prefix.
• Next it checks if the orig_path begins with the current directory path. If so it returns
the parameter minus the current directory path.
• Next it checks if it can form a relative path from the current directory to the supplied
file which is shorter than the parameter string.
• Failing all of that, it returns the original parameter.
• In windows, the shorter result has all '/' characters are replaced by '\' characters.
• The supplied path does not have to actually exist.
• orig_path can be enclosed in quotes, which will be stripped off.
• If orig_path begins with a tilde '~' then that is replaced by the contents of $HOME
in unix platforms and %HOMEDRIVE%%HOMEPATH% in windows.

Example 1:

-- Assuming the current directory is "/usr/foo/bar"
res = abbreviate_path("/usr/foo/abc.def")
-- res is now "../abc.def"
res = abbreviate_path("/usr/foo/bar/inc/abc.def")
-- res is now "inc/abc.def"
res = abbreviate_path("abc.def", {"/usr/foo"})
-- res is now "bar/abc.def"

absolute_path

determines if the supplied string is an absolute path or a relative path.

Signature:

absolute_path(sequence filename)

public function
include filesys.e
namespace filesys

Arguments: ≡ filename : a sequence, the name of the file path

Returns: An integer, 0 if filename is a relative path or 1 otherwise.
Example 1:

? absolute_path("") -- returns 0
? absolute_path("/usr/bin/abc") -- returns 1
? absolute_path("\\temp\\somefile.doc") -- returns 1
? absolute_path("../abc") -- returns 0
? absolute_path("local/abc.txt") -- returns 0
? absolute_path("abc.txt") -- returns 0
? absolute_path("c:..\\abc") -- returns 0

-- The next two examples return
-- 0 on Unix platforms and
-- 1 on Microsoft platforms
? absolute_path("c:\\windows\\system32\\abc")
? absolute_path("c:/windows/system32/abc")

canonical_path

returns the full path and file name of the supplied file name.
Signature:

canonical_path(sequence path_in, integer directory_given = 0,
case_flagset_type case_flags = AS_IS)

public function
include filesys.e
namespace filesys

Arguments: ≡ path_in : A sequence. This is the file name whose full path you want. #
directory_given : An integer. This is zero if path_in is to be interpreted as a file
specification otherwise it is assumed to be a directory specification. The default is
zero.
≡ case_flags : An integer. This is a combination of flags.

Returns: A sequence, the full path and file name.

Comments: Flags for the case_flags argument:

AS_IS = Includes no flags TO_LOWER = If passed will convert the part of the path
not affected by other case flags to lowercase. CORRECT = If passed will correct the
parts of the filepath that exist in the current filesystem in parts of the filesystem that is
case insensitive. This should work on WINDOWS or SMB mounted volumes on
UNIX and all Mac OS filesystems.

TO_LOWER = If passed alone the entire path is converted to lowercase.
or_bits(TO_LOWER,CORRECT) = If these flags are passed together the the part
that exists has the case of that of the filesystem. The part that does not is converted
to lower case. TO_SHORT = If passed the elements of the path that exist are also
converted to their WINDOWS short names if avaliable.

• The supplied file or directory does not have to actually exist.

• path_in can be enclosed in quotes, which will be stripped off.
• If path_in begins with a tilde '~~' then that is replaced by the contents of $HOME in
unix platforms and %HOMEDRIVE%%HOMEPATH% in windows.
• In windows all '/' characters are replaced by '\' characters.
• Does not (yet) handle UNC paths or unix links.

Example 1:

-- Assuming the current directory is "/usr/foo/bar"
res = canonical_path("../abc.def")
-- res is now "/usr/foo/abc.def"

Example 2:

-- res is "C:\Program Files" on systems that have that directory.
res = canonical_path(
-- on Windows Vista this would be "c:\Program Files"
-- since Vista uses lowercase for its drives.

case_flagset_type

Signature:

case_flagset_type(integer x)

public type
include filesys.e
namespace filesys

chdir

sets a new value for the current directory.
Signature:

chdir(sequence newdir)

public function
include filesys.e
namespace filesys

Arguments: newdir : a sequence, the name for the new working directory.

Returns: An integer, 0 on failure, 1 on success.

Comments: By setting the current directory, you can refer to files in that directory using just the
file name.

The current_dir() function will return the name of the current directory.

On windows the current directory is a public property shared by all the processes
running under one shell. On unix a subprocess can change the current directory for
itself, but this will not affect the current directory of its parent process.

See Also: current_dir, dir
Example 1:

if chdir("c:\\euphoria") then
 f = open("readme.doc", "r")
else
 puts(STDERR, "Error: No euphoria directory?\n")
end if

checksum

returns a checksum value for the specified file.
Signature:

checksum(sequence filename, integer size = 4, integer usename = 0,
integer return_text = 0)

public function
include filesys.e
namespace filesys

Arguments: ≡ filename : A sequence. The name of the file whose checksum you want.
≡ size : An integer. The number of atoms to return. Default is 4
≡ usename: An integer. If not zero then the actual text of filename will affect the
resulting checksum. The default (0) will not use the name of the file.
≡ return_text: An integer. If not zero, the check sum is returned as a text string of
hexadecimal digits otherwise (the default) the check sum is returned as a sequence
of size atoms.

Returns: A sequence containing size atoms.

Comments:
• The larger the size value, the more unique will the checksum be. For most files
and uses, a single atom will be sufficient as this gives a 32-bit file signature.
However, if you require better proof that the content of two files are different then use
higher values for size. For example, size = 8 gives you 256 bits of file signature.
• If size is zero or negative, an empty sequence is returned.
• All files of zero length will return the same checksum value when usename is zero.

Example 1:

-- Example values. The exact values depend on the contents of the file.
 include std/console.e
 display(checksum("myfile", 1)) --> {92837498}
 display(checksum("myfile", 2)) --> {1238176, 87192873}
 display(checksum("myfile", 2,,1)) --> "0012E480 05327529"
 display(checksum("myfile", 4)) --> {23448, 239807, 79283749, 427370}
 display(checksum("myfile")) --> {23448, 239807, 79283749, 427370}
 -- default

clear_directory

clears (deletes) a directory of all its files, but retains the sub-directories.
Signature:

clear_directory(sequence path, integer recurse = 1)

public function
include filesys.e
namespace filesys

Arguments: ≡ name : a sequence, the name of the directory whose files you want to remove.
≡ recurse : an integer, whether or not to remove files in the directory's sub-
directories. If 0 then this function is identical to remove_directory(). If 1, then we
recursively delete the directory and its contents. Defaults to 1.

Returns: An integer, 0 on failure, otherwise the number of files plus 1.

Comments: This never removes a directory; it only removes files. It is used to clear a directory
structure of all existing files, leaving the structure intact.

See Also: remove_directory, delete_file
Example 1:

integer cnt = clear_directory("the_old_folder")
if cnt = 0 then
 crash("Filesystem problem - could not remove one or more of the files.")

end if
printf(1, "Number of files removed: %d\n", cnt - 1)

copy_file

copies a file.
Signature:

copy_file(sequence src, sequence dest, integer overwrite = 0)

public function
include filesys.e
namespace filesys

Arguments: ≡ src : a sequence, the name of the file or directory to copy
≡ dest : a sequence, the new name or location of the file
≡ overwrite : an integer; 0 (the default) will prevent an existing destination file from
being overwritten. Non-zero will overwrite the destination file.

Returns: An integer, 0 on failure, 1 on success.

Comments: If overwrite is true, and if dest file already exists, the function overwrites the existing
file and succeeds.

See Also: move_file, rename_file

create_directory

creates a new directory.
Signature:

create_directory(sequence name, integer mode = 448, integer mkparent = 1)

public function
include filesys.e
namespace filesys

Arguments: ≡ name : a sequence, the name of the new directory to create
≡ mode : on unix systems, permissions for the new directory. Default is 448 (all rights
for owner, none for others).
≡ mkparent : If true (default) the parent directories are also created if needed.

Returns: An integer, 0 on failure, 1 on success.

Comments: mode is ignored on non-unix platforms.

See Also: remove_directory, chdir
Example 1:

if not create_directory("the_new_folder") then
 crash("Filesystem problem - could not create the new folder")
end if

-- This example will also create "myapp/" and "myapp/interface/"
-- if they don't exist.
if not create_directory("myapp/interface/letters") then
 crash("Filesystem problem - could not create the new folder")
end if

-- This example will NOT create "myapp/" and "myapp/interface/"
-- if they don't exist.
if not create_directory("myapp/interface/letters",,0) then
 crash("Filesystem problem - could not create the new folder")
end if

create_file

creates a new file.
Signature:

create_file(sequence name)

public function
include filesys.e
namespace filesys

Arguments: ≡ name : a sequence, the name of the new file to create

Returns: An integer, 0 on failure, 1 on success.

Comments:
• The created file will be empty, that is it has a length of zero.
• The created file will not be open when this returns.

See Also: create_directory
Example 1:

if not create_file("the_new_file") then
 crash("Filesystem problem - could not create the new file")
end if

curdir

returns the current directory, with a trailing SLASH.
Signature:

curdir(integer drive_id = 0)

public function
include filesys.e
namespace filesys

Arguments: ≡ drive_id : For non-Unix systems only. This is the Drive letter to to get the current
directory of. If omitted, the current drive is used.

Returns: A sequence, the current directory.
Example 1:

res = curdir('D') -- Find the current directory on the D: drive.
-- res might be "D:\backup\music\"
res = curdir() -- Find the current directory on the current drive.
-- res might be "C:\myapp\work\"

current_dir

returns the name of the current working directory.
Signature:

current_dir()

public function
include filesys.e
namespace filesys

Returns: A sequence, the name of the current working directory

Comments: There will be no slash or backslash on the end of the current directory, except under
windows, at the top-level of a drive, e.g. C:\

See Also: dir, chdir

Example 1:

sequence s
s = current_dir()
-- s would have "C:\EUPHORIA\DOC" if you were in that directory

defaultext

returns the supplied filepath with the supplied extension, if
Signature:

defaultext(sequence path, sequence defext)

public function
include filesys.e
namespace filesys

Arguments: ≡ path : the path to check for an extension.
≡ defext : the extension to add if path does not have one.

Returns: A sequence, the path with an extension.

See Also: pathinfo
Example 1:

-- ensure that the supplied path has an extension,
 -- but if it doesn't use "tmp".
theFile = defaultext(UserFileName, "tmp")

delete_file

deletes a file.
Signature:

delete_file(sequence name)

public function
include filesys.e
namespace filesys

Arguments: ≡ name : a sequence, the name of the file to delete.

Returns: An integer, 0 on failure, 1 on success.

dir

returns directory information for the specified file or directory.
Signature:

dir(sequence name)

public function
include filesys.e
namespace filesys

Arguments: ≡ name : a sequence, the name to be looked up in the file system.

Returns: An object, -1 if no match found, else a sequence of sequence entries

Comments: name can also contain * and ? wildcards to select multiple files.

The returned information is similar to what you would get from the DIR command. A
sequence is returned where each element is a sequence that describes one file or

subdirectory.

If name refers to a directory you may have entries for "." and "..", just as with the DIR
command. If it refers to an existing file, and has no wildcards, then the returned
sequence will have just one entry, i.e. its length will be 1. If name contains wildcards
you may have multiple entries.

Each entry contains the name, attributes and file size as well as the time of the last
modification.

You can refer to the elements of an entry with the following constants:

See Also: walk_dir
Example 1:

d = dir(current_dir())

-- d might have:
-- {
-- {".", "d", 0 1994, 1, 18, 9, 30, 02},
-- {"..", "d", 0 1994, 1, 18, 9, 20, 14},
-- {"fred", "ra", 2350, 1994, 1, 22, 17, 22, 40},
-- {"sub", "d" , 0, 1993, 9, 20, 8, 50, 12}
-- }

d[3][D_NAME] would be "fred"

dir_size

returns the amount of space used by a directory.
Signature:

dir_size(sequence dir_path, integer count_all = 0)

public function
include filesys.e
namespace filesys

Arguments: ≡ dir_path : A sequence. This is the path that identifies the directory to inquire upon.
≡ count_all : An integer. Used by Windows systems. If zero (the default) it will not
include system or hidden files in the count, otherwise they are included.

Returns: A sequence, containing four elements; the number of sub-directories
[COUNT_DIRS], the number of files [COUNT_FILES], the total space used by the
directory [COUNT_SIZE], and breakdown of the file contents by file extension
[COUNT_TYPES].

Comments:
• The total space used by the directory does not include space used by any sub-
directories.
• The file breakdown is a sequence of three-element sub-sequences. Each sub-
sequence contains the extension [EXT_NAME], the number of files of this extension
[EXT_COUNT], and the space used by these files [EXT_SIZE]. The sub-sequences
are presented in extension name order. On Windows the extensions are all in
lowercase.

Example 1:

res = dir_size("/usr/localbin")
printf(1, "Directory %s contains %d files\n", {
 "/usr/localbin", res[COUNT_FILES]
 })
for i = 1 to length(res[COUNT_TYPES]) do
 printf(1, "Type: %s (%d files %d bytes)\n", {
 res[COUNT_TYPES][i][EXT_NAME],
 res[COUNT_TYPES][i][EXT_COUNT],

 res[COUNT_TYPES][i][EXT_SIZE]
 })
end for

dirname

returns the directory name of a fully qualified filename.
Signature:

dirname(sequence path, integer pcd = 0)

public function
include filesys.e
namespace filesys

Arguments: ≡ path : the path from which to extract information
≡ pcd : If not zero and there is no directory name in path then "." is returned. The
default (0) will just return any directory name in path.

Returns: A sequence, the full file name part of path.

Comments: The host operating system path separator is used.

See Also: driveid, filename, pathinfo
Example 1:

fname = dirname("/opt/euphoria/docs/readme.txt")
-- fname is "/opt/euphoria/docs"

disk_metrics

returns some information about a disk drive.
Signature:

disk_metrics(object disk_path)

public function
include filesys.e
namespace filesys

Arguments: ≡ disk_path : A sequence. This is the path that identifies the disk to inquire upon.

Returns: A sequence, containing SECTORS_PER_CLUSTER, BYTES_PER_SECTOR,
NUMBER_OF_FREE_CLUSTERS, and TOTAL_NUMBER_OF_CLUSTERS

Example 1:

res = disk_metrics("C:\\")
min_file_size = res[SECTORS_PER_CLUSTER] * res[BYTES_PER_SECTOR]

disk_size

returns the amount of space for a disk drive.
Signature:

disk_size(object disk_path)

public function
include filesys.e
namespace filesys

Arguments: ≡ disk_path : A sequence. This is the path that identifies the disk to inquire upon.

Returns: A sequence, containing TOTAL_BYTES, USED_BYTES, FREE_BYTES, and a

string which represents the filesystem name
Example 1:

res = disk_size("C:\\")
printf(1, "Drive %s has %3.2f%% free space\n", {
 "C:", res[FREE_BYTES] / res[TOTAL_BYTES]
})

driveid

returns the drive letter of the path on windows platforms.
Signature:

driveid(sequence path)

public function
include filesys.e
namespace filesys

Arguments: ≡ path : the path from which to extract information

Returns: A sequence, the file extension part of path.

Platform: windows

TODO: Test

See Also: pathinfo, dirname, filename
Example 1:

letter = driveid("C:\\EUPHORIA\\Readme.txt")
-- letter is "C"

file_exists

tests if a file exists.
Signature:

file_exists(object name)

public function
include filesys.e
namespace filesys

Arguments: ≡ name : filename to check existence of

Returns: An integer, 1 on yes, 0 on no
Example 1:

if file_exists("abc.e") then
 puts(1, "abc.e exists already\n")
end if

file_length

returns the size of a file.
Signature:

file_length(sequence filename)

public function
include filesys.e
namespace filesys

Arguments: ≡ filename : the name of the queried file

Returns: An atom, the file size, or -1 if file is not found.

Comments: This function does not compute the total size for a directory, and returns 0 instead.

See Also: dir

file_timestamp

gets the timestamp of the file.
Signature:

file_timestamp(sequence fname)

public function
include filesys.e
namespace filesys

Arguments: ≡ name : the filename to get the date of

Returns: A valid datetime type, representing the files date and time or -1 if the file's date and
time could not be read.

file_type

gets the type of a file.
Signature:

file_type(sequence filename)

public function
include filesys.e
namespace filesys

Arguments: ≡ filename : the name of the file to query. It must not have wildcards.

Returns: An integer,
• -1 if file could be multiply defined
• 0 if filename does not exist
• 1 if filename is a file
• 2 if filename is a directory

See Also: dir, FILETYPE_DIRECTORY, FILETYPE_FILE, FILETYPE_NOT_FOUND,
FILETYPE_UNDEFINED

filebase

returns the base filename of path.
Signature:

filebase(sequence path)

public function
include filesys.e
namespace filesys

Arguments: ≡ path : the path from which to extract information

Returns: A sequence, the base file name part of path.

TODO: Test

See Also: pathinfo, filename, fileext
Example 1:

base = filebase("/opt/euphoria/readme.txt")
-- base is "readme"

fileext

returns the file extension of a fully qualified filename.
Signature:

fileext(sequence path)

public function
include filesys.e
namespace filesys

Arguments: ≡ path : the path from which to extract information

Returns: A sequence, the file extension part of path.

Comments: The host operating system path separator is used.

See Also: pathinfo, filename, filebase
Example 1:

fname = fileext("/opt/euphoria/docs/readme.txt")
-- fname is "txt"

filename

returns the file name portion of a fully qualified filename.
Signature:

filename(sequence path)

public function
include filesys.e
namespace filesys

Arguments: ≡ path : the path from which to extract information

Returns: A sequence, the file name part of path.

Comments: The host operating system path separator is used.

See Also: pathinfo, filebase, fileext
Example 1:

fname = filename("/opt/euphoria/docs/readme.txt")
-- fname is "readme.txt"

init_curdir

returns the original current directory.
Signature:

init_curdir()

public function
include filesys.e
namespace filesys

Returns: A sequence, the current directory at the time the program started running.
Example 1:

res = init_curdir() -- Find the original current directory.

join_path

joins multiple path segments into a single path filename.
Signature:

join_path(sequence path_elements)

public function
include filesys.e
namespace filesys

Arguments:
• path_elements - Sequence of path elements

Returns: A string representing the path elements on the given platform

See Also: split_path
Example 1:

sequence fname = join_path({ "usr", "home", "john", "hello.txt" })
-- fname would be "/usr/home/john/hello.txt" on Unix
-- fname would be "\\usr\\home\\john\\hello.txt" on Windows

locate_file

locates a file by searching in a set of directories for it.
Signature:

locate_file(sequence filename, sequence search_list = {},
sequence subdir = {})

public function
include filesys.e
namespace filesys

Arguments: ≡ filename : a sequence, the name of the file to search for.
≡ search_list : a sequence, the list of directories to look in. By default this is "",
meaning that a predefined set of directories is scanned. See comments below.
≡ subdir : a sequence, the sub directory within the search directories to check. This
is optional.

Returns: A sequence, the located file path if found, else the original file name.

Comments: If filename is an absolute path, it is just returned and no searching takes place.

If filename is located, the full path of the file is returned.

If search_list is supplied, it can be either a sequence of directory names, of a string
of directory names delimited by ':' in UNIX and ';' in Windows.

If the search_list is omitted or "", this will look in the following places...
• The current directory
• The directory that the program is run from.
• The directory in $HOME ($HOMEDRIVE & $HOMEPATH in Windows)
• The parent directory of the current directory
• The directories returned by include_paths()
• $EUDIR/bin
• $EUDIR/docs

• $EUDIST/
• $EUDIST/etc
• $EUDIST/data
• The directories listed in $USERPATH
• The directories listed in $PATH

If the subdir is supplied, the function looks in this sub directory for each of the
directories in the search list.

Example 1:

res = locate_file("abc.def", {"/usr/bin", "/u2/someapp", "/etc"})
 res = locate_file("abc.def", "/usr/bin:/u2/someapp:/etc")
 res = locate_file("abc.def")
 -- Scan default locations.
 res = locate_file("abc.def", , "app")
 -- Scan the 'app' sub directory in the default locations.

move_file

moves a file to another location.
Signature:

move_file(sequence src, sequence dest, integer overwrite = 0)

public function
include filesys.e
namespace filesys

Arguments: ≡ src : a sequence, the name of the file or directory to move
≡ dest : a sequence, the new location for the file
≡ overwrite : an integer, 0 (the default) to prevent overwriting an existing destination
file, 1 to overwrite existing destination file

Returns: An integer, 0 on failure, 1 on success.

Comments: If overwrite was requested but the move fails, any existing destination file is
preserved.

See Also: rename_file, copy_file

my_dir

is Deprecated (therefore not documented).
Signature:

my_dir

public integer
include filesys.e
namespace filesys

pathinfo

parses a fully qualified pathname.
Signature:

pathinfo(sequence path, integer std_slash = 0)

public function
include filesys.e
namespace filesys

Arguments: ≡ path : a sequence, the path to parse

Returns: A sequence, of length 5. Each of these elements is a string:
• The path name. For Windows, this excludes the drive id.
• The full unqualified file name
• the file name, without extension
• the file extension
• the drive id

Comments: The host operating system path separator is used in the parsing.

See Also: driveid, dirname, filename, fileext, PATH_BASENAME, PATH_DIR,
PATH_DRIVEID, PATH_FILEEXT, PATH_FILENAME

Example 1:

-- WINDOWS
info = pathinfo("C:\\euphoria\\docs\\readme.txt")
-- info is {"C:\\euphoria\\docs", "readme.txt", "readme", "txt", "C"}

Example 2:

-- Unix variants
info = pathinfo("/opt/euphoria/docs/readme.txt")
-- info is {"/opt/euphoria/docs", "readme.txt", "readme", "txt", ""}

Example 3:

-- no extension
info = pathinfo("/opt/euphoria/docs/readme")
-- info is {"/opt/euphoria/docs", "readme", "readme", "", ""}

pathname

returns the directory name of a fully qualified filename.
Signature:

pathname(sequence path)

public function
include filesys.e
namespace filesys

Arguments: ≡ path : the path from which to extract information
≡ pcd : If not zero and there is no directory name in path then "." is returned. The
default (0) will just return any directory name in path.

Returns: A sequence, the full file name part of path.

Comments: The host operating system path separator is used.

See Also: driveid, filename, pathinfo
Example 1:

fname = dirname("/opt/euphoria/docs/readme.txt")
-- fname is "/opt/euphoria/docs"

remove_directory

removes a directory.
Signature:

remove_directory(sequence dir_name, integer force = 0)

public function
include filesys.e

namespace filesys

Arguments: ≡ name : a sequence, the name of the directory to remove.
≡ force : an integer, if 1 this will also remove files and sub-directories in the
directory. The default is 0, which means that it will only remove the directory if it is
already empty.

Returns: An integer, 0 on failure, 1 on success.

See Also: create_directory, chdir, clear_directory
Example 1:

if not remove_directory("the_old_folder") then
 crash("Filesystem problem - could not remove the old folder")
end if

rename_file

renames a file.
Signature:

rename_file(sequence old_name, sequence new_name, integer overwrite = 0)

public function
include filesys.e
namespace filesys

Arguments: ≡ old_name : a sequence, the name of the file or directory to rename.
≡ new_name : a sequence, the new name for the renamed file
≡ overwrite : an integer, 0 (the default) to prevent renaming if destination file exists,
1 to delete existing destination file first

Returns: An integer, 0 on failure, 1 on success.

Comments: * If new_name contains a path specification, this is equivalent to moving the file, as
well as possibly changing its name. However, the path must be on the same drive
for this to work.
• If overwrite was requested but the rename fails, any existing destination file is
preserved.

See Also: move_file, copy_file

split_path

splits a filename into path segments.
Signature:

split_path(sequence fname)

public function
include filesys.e
namespace filesys

Arguments:
• fname - Filename to split

Returns: A sequence of strings representing each path element found in fname.

See Also: join_path
Example 1:

sequence path_elements = split_path("/usr/home/john/hello.txt")
-- path_elements would be { "usr", "home", "john", "hello.txt" }

temp_file

returns a file name that can be used as a temporary file.
Signature:

temp_file(sequence temp_location = "", sequence temp_prefix = "",
sequence temp_extn = "_T_", integer reserve_temp = 0)

public function
include filesys.e
namespace filesys

Arguments: ≡ temp_location : A sequence. A directory where the temporary file is expected to
be created.
…… ♦ If omitted (the default) the 'temporary' directory will be used. The temporary
directory is defined in the "TEMP" environment symbol, or failing that the "TMP"
symbol and failing that "C:\TEMP\" is used in non-Unix systems and "/tmp/" is used
in Unix systems.
…… ♦ If temp_location was supplied, * If it is an existing file, that file's directory
is used. * If it is an existing directory, it is used.

Returns: A sequence, A generated file name.
Example 1:

temp_file("/usr/space", "myapp", "tmp") --> /usr/space/myapp736321.tmp
temp_file() --> /tmp/277382._T_
temp_file("/users/me/abc.exw") --> /users/me/992831._T_

walk_dir

is a generalized directory walker.
Signature:

walk_dir(sequence path_name, object your_function,
integer scan_subdirs = types :FALSE,
object dir_source = types :NO_ROUTINE_ID)

public function
include filesys.e
namespace filesys

Arguments: ≡ path_name : a sequence, the name of the directory to walk through
≡ your_function : the routine id of a function that will receive each path returned
from the result of dir_source, one at a time.
≡ scan_subdirs : an optional integer, 1 to also walk though subfolders, 0 (the
default) to skip them all.
≡ dir_source : an optional integer. A routine_id of a user-defined routine that returns
the list of paths to pass to your_function. If omitted, the dir() function is used.

Returns: An object,
• 0 on success
• W_BAD_PATH : an error occurred
• anything else : the custom function returned something to stop walk_dir().

Comments: This routine will "walk" through a directory named path_name. For each entry in the
directory, it will call a function, whose routine_id is your_function. If scan_subdirs is
non-zero (TRUE), then the subdirectories in path_name will be walked through
recursively in the very same way.

The routine that you supply should accept two sequences, the path name and dir()
entry for each file and subdirectory. It should return 0 to keep going,
W_SKIP_DIRECTORY to avoid scan the contents of the supplied path name (if a
directory), or non-zero to stop walk_dir(). Returning W_BAD_PATH is taken as denoting

some error.

This mechanism allows you to write a simple function that handles one file at a time,
while walk_dir() handles the process of walking through all the files and
subdirectories.

By default, the files and subdirectories will be visited in alphabetical order. To use a
different order, use the dir_source to pass the routine_id of your own modified dir
function that sorts the directory entries differently.

The path that you supply to walk_dir() must not contain wildcards (* or ?). Only a
single directory (and its subdirectories) can be searched at one time.

For non-unix systems, any '/' characters in path_name are replaced with '\'.

All trailing slash and whitespace characters are removed from path_name.

See Also: dir, sort, sort_columns
Example 1:

function look_at(sequence path_name, sequence item)
-- this function accepts two sequences as arguments
-- it displays all C/C++ source files and their sizes
 if find('d', item[D_ATTRIBUTES]) then
 -- Ignore directories
 if find('s', item[D_ATTRIBUTES]) then
 return W_SKIP_DIRECTORY -- Don't recurse a system directory
 else
 return 0 -- Keep processing as normal
 end if
 end if
 if not find(fileext(item[D_NAME]), {"c","h","cpp","hpp","cp"}) then
 return 0 -- ignore non-C/C++ files
 end if
 printf(STDOUT, "%s%s%s: %d\n",
 {path_name, {SLASH}, item[D_NAME], item[D_SIZE]})
 return 0 -- keep going
end function

function mysort(sequence path)
 object d

 d = dir(path)
 if atom(d) then
 return d
 end if
 -- Sort in descending file size.
 return sort_columns(d, {-D_SIZE})
end function

exit_code = walk_dir("C:\\MYFILES\\", routine_id("look_at"), TRUE,
 routine_id("mysort"))

flags

Routines
which_bit
flags_to_string

flags API

flags_to_string

returns a list of strings that represent the human-readable identities of the supplied
flag or flags.

Signature:

flags_to_string(object flag_bits, sequence flag_names,
integer expand_flags = 0)

public function
include flags.e
namespace flags

Arguments: ≡ flag_bits : Either a single 32-bit set of flags (a flag value), or a list of such flag
values. The function returns the names for these flag values.
≡ flag_names : A sequence of two-element sub-sequences. Each sub-sequence is
contains {flag value, flag name}, where flag name is a string and flag value is the set
of bits that set the flag on.
≡ expand_flags: An integer. 0 (the default) means that the flag values in flag_bits
are not broken down to their single-bit values. eg. #0c returns the name of #0c and
not the names for #08 and #04. When expand_flags is non-zero then each bit in the
flag_bits parameter is scanned for a matching name.

Returns: A sequence. This contains the name(s) for each supplied flag value(s).

Comments:
• The number of strings in the returned value depends on expand_flags is non-zero
and whether flags_bits is an atom or sequence.
• When flag_bits is an atom, you get returned a sequence of strings, one for each
matching name (according to expand_flags option).
• When flag_bits is a sequence, it is assumed to represent a list of atomic flags.
That is, {#1, #4} is a set of two flags for which you want their names. In this case, you
get returned a sequence that contains one sequence for each element in flag_bits,
which in turn contain the matching name(s).
• When a flag's name can not be found in flag_names, this function returns the name
of "?".

Example 1:

include std/console.e
sequence s
s = {
 {#00000000, "WS_OVERLAPPED"},
 {#80000000, "WS_POPUP"},
 {#40000000, "WS_CHILD"},
 {#20000000, "WS_MINIMIZE"},
 {#10000000, "WS_VISIBLE"},
 {#08000000, "WS_DISABLED"},
 {#44000000, "WS_CLIPPINGCHILD"},
 {#04000000, "WS_CLIPSIBLINGS"},
 {#02000000, "WS_CLIPCHILDREN"},
 {#01000000, "WS_MAXIMIZE"},
 {#00C00000, "WS_CAPTION"},
 {#00800000, "WS_BORDER"},
 {#00400000, "WS_DLGFRAME"},
 {#00100000, "WS_HSCROLL"},
 {#00200000, "WS_VSCROLL"},
 {#00080000, "WS_SYSMENU"},
 {#00040000, "WS_THICKFRAME"},
 {#00020000, "WS_MINIMIZEBOX"},
 {#00010000, "WS_MAXIMIZEBOX"},
 {#00300000, "WS_SCROLLBARS"},
 {#00CF0000, "WS_OVERLAPPEDWINDOW"},
 $
}
display(flags_to_string({#0C20000,2,9,0}, s,1))
--> {
--> "WS_BORDER",
--> "WS_DLGFRAME",
--> "WS_MINIMIZEBOX"
--> },

FlagValue.html
FlagName.html
FlagName.html
FlagValue.html

--> {
--> "?"
--> },
--> {
--> "?"
--> },
--> {
--> "WS_OVERLAPPED"
--> }
--> }
display(flags_to_string(#80000000, s))
--> {
--> "WS_POPUP"
--> }
display(flags_to_string(#00C00000, s))
--> {
--> "WS_CAPTION"
--> }
display(flags_to_string(#44000000, s))
--> {
--> "WS_CLIPPINGCHILD"
--> }
display(flags_to_string(#44000000, s, 1))
--> {
--> "WS_CHILD",
--> "WS_CLIPSIBLINGS"
--> }
display(flags_to_string(#00000000, s))
--> {
--> "WS_OVERLAPPED"
--> }
display(flags_to_string(#00CF0000, s))
--> {
--> "WS_OVERLAPPEDWINDOW"
--> }
display(flags_to_string(#00CF0000, s, 1))
--> {
--> "WS_BORDER",
--> "WS_DLGFRAME",
--> "WS_SYSMENU",
--> "WS_THICKFRAME",
--> "WS_MINIMIZEBOX",
--> "WS_MAXIMIZEBOX"
--> }

which_bit

tests if the supplied value has only a single bit on in its representation.
Signature:

which_bit(object theValue)

public function
include flags.e
namespace flags

Arguments: ≡ theValue : an object to test.

Returns: An integer, either 0 if it contains multiple bits, zero bits or is an invalid value,
otherwise the bit number set. The right-most bit is position 1 and the leftmost bit is
position 32.

Example 1:

? which_bit(2) --> 2
? which_bit(0) --> 0
? which_bit(3) --> 0
? which_bit(4) --> 3
? which_bit(17) --> 0
? which_bit(1.7) --> 0
? which_bit(-2) --> 0
? which_bit("one") --> 0

? which_bit(0x80000000) --> 32

get

Error Status Constants
GET_SUCCESS
GET_EOF
GET_FAIL
GET_NOTHING

Answer Types
GET_SHORT_ANSWER
GET_LONG_ANSWER

Routines
get
value
defaulted_value

Error Status Constants These are returned from get and value.

get API

GET_EOF

Signature:

GET_EOF

public constant
include get.e
namespace stdget

GET_FAIL

Signature:

GET_FAIL

public constant
include get.e
namespace stdget

GET_LONG_ANSWER

Signature:

GET_LONG_ANSWER

public constant
include get.e
namespace stdget

GET_NOTHING

Signature:

GET_NOTHING

public constant
include get.e
namespace stdget

GET_SHORT_ANSWER

Signature:

GET_SHORT_ANSWER

public constant
include get.e
namespace stdget

GET_SUCCESS

Signature:

GET_SUCCESS

public constant
include get.e
namespace stdget

defaulted_value

calls value and returns the input object on success or the default object on failure.
Signature:

defaulted_value(object st, object def, integer start_point = 1)

public function
include get.e
namespace stdget

Arguments: ≡ st : object to retrieve value from.
≡ def : the value returned if st is an atom or value(st) fails.
≡ start_point : an integer, the position in st at which to start getting the value from.
Defaults to 1

Returns:
• If st, is an atom then def is returned.
• If value(st), call is a success, then value()[2], otherwise it will return the
parameter #def#.

See Also: value
Example 1:

object i
i = defaulted_value("10", 0)
-- i is 10

i = defaulted_value("abc", 39)
-- i is 39

i = defaulted_value(12, 42)
-- i is 42

i = defaulted_value("{1,2}", 42)
-- i is {1,2}

get

Input, from an open file, a human-readable string of characters representing a
Euphoria object.

Signature:

get(integer file, integer offset = 0, integer answer = GET_SHORT_ANSWER)

public function
include get.e
namespace stdget

Arguments: ≡ file : an integer, the handle to an open file from which to read
≡ offset : an integer, an offset to apply to file position before reading. Defaults to 0.
≡ answer : an integer, either GET_SHORT_ANSWER (the default) or GET_LONG_ANSWER.

Returns: A sequence, of length 2 (GET_SHORT_ANSWER) or 4 (GET_LONG_ANSWER), made of

• an integer, the return status. This is any of:
…… ♦ GET_SUCCESS -- object was read successfully
…… ♦ GET_EOF -- end of file before object was read completely
…… ♦ GET_FAIL -- object is not syntactically correct
…… ♦ GET_NOTHING -- nothing was read, even a partial object string, before end of
input
• an object, the value that was read. This is valid only if return status is GET_SUCCESS.
• an integer, the number of characters read. On an error, this is the point at which the
error was detected.
• an integer, the amount of initial whitespace read before the first active character
was found

Comments: When answer is not specified, or explicitly GET_SHORT_ANSWER, only the first two
elements in the returned sequence are actually returned.

The GET_NOTHING return status will not be returned if answer is GET_SHORT_ANSWER.

get can read arbitrarily complicated Euphoria objects. You could have a long
sequence of values in braces and separated by commas and comments (for
example {23, {49, 57}, 0.5, -1, 99, 'A', "john"}). A single call to get will
read in this entire sequence and return its value as a result, as well as
complementary information.

If a nonzero offset is supplied, it is interpreted as an offset to the current file position,
and the file will be seek()ed there first.

get() returns a 2 or 4 element sequence, like value() does:

• a status code (success/error/end of file/no value at all)
• the value just read (meaningful only when the status code is GET_SUCCESS)
(optionally)
• the total number of characters read
• the amount of initial whitespace read.

Using the default value for answer, or setting it to GET_SHORT_ANSWER, returns 2

elements. Setting it to GET_LONG_ANSWER causes 4 elements to be returned.

Each call to get() picks up where the previous call left off. For instance, a series of
5 calls to get() would be needed to read in

"99 5.2 {1, 2, 3} "Hello" -1"

On the sixth and any subsequent call to get() you would see a GET_EOF status. If
you had something like

{1, 2, xxx}

in the input stream you would see a GET_FAIL error status because xxx is not a
Euphoria object. And seeing

-- something\nBut no value

and the input stream stops right there, you'll receive a status code of GET_NOTHING,
because nothing but whitespace or comments was read. If you had opted for a short
answer, you would get GET_EOF instead.

Multiple "top-level" objects in the input stream must be separated from each other
with one or more "whitespace" characters (blank, tab, \r or \n). At the very least, a top
level number must be followed by a white space from the following object.
Whitespace is not necessary within a top-level object. Comments, terminated by
either '\n' or '\r', are allowed anywhere inside sequences, and ignored if at the top
level. A call to get will read one entire top-level object, plus possibly one additional
(whitespace) character, after a top level number, even though the next object may
have an identifiable starting point.

The combination of print() and get() can be used to save a Euphoria object to
disk and later read it back. This technique could be used to implement a database
as one or more large Euphoria sequences stored in disk files. The sequences could
be read into memory, updated and then written back to disk after each series of
transactions is complete. Remember to write out a whitespace character (using
puts()) after each call to print(), at least when a top level number was just printed.

The value returned is not meaningful unless you have a GET_SUCCESS status.

See Also: value
Example 1:

-- If he types 77.5, get(0) would return:
{GET_SUCCESS, 77.5}

-- whereas gets(0) would return:
"77.5\n"

Example 2:

value

reads from a string, a human-readable string of characters representing a Euphoria
object.

Signature:

value(sequence st, integer start_point = 1,
integer answer = GET_SHORT_ANSWER)

public function
include get.e
namespace stdget

Arguments: ≡ st : a sequence, from which to read text
≡ offset : an integer, the position at which to start reading. Defaults to 1.
≡ answer : an integer, either GET_SHORT_ANSWER (the default) or
GET_LONG_ANSWER.

Returns: A sequence, of length 2 (GET_SHORT_ANSWER) or 4 (GET_LONG_ANSWER),
made of

• an integer, the return status. This is any of
…… ♦ GET_SUCCESS -- object was read successfully
…… ♦ GET_EOF -- end of file before object was read completely
…… ♦ GET_FAIL -- object is not syntactically correct
…… ♦ GET_NOTHING -- nothing was read, even a partial object string, before end of
input
• an object, the value that was read. This is valid only if return status is GET_SUCCESS.
• an integer, the number of characters read. On an error, this is the point at which the
error was detected.
• an integer, the amount of initial whitespace read before the first active character
was found

Comments: When answer is not specified, or explicitly GET_SHORT_ANSWER, only the first two
elements in the returned sequence are actually returned.

This works the same as get(), but it reads from a string that you supply, rather than
from a file or device.

After reading one valid representation of a Euphoria object, value() will stop
reading and ignore any additional characters in the string. For example, "36" and
"36P" will both give you {GET_SUCCESS, 36}.

The function returns {return_status, value} if the answer type is not passed or set
to GET_SHORT_ANSWER. If set to GET_LONG_ANSWER, the number of characters read and
the amount of leading whitespace are returned in 3rd and 4th position. The
GET_NOTHING return status can occur only on a long answer.

See Also: get
Example 1:

s = value("12345"}
s is {GET_SUCCESS, 12345}

Example 2:

s = value("{0, 1, -99.9}")
-- s is {GET_SUCCESS, {0, 1, -99.9}}

Example 3:

s = value("+++")
-- s is {GET_FAIL, 0}

graphcst

Error Code Constants
BMP_SUCCESS
BMP_OPEN_FAILED
BMP_UNEXPECTED_EOF
BMP_UNSUPPORTED_FORMAT
BMP_INVALID_MODE

video_config sequence accessors
VC_COLOR
VC_MODE
VC_LINES
VC_COLUMNS
VC_XPIXELS
VC_YPIXELS
VC_NCOLORS
VC_PAGES
VC_SCRNLINES
VC_SCRNCOLS

Colors
BLACK
BLUE
GREEN
CYAN
RED
MAGENTA
BROWN
WHITE
GRAY
BRIGHT_BLUE
BRIGHT_GREEN
BRIGHT_CYAN
BRIGHT_RED
BRIGHT_MAGENTA
YELLOW
BRIGHT_WHITE
true_fgcolor
true_bgcolor
BLINKING
BYTES_PER_CHAR
color

Routines
mixture
video_config
FGSET
BGSET

graphcst API

BGSET

Background set of colors
Signature:

BGSET

public enum
include graphcst.e
namespace graphcst

BLACK

Signature:

BLACK

public constant
include graphcst.e
namespace graphcst

BLINKING

provides blinking text.
Signature:

BLINKING

public constant
include graphcst.e
namespace graphcst

BLUE

Signature:

BLUE

public constant
include graphcst.e
namespace graphcst

BMP_INVALID_MODE

Signature:

BMP_INVALID_MODE

public enum
include graphcst.e
namespace graphcst

BMP_OPEN_FAILED

Signature:

BMP_OPEN_FAILED

public enum
include graphcst.e
namespace graphcst

BMP_SUCCESS

Signature:

BMP_SUCCESS

public enum
include graphcst.e
namespace graphcst

BMP_UNEXPECTED_EOF

Signature:

BMP_UNEXPECTED_EOF

public enum
include graphcst.e
namespace graphcst

BMP_UNSUPPORTED_FORMAT

Signature:

BMP_UNSUPPORTED_FORMAT

public enum
include graphcst.e
namespace graphcst

BRIGHT_BLUE

Signature:

BRIGHT_BLUE

public constant
include graphcst.e
namespace graphcst

BRIGHT_CYAN

Signature:

BRIGHT_CYAN

public constant
include graphcst.e
namespace graphcst

BRIGHT_GREEN

Signature:

BRIGHT_GREEN

public constant
include graphcst.e
namespace graphcst

BRIGHT_MAGENTA

Signature:

BRIGHT_MAGENTA

public constant
include graphcst.e
namespace graphcst

BRIGHT_RED

Signature:

BRIGHT_RED

public constant
include graphcst.e
namespace graphcst

BRIGHT_WHITE

Signature:

BRIGHT_WHITE

public constant
include graphcst.e
namespace graphcst

BROWN

Signature:

BROWN

public constant
include graphcst.e
namespace graphcst

BYTES_PER_CHAR

Signature:

BYTES_PER_CHAR

public constant
include graphcst.e
namespace graphcst

CYAN

Signature:

CYAN

public constant
include graphcst.e
namespace graphcst

FGSET

Foreground (text) set of colors
Signature:

FGSET

public enum
include graphcst.e
namespace graphcst

GRAY

Signature:

GRAY

public constant
include graphcst.e
namespace graphcst

GREEN

Signature:

GREEN

public constant
include graphcst.e
namespace graphcst

MAGENTA

Signature:

MAGENTA

public constant
include graphcst.e
namespace graphcst

RED

Signature:

RED

public constant
include graphcst.e
namespace graphcst

VC_COLOR

Signature:

VC_COLOR

public enum
include graphcst.e
namespace graphcst

VC_COLUMNS

Signature:

VC_COLUMNS

public enum
include graphcst.e
namespace graphcst

VC_LINES

Signature:

VC_LINES

public enum
include graphcst.e
namespace graphcst

VC_MODE

Signature:

VC_MODE

public enum
include graphcst.e
namespace graphcst

VC_NCOLORS

Signature:

VC_NCOLORS

public enum
include graphcst.e

namespace graphcst

VC_PAGES

Signature:

VC_PAGES

public enum
include graphcst.e
namespace graphcst

VC_SCRNCOLS

Signature:

VC_SCRNCOLS

public enum
include graphcst.e
namespace graphcst

VC_SCRNLINES

Signature:

VC_SCRNLINES

public enum
include graphcst.e
namespace graphcst

VC_XPIXELS

Signature:

VC_XPIXELS

public enum
include graphcst.e
namespace graphcst

VC_YPIXELS

Signature:

VC_YPIXELS

public enum
include graphcst.e
namespace graphcst

WHITE

Signature:

WHITE

public constant
include graphcst.e
namespace graphcst

YELLOW

Signature:

YELLOW

public constant
include graphcst.e
namespace graphcst

color

Signature:

color(object x)

public type
include graphcst.e
namespace graphcst

mixture

is a type for mixtures.
Signature:

mixture(object s)

public type
include graphcst.e
namespace graphcst

Comments: A mixture is a {red, green, blue} triple of intensities, which enables you to define
custom colors. Intensities must be from 0 (weakest) to 63 (strongest). Thus, the
brightest white is {63, 63, 63}.

true_bgcolor

Signature:

true_bgcolor

export sequence
include graphcst.e
namespace graphcst

true_fgcolor

Signature:

true_fgcolor

export sequence
include graphcst.e
namespace graphcst

video_config

returns a description of the current video configuration.
Signature:

video_config()

public function
include graphcst.e
namespace graphcst

Returns: A sequence, of 10 non-negative integers, laid out as follows: # color monitor? -- 1 0
if monochrome, 1 otherwise # current video mode # number of text rows in console
buffer # number of text columns in console buffer # screen width in pixels # screen
height in pixels # number of colors # number of display pages # number of text rows
for current screen size # number of text columns for current screen size

Comments: A public enum is available for convenient access to the returned configuration data:
• VC_COLOR
• VC_MODE
• VC_LINES
• VC_COLUMNS
• VC_XPIXELS
• VC_YPIXELS
• VC_NCOLORS
• VC_PAGES
• VC_SCRNLINES
• VC_SCRNCOLS

This routine makes it easy for you to parameterize a program so it will work in many
different graphics modes.

See Also: graphics_mode

Color Set Selection
Example 1:

vc = video_config()
-- vc could be {1, 3, 300, 132, 0, 0, 32, 8, 37, 90}

graphics

Routines
position
get_position
text_color
bk_color

console_colors
wrap
scroll

Graphics Modes
graphics_mode

graphics API

bk_color

sets the background color to one of the 16 standard colors.
Signature:

bk_color(color c)

public procedure
include graphics.e
namespace graphics

Arguments: ≡ c : the new text color. Add BLINKING to get blinking text in some modes.

Comments: To restore the original background color when your program finishes (for example: 0
-- BLACK) you must call bk_color(0). If the cursor is at the bottom line of the screen,
you may have to actually print something before terminating your program. Printing
'\n' may be enough.

See Also: text_color
Example 1:

bk_color(BLACK)

console_colors

sets the codes for the colors used in text_color and bk_color.
Signature:

console_colors(sequence colorset = {})

public function
include graphics.e
namespace graphics

Arguments: ≡ colorset : A sequence in one of two formats. Containing two sets of exactly
16 color numbers in which the first set are foreground (text) colors and

the other set are background colors. Containing a set of exactly sixteen color
numbers. These are to be applied to both foreground and background.

Returns: A sequence: This contains two sets of 16 color values currently in use for FG and
BG respectively.

Comments:
• If the colorset is omitted then this just returns the current values without changing
anything.
• A color set contains 16 values. You can access the color value for a specific color
by using [X + 1] where 'X' is one of the Euphoria color constants such as RED, BLUE,
etc ...
• This can be used to change the meaning of the standard color codes for some
consoles that are not using standard values. For example, the Unix default color
value for RED is 1 and BLUE is 4, but you might need this to swapped. See code
example 1. Another use might be to suppress highlighted (bold) colors. See code

example 1. Another use might be to suppress highlighted (bold) colors. See code
example 2.

See Also: text_color bk_color
Example 1:

sequence cs
cs = console_colors() -- Get the current FG and BG color values.
cs[FGSET][RED + 1] = 4 -- set RED to 4
cs[FGSET][BLUE + 1] = 1 -- set BLUE to 1
cs[BGSET][RED + 1] = 4 -- set RED to 4
cs[BGSET][BLUE + 1] = 1 -- set BLUE to 1
console_colors(cs)

Example 2:

-- Prevent highlighted background colors
sequence cs
cs = console_colors()
for i = GRAY + 1 to BRIGHT_WHITE + 1 do
 cs[BGSET][i] = cs[BGSET][i - 8]
end for
console_colors(cs)

get_position

returns the current line and column position of the cursor .
Signature:

get_position()

public function
include graphics.e
namespace graphics

Returns: A sequence, {line, column}, the current position of the text mode cursor.

Comments: The coordinate system for displaying text is different from the one for displaying
pixels. Pixels are displayed such that the top-left is (x=0,y=0) and the first coordinate
controls the horizontal, left-right location. In pixel-graphics modes you can display
both text and pixels. get_position() returns the current line and column for the text
that you are displaying, not the pixels that you may be plotting. There is no
corresponding routine for getting the current pixel position, because there is not
such a thing.

See Also: position

graphics_mode

attempts to set up a new graphics mode.
Signature:

graphics_mode(object m = - 1)

public function
include graphics.e
namespace graphics

Arguments: ≡ x : an object, but it will be ignored.

Returns: An integer, always returns zero.

Comments:
• This has no effect on unix platforms.
• On windows it causes a console to be shown if one has not already been created.

See Also: video_config

position

Signature:

position(integer row, integer column)

<built-in> procedure

Arguments: ≡ row : an integer, the index of the row to position the cursor on.
≡ column : an integer, the index of the column to position the cursor on.

Comments: Set the cursor to line row, column column, where the top left corner of the screen is
line 1, column 1. The next character displayed on the screen will be printed at this
location. position() will report an error if the location is off the screen. The windows
console does not check for rows, as the physical height of the console may be vastly
less than its logical height.

See Also: get_position
Example 1:

position(2,1)
-- the cursor moves to the beginning of the second line from the top

scroll

scrolls a region of text on the screen.
Signature:

scroll(integer amount, console :positive_int top_line,
console :positive_int bottom_line)

public procedure
include graphics.e
namespace graphics

Arguments: ≡ amount : an integer, the number of lines by which to scroll. This is >0 to scroll up
and <0 to scroll down.
≡ top_line : the 1-based number of the topmost line to scroll.
≡ bottom_line : the 1-based number of the bottom-most line to scroll.

Comments:
• New blank lines will appear at the vacated lines.
• You could perform the scrolling operation using a series of calls to [:puts]](), but
scroll() is much faster.
• The position of the cursor after scrolling is not defined.

See Also: clear_screen, text_rows
Example 1:

text_color

sets the foreground text color.
Signature:

text_color(color c)

public procedure
include graphics.e
namespace graphics

Arguments: ≡ c : the new text color. Add BLINKING to get blinking text in some modes.

Comments: Text that you print after calling text_color() will have the desired color.

When your program terminates, the last color that you selected and actually printed
on the screen will remain in effect. Thus you may have to print something, maybe
just '\n', in WHITE to restore white text, especially if you are at the bottom line of the
screen, ready to scroll up.

See Also: bk_color , clear_screen
Example 1:

text_color(BRIGHT_BLUE)

wrap

determines whether text will wrap when hitting the rightmost column.
Signature:

wrap(object on = 1)

public procedure
include graphics.e
namespace graphics

Arguments: ≡ on : an object, 0 to truncate text, anything else to wrap.

Comments: By default text will wrap.

Use wrap() in text modes or pixel-graphics modes when you are displaying long
lines of text.

See Also: puts, position
Example 1:

puts(1, repeat('x', 100) & "\n\n")
-- now have a line of 80 'x' followed a line of 20 more 'x'
wrap(0)
puts(1, repeat('x', 100) & "\n\n")
-- creates just one line of 80 'x'

hash

Type Constants
HSIEH30
HSIEH32
ADLER32
FLETCHER32
MD5
SHA256

Routines
hash

hash API

ADLER32

Signature:

ADLER32

public enum
include hash.e
namespace stdhash

FLETCHER32

Signature:

FLETCHER32

public enum
include hash.e
namespace stdhash

HSIEH30

Signature:

HSIEH30

public enum
include hash.e
namespace stdhash

HSIEH32

Signature:

HSIEH32

public enum
include hash.e
namespace stdhash

MD5

Signature:

MD5

public enum
include hash.e
namespace stdhash

SHA256

Signature:

SHA256

public enum
include hash.e
namespace stdhash

hash

calculates a hash value from a key using the algorithm algo.
Signature:

hash(object source, atom algo)

<built-in> function

Arguments: ≡ source : Any Euphoria object
≡ algo : A code indicating which algorithm to use.
…… ♦ HSIEH30 uses Hsieh. Returns a 30-bit (a Euphoria integer). Fast and good
dispersion
…… ♦ HSIEH32 uses Hsieh. Returns a 32-bit value. Fast and very good dispersion
…… ♦ ADLER32 uses Adler. Very fast and reasonable dispersion, especially for
small strings
…… ♦ FLETCHER32 uses Fletcher. Very fast and good dispersion
…… ♦ MD5 uses MD5 (not implemented yet) Slower but very good dispersion.
Suitable for signatures.
…… ♦ SHA256 uses SHA256 (not implemented yet) Slow but excellent dispersion.
Suitable for signatures. More secure than MD5.
…… ♦ 0 and above (integers and decimals) and non-integers less than zero use the
cyclic variant (hash = hash * algo + c). This is a fast and good to excellent
dispersion depending on the value of algo. Decimals give better dispersion but are
slightly slower.

Returns: An atom, Except for the HSIEH30, MD5 and SHA256 algorithms, this is a 32-bit
integer.
An integer, Except for the HSIEH30 algorithms, this is a 30-bit integer.
A sequence, MD5 returns a 4-element sequence of integers
SHA256 returns a 8-element sequence of integers.

Comments:
• For algo values from zero to less than 1, that actual value used is (algo + 69096).

Example 1:

? hash("The quick brown fox jumps over the lazy dog", 0)
 --> 3071488335
? hash("The quick brown fox jumps over the lazy dog", 99)
 --> 4122557553
? hash("The quick brown fox jumps over the lazy dog", 99.94)
 --> 95918096
? hash("The quick brown fox jumps over the lazy dog", -99.94)
 --> 4175585990
? hash("The quick brown fox jumps over the lazy dog", HSIEH30)
 --> 96435427
? hash("The quick brown fox jumps over the lazy dog", HSIEH32)
 --> 96435427
? hash("The quick brown fox jumps over the lazy dog", ADLER32)
 --> 1541148634
? hash("The quick brown fox jumps over the lazy dog", FLETCHER32)
 --> 1730140417
? hash(123, 99)
 --> 1188623852
? hash(1.23, 99)
 --> 3808916725
? hash({1, {2,3, {4,5,6}, 7}, 8.9}, 99)
 --> 526266621

image

graphics_point
Bitmap handling

read_bitmap
save_bitmap

image API

graphics_point

Signature:

graphics_point(object p)

public type
include image.e
namespace image

read_bitmap

reads a bitmap (.bmp) file into a 2-d sequence of sequences (image)
Signature:

read_bitmap(sequence file_name)

public function
include image.e
namespace image

Arguments: ≡ file_name : a sequence, the path to a .bmp file to read from. The extension is not
assumed if missing.

Returns: An object, on success, a sequence of the form {palette,image}. On failure, an error
code is returned.

Comments: In the returned value, the first element is a list of mixtures, each of which defines a
color, and the second, a list of point rows. Each pixel in a row is represented by its
color index.

The file should be in the bitmap format. The most common variations of the format
are supported.

Bitmaps of 2, 4, 16 or 256 colors are supported.

If the file is not in a good format, an error code (atom) is returned instead:
BMP_OPEN_FAILED = 1,
BMP_UNEXPECTED_EOF = 2,
BMP_UNSUPPORTED_FORMAT = 3

You can create your own bitmap picture files using Windows Paintbrush and many
other graphics programs. You can then incorporate these pictures into your
Euphoria programs.

See Also: save_bitmap
Example 1:

x = read_bitmap("c:\\windows\\arcade.bmp")

-- Write escaped backslash \\ to get a single backslash \ in a string

save_bitmap

creates a .BMP bitmap file, given a palette and a 2-d sequence of sequences of
colors.

Signature:

save_bitmap(two_seq palette_n_image, sequence file_name)

public function
include image.e
namespace image

Arguments: ≡ palette_n_image : a {palette, image} pair, like read_bitmap() returns
≡ file_name : a sequence, the name of the file to save to.

Returns: An integer, 0 on success.

Comments: This routine does the opposite of read_bitmap(). The first element of
palette_n_image is a sequence of mixtures defining each color in the bitmap. The
second element is a sequence of sequences of colors. The inner sequences must
have the same length.

The result will be one of the following codes:
BMP_SUCCESS = 0,
BMP_OPEN_FAILED = 1,
BMP_INVALID_MODE = 4

save_bitmap() produces bitmaps of 2, 4, 16, or 256 colors and these can all be read
with read_bitmap(). Windows Paintbrush and some other tools do not support 4-
color bitmaps.

See Also: read_bitmap
Example 1:

code = save_bitmap({paletteData, imageData},
 "c:\\example\\a1.bmp")

io

Constants
STDIN
STDOUT
STDERR
SCREEN
EOF

Read and Write Routines
?
print
printf
puts
getc
gets
get_bytes
get_integer32
get_integer16

put_integer32
put_integer16
get_dstring

Low Level File/Device Handling
LOCK_SHARED
LOCK_EXCLUSIVE
file_number
file_position
lock_type
byte_range
open
close
seek
where
flush
lock_file
unlock_file

File Reading and Writing
read_lines
process_lines
write_lines
append_lines
BINARY_MODE
TEXT_MODE
UNIX_TEXT
DOS_TEXT
read_file
write_file
writef
writefln

Read and Write Routines

io API

?

"quick print" is shorthand for: pretty_print(STDOUT, x, {}).
Signature:

?

<built-in> procedure

Comments: This procedure prints the value of an expression to the standard output, using
braces and indentation to show the structure.

No parentheses, (), are used to surround the unique parameter.

See Also: print
Example 1:

? {1, 2} + {3, 4} -- will display {4, 6}

BINARY_MODE

Signature:

BINARY_MODE

public enum
include io.e
namespace io

DOS_TEXT

Signature:

DOS_TEXT

public enum
include io.e
namespace io

EOF

End of file
Signature:

EOF

public constant
include io.e
namespace io

LOCK_EXCLUSIVE

Signature:

LOCK_EXCLUSIVE

public enum
include io.e
namespace io

LOCK_SHARED

Signature:

LOCK_SHARED

public enum
include io.e
namespace io

SCREEN

Screen (Standard Out)

Signature:

SCREEN

public constant
include io.e
namespace io

STDERR

Standard Error
Signature:

STDERR

public constant
include io.e
namespace io

STDIN

Standard Input
Signature:

STDIN

public constant
include io.e
namespace io

STDOUT

Standard Output
Signature:

STDOUT

public constant
include io.e
namespace io

TEXT_MODE

Signature:

TEXT_MODE

public enum
include io.e
namespace io

UNIX_TEXT

Signature:

UNIX_TEXT

public enum
include io.e
namespace io

append_lines

appends a sequence of lines to a file.
Signature:

append_lines(sequence file, sequence lines)

public function
include io.e
namespace io

Arguments: ≡ file : an object, either a file path or the handle to an open file.
≡ lines : the sequence of lines to write

Returns: An integer, 1 on success, -1 on failure.

Comments: file is opened, written to and then closed.

See Also: write_lines, puts
Example 1:

if append_lines("data.txt",{"This is important data","Goodbye"})!=-1
 then puts(STDERR, "Failed to append data\n")
end if

byte_range

Byte Range Type
Signature:

byte_range(object r)

public type
include io.e
namespace io

close

closes a file (or device) and flushs out any still-buffered characters.
Signature:

close(atom fn)

<built-in> procedure

Arguments: ≡ fn : an integer, the handle to the file or device to query.

Comments: All open files are closed automatically when your program terminates.

file_number

File number type

Signature:

file_number(object f)

public type
include io.e
namespace io

file_position

File position type
Signature:

file_position(object p)

public type
include io.e
namespace io

flush

Force writing any buffered data to an open file or device.
Signature:

flush(file_number fn)

public procedure
include io.e
namespace io

Arguments: ≡ fn : an integer, the handle to the file or device to close.

Returns: An integer, 0 on failure, 1 on success.

Comments: When you write data to a file, Euphoria normally stores the data in a memory buffer
until a large enough chunk of data has accumulated. This large chunk can then be
written to disk very efficiently. Sometimes you may want to force, or flush, all data
out immediately, even if the memory buffer is not full. To do this you must call
flush(fn), where fn is the file number of a file open for writing or appending.

When a file is closed, (see close()), all buffered data is flushed out. When a program
terminates, all open files are flushed and closed automatically. Use flush() when
another process may need to see all of the data written so far, but you are not ready
to close the file yet. flush() is also used in crash routines, where files may not be
closed in the cleanest possible way.

See Also: close, crash_routine

When multiple processes can simultaneously access a file, some kind of locking
mechanism may be needed to avoid mangling the contents of the file, or causing
erroneous data to be read from the file.

Example 1:

f = open("file.log", "w")
puts(f, "Record#1\n")
puts(STDOUT, "Press Enter when ready\n")

flush(f) -- This forces "Record #1" into "file.log" on disk.
 -- Without this, "file.log" will appear to have

 -- 0 characters when we stop for keyboard input.

s = gets(0) -- wait for keyboard input

get_bytes

reads the next bytes from a file.
Signature:

get_bytes(integer fn, integer n)

public function
include io.e
namespace io

Arguments: ≡ fn : an integer, the handle to an open file to read from.
≡ n : a positive integer, the number of bytes to read.

Returns: A sequence, of length at most n, made of the bytes that could be read from the file.

Comments: When n > 0 and the function returns a sequence of length less than n you know you
have reached the end of file. Eventually, an empty sequence will be returned.

This function is normally used with files opened in binary mode, "rb". This avoids
the confusing situation in text mode where windows will convert CR LF pairs to LF.

See Also: getc, gets, get_integer32, get_dstring
Example 1:

integer fn
fn = open("temp", "rb") -- an existing file

sequence whole_file
whole_file = {}

sequence chunk

while 1 do
 chunk = get_bytes(fn, 100) -- read 100 bytes at a time
 whole_file &= chunk -- chunk might be empty, that's ok
 if length(chunk) < 100 then
 exit
 end if
end while

close(fn)
? length(whole_file) -- should match DIR size of "temp"

get_dstring

reads a delimited byte string from an opened file .
Signature:

get_dstring(integer fh, integer delim = 0)

public function
include io.e
namespace io

Arguments: ≡ fh : an integer, the handle to an open file to read from.
≡ delim : an integer, the delimiter that marks the end of a byte string. If omitted, a
zero is assumed.

Returns: An sequence, made of the bytes that could be read from the file.

Comments:
• If the end-of-file is found before the delimiter, the delimiter is appended to the

• If the end-of-file is found before the delimiter, the delimiter is appended to the
returned string.

See Also: getc, gets, get_bytes, get_integer32
Example 1:

integer fn
fn = open("temp", "rb") -- an existing file

sequence text
text = get_dstring(fn) -- Get a zero-delimited string
text = get_dstring(fn, '$') -- Get a '$'-delimited string

get_integer16

read the next two bytes from a file and returns them as a single integer.
Signature:

get_integer16(integer fh)

public function
include io.e
namespace io

Arguments: ≡ fh : an integer, the handle to an open file to read from.

Returns: An integer, made of the bytes that could be read from the file. When an end of file is
encountered, it returns -1.

Comments:
• This function is normally used with files opened in binary mode, "rb".

See Also: getc, gets, get_bytes, get_dstring
Example 1:

integer fn
fn = open("temp", "rb") -- an existing file

atom file_type_code
file_type_code = get_integer16(fn)

get_integer32

reads the next four bytes from a file and returns them as a single integer.
Signature:

get_integer32(integer fh)

public function
include io.e
namespace io

Arguments: ≡ fh : an integer, the handle to an open file to read from.

Returns: An atom, between -1 and power(2,32)-1, made of the bytes that could be read from
the file. When an end of file is encountered, it returns -1.

Comments:
• This function is normally used with files opened in binary mode, "rb".

See Also: getc, gets, get_bytes, get_dstring
Example 1:

integer fn
fn = open("temp", "rb") -- an existing file

atom file_type_code

file_type_code = get_integer32(fn)

getc

gets the next character (byte) from a file or device fn.
Signature:

getc(integer fn)

<built-in> function

Arguments: ≡ fn : an integer, the handle of the file or device to read from.

Returns: An integer, the character read from the file, in the 0..255 range. If no character is left
to read, EOF is returned instead.

Comments: File input using getc() is buffered. The function getc() does not access the disk for
each individual character, but instead reads a large block of characters; individual
characters are returned to you, one by one, from a memory buffer.

Keyboard input using getc() is also buffered. The function getc() will not receive
any characters until the user presses Enter. Note that the user can type Control+Z,
which the operating system treats as "end of file". EOF will be returned.

See Also: gets, get_key

gets

gets the next sequence (one line, including '\n') of characters from a file or device.
Signature:

gets(integer fn)

<built-in> function

Arguments: ≡ fn : an integer, the handle of the file or device to read from.

Returns: An object, either EOF on end of file, or the next line of text from the file.

Comments: The characters will have values from 0 to 255.

If the line has an end of line marker then a newline character ('\n') terminates the
line. The last line of a file does not require an end of line marker and could be
missing.

After reading a line of text from the keyboard, you should normally output a \n
character (for example puts(1, '\n')) before printing something. Only on the last
line of the screen does the operating system automatically scroll the screen and
advance to the next line.

When your program reads from the keyboard, the user can type Control-Z, which the
operating system treats as "end of file". EOF will be returned.

See Also: getc, read_lines
Example 1:

sequence buffer
object line
integer fn

-- read a text file into a sequence
fn = open("my_file.txt", "r")
if fn = -1 then
 puts(1, "Couldn't open my_file.txt\n")

 abort(1)
end if

buffer = {}
while 1 do
 line = gets(fn)
 if atom(line) then
 exit -- EOF is returned at end of file
 end if
 buffer = append(buffer, line)
end while

Example 2:

object line

puts(1, "What is your name?\n")
line = gets(0) -- read standard input (keyboard)
line = line[1..$-1] -- get rid of \n character at end
puts(1, '\n') -- necessary
puts(1, line & " is a nice name.\n")

lock_file

Signature:

lock_file(file_number fn, lock_type t, byte_range r = {})

public function
include io.e
namespace io

lock_type

Lock Type
Signature:

lock_type(object t)

public type
include io.e
namespace io

open

opens a file (or device) and provides a file number.
Signature:

open(sequence path, sequence mode, integer cleanup = 0)

<built-in> function

Arguments: ≡ path : a string, the path to the file or device to open.
≡ mode : a string, the mode being used o open the file.
≡ cleanup : an integer, if 0, then the file must be manually closed by the coder. If 1,
then the file will be closed when either the file handle references go to 0, or if called
as a parameter to delete().

Returns: A small integer, -1 on failure, else 0 or more.

Comments: Possible modes are:

• "r" -- open text file for reading
• "rb" -- open binary file for reading
• "w" -- create text file for writing
• "wb" -- create binary file for writing
• "u" -- open text file for update (reading and writing)
• "ub" -- open binary file for update
• "a" -- open text file for appending
• "ab" -- open binary file for appending

Files opened for read or update must already exist. Files opened for write or append
will be created if necessary. A file opened for write will be set to 0 bytes. Output to a
file opened for append will start at the end of file.

On windows, output to text files will have carriage-return characters automatically
added before linefeed characters. On input, these carriage-return characters are
removed. A Control-Z character (ASCII 26) will signal an immediate end of file.

I/O to binary files is not modified in any way. Any byte values from 0 to 255 can be
read or written. On unix, all files are binary files, so "r" mode and "rb" mode are
equivalent, as are "w" and "wb", "u" and "ub", and "a" and "ab".

Some typical devices that you can open on windows are:

• "CON" -- the console (screen)
• "AUX" -- the serial auxiliary port
• "COM1" -- serial port 1
• "COM2" -- serial port 2
• "PRN" -- the printer on the parallel port
• "NUL" -- a non-existent device that accepts and discards output

Close a file or device when done with it, flushing out any still-buffered characters
prior.

On windows and unix long filenames are fully supported for reading, writing, and
creating.

On windows be careful not to use the special device identifiers in a file name. Even
if you add an extension, they will still refer to the device; for example CON.TXT,
CON.DAT, or CON.JPG all refer to the CON device and not to separate files.

Example 1:

integer file_num, file_num95
sequence first_line
constant ERROR = 2

file_num = open("my_file", "r")
if file_num = -1 then
 puts(ERROR, "couldn't open my_file\n")
else
 first_line = gets(file_num)
end if

file_num = open("PRN", "w") -- open printer for output

-- on Windows 95:
file_num95 = open("big_directory_name\\very_long_file_name.abcdefg",
 "r")
if file_num95 != -1 then
 puts(STDOUT, "it worked!\n")
end if

print

writes a text representation of an object to a file or device.
Signature:

print(integer fn, object x)

<built-in> procedure

Arguments: ≡ fn : an integer, the handle of a file or device
≡ x : the object to print

Comments: This is not used to write to "binary" files as it only outputs text.

See Also: [[:q_print ?]], puts
Example 1:

include std/io.e
print(STDOUT, "ABC") -- output is: "{65,66,67}"
puts (STDOUT, "ABC") -- output is: "ABC"
print(STDOUT, "65") -- output is: "65"
puts (STDOUT, 65) -- output is: "A" (ASCII-65 ==> 'A')
print(STDOUT, 65.1234) -- output is: "65.1234"
puts (STDOUT, 65.1234) -- output is: "A" (Converts to integer first)

Example 2:

include std/io.e
print(STDOUT, repeat({10,20}, 3)) -- output is: {{10,20},{10,20},{10,20}}

printf

prints a value (or several values) embedded in a string sequence containing format
specifiers.

Signature:

printf(integer fn, sequence format, object values)

<built-in> procedure

Arguments: ≡ fn : an integer, the handle to a file or device to output to
≡ format : a sequence, the text to print. This text may contain format specifiers.
≡ values : usually, a sequence of values. It should have as many elements as format
specifiers in format, as these values will be substituted to the specifiers.

Comments: A format specifier is a string of characters starting with a percent sign (%) and
ending in a letter. Some extra information may come in between those.

This procedure writes out the format text to the output file fn, replacing format
specifiers with the corresponding data from the values parameter. Whenever a
format specifiers is found in formatt, the N-th item in values will be turned into a
string according to the format specifier. The resulting string will the format specifier.
This means that the first format specifier uses the first item in values, the second
format specifier the second item, and so on.

You must have at least as many items in values as there are format specifiers in
format. This means that if there is only one format specifier then values can be
either an atom, integer or a non-empty sequence. And when there are more than
one format specifier in format then values must be a sequence with a length that is
greater than or equal to the number of format specifiers present.

This way, printf() always takes exactly three arguments, no matter how many
values are to be printed.

The basic format specifiers are:

• %d -- print an atom as a decimal integer
• %x -- print an atom as a hexadecimal integer. Negative numbers are printed in two's
complement, so -1 will print as FFFFFFFF
• %o -- print an atom as an octal integer
• %s -- print a sequence as a string of characters, or print an atom as a single
character
• %e -- print an atom as a floating-point number with exponential notation
• %f -- print an atom as a floating-point number with a decimal point but no exponent
• %g -- print an atom as a floating-point number using whichever format seems
appropriate, given the magnitude of the number
• %% -- print a literal '%' character; this is not an actual format specifier.

Field widths can be added to the basic formats (for example %5d, %8.2f, %10.4s).
The number before the decimal point is the minimum field width to be used. The
number after the decimal point is the precision to be used for numeric values.

If the field width is negative (for example %-5d) then the value will be left-justified
within the field. Normally it will be right-justified, even for strings. If the field width
starts with a leading zero (for example %08d) then leading zeros will be supplied to
fill up the field. If the field width starts with a plus symbol, '+', (for example %+7d)
then a plus symbol will be printed for positive values.

Example 1:

include std/io.e
sequence name="John Smith"
printf(STDOUT, "My name is %s", name)

The output of this will be My name is J because each format specifier uses exactly one item from
the values parameter. In this case we have only one specifier so it uses the first item in the
values parameter, which is the character 'J'. To fix this situation, you must ensure that the first
item in the values parameter is the entire text string and not just a character, so you need code
this instead:

include std/io.e
name="John Smith"
printf(STDOUT, "My name is %s", {name})

Now, the third argument of printf() is a one-element sequence containing all the text to be
formatted.

Also note that if there is only one format specifier then values can simply be an atom or integer.

Example 2:

include std/io.e
atom rate = 7.875
printf(STDOUT, "The interest rate is: %8.2f\n", rate)

-- The interest rate is: 7.88

Example 3:

include std/io.e
sequence name="John Smith"
integer score=97
printf(STDOUT, "%15s, %5d\n", {name, score})

-- " John Smith, 97"

Example 4:

include std/io.e
printf(STDOUT, "%-10.4s $ %s", {"ABCDEFGHIJKLMNOP", "XXX"})
-- ABCD $ XXX

Example 4:

include std/io.e
printf(STDOUT, "%d %e %f %g", repeat(7.75, 4))
 -- same value in different formats

-- 7 7.750000e+000 7.750000 7.75

Example 5:

include std/io.e
sequence name = {"John", "Smith"}
printf(STDOUT, "%s", {name})

process_lines

processes the contents of a file, one line at a time.
Signature:

process_lines(object file, integer proc, object user_data = 0)

public function
include io.e
namespace io

Arguments: ≡ file : an object. Either a file path or the handle to an open file. An empty string
signifies STDIN - the console keyboard.
≡ proc : an integer. The routine_id of a function that will process the line.
≡ user_data : on object. This is passed untouched to proc for each line.

Returns: An object. If 0 then all the file was processed successfully. Anything else means that
something went wrong and this is whatever value was returned by proc.

Comments:
• The function proc must accept three parameters ...
…… ♦ A sequence: The line to process. It will not contain an end-of-line character.
…… ♦ An integer: The line number.
…… ♦ An object : This is the user_data that was passed to process_lines.
• If file was a sequence, the file will be closed on completion. Otherwise, it will
remain open, and be positioned where ever reading stopped.

See Also: gets, read_lines, read_file
Example 1:

-- Format each supplied line according to the format pattern supplied as well.
function show(sequence aLine, integer line_no, object data)
 writefln(data[1], {line_no, aLine})
 if data[2] > 0 and line_no = data[2] then
 return 1
 else
 return 0
 end if
end function
-- Show the first 20 lines.
process_lines("sample.txt", routine_id("show"), {"[1z:4] : [2]", 20})

put_integer16

writes the supplied integer as two bytes to a file.
Signature:

put_integer16(integer fh, atom val)

public procedure
include io.e

include io.e
namespace io

Arguments: ≡ fh : an integer, the handle to an open file to write to.
≡ val : an integer

Comments:
• This function is normally used with files opened in binary mode, "wb".

See Also: getc, gets, get_bytes, get_dstring
Example 1:

integer fn
fn = open("temp", "wb")

put_integer16(fn, 1234)

put_integer32

writes the supplied integer as four bytes to a file.
Signature:

put_integer32(integer fh, atom val)

public procedure
include io.e
namespace io

Arguments: ≡ fh : an integer, the handle to an open file to write to.
≡ val : an integer

Comments:
• This function is normally used with files opened in binary mode, "wb".

See Also: getc, gets, get_bytes, get_dstring
Example 1:

integer fn
fn = open("temp", "wb")

put_integer32(fn, 1234)

puts

outputs to a file or device, a single byte (atom) or sequence of bytes. The low order
Signature:

puts(integer fn, object text)

<built-in> procedure

Arguments: ≡ fn : an integer, the handle to an opened file or device
≡ text : an object, either a single character or a sequence of characters.

Comments: When you output a sequence of bytes it must not have any (sub)sequences within it.
It must be a sequence of atoms only. (Typically a string of ASCII codes).

Avoid outputting 0's to the screen or to standard output. Your output might get
truncated.

Remember that if the output file was opened in text mode, windows will change \n
(10) to \r\n (13 10). Open the file in binary mode if this is not what you want.

See Also: print
Example 1:

include std/io.e
puts(SCREEN, "Enter your first name: ")

Example 2:

puts(output, 'A') -- the single byte 65 will be sent to output

read_file

reads the contents of a file as a single sequence of bytes.
Signature:

read_file(object file, integer as_text = BINARY_MODE)

public function
include io.e
namespace io

Arguments: ≡ file : an object, either a file path or the handle to an open file.
≡ as_text : integer, BINARY_MODE (the default) assumes binary mode that causes
every byte to be read in, and TEXT_MODE assumes text mode that ensures that
lines end with just a Control-J (new line) character, and the first byte value of 26
(Control-Z) is interpreted as End-Of-File.

Returns: A sequence, holding the entire file.

Comments
• When using BINARY_MODE, each byte in the file is returned as an element in the
return sequence.
• When not using BINARY_MODE, the file will be interpreted as a text file. This
means that all line endings will be transformed to a single 0x0A character and the
first 0x1A character (Control-Z) will indicate the end of file (all data after this will not
be returned to the caller.)

See Also: write_file, read_lines
Example 1:

data = read_file("my_file.txt")
-- data contains the entire contents of ##my_file.txt##

Example 2:

fh = open("my_file.txt", "r")
data = read_file(fh)
close(fh)

-- data contains the entire contents of ##my_file.txt##

read_lines

reads the contents of a file as a sequence of lines.
Signature:

read_lines(object file)

public function
include io.e
namespace io

Arguments: file : an object, either a file path or the handle to an open file. If this is an empty
string, STDIN (the console) is used.

Returns: -1 on error or a sequence, made of lines from the file, as gets could read them.

NewLine.html

Comments: If file was a sequence, the file will be closed on completion. Otherwise, it will
remain open, but at end of file.

See Also: gets, write_lines, read_file
Example 1:

data = read_lines("my_file.txt")
-- data contains the entire contents of ##my_file.txt##, 1 sequence per line:
-- {"Line 1", "Line 2", "Line 3"}

Example 2:

fh = open("my_file.txt", "r")
data = read_lines(fh)
close(fh)

-- data contains the entire contents of ##my_file.txt##, 1 sequence per line:
-- {"Line 1", "Line 2", "Line 3"}

seek

seeks (moves) to any byte position in a file.
Signature:

seek(file_number fn, file_position pos)

public function
include io.e
namespace io

Arguments: ≡ fn : an integer, the handle to the file or device to seek()
≡ pos : an atom, either an absolute 0-based position or -1 to seek to end of file.

Returns: An integer, 0 on success, 1 on failure.

Comments: For each open file, there is a current byte position that is updated as a result of I/O
operations on the file. The initial file position is 0 for files opened for read, write or
update. The initial position is the end of file for files opened for append. It is possible
to seek past the end of a file. If you seek past the end of the file, and write some
data, undefined bytes will be inserted into the gap between the original end of file
and your new data.

After seeking and reading (writing) a series of bytes, you may need to call seek()
explicitly before you switch to writing (reading) bytes, even though the file position
should already be what you want.

This function is normally used with files opened in binary mode. In text mode,
Windows converts CR LF to LF on input, and LF to CR LF on output, which can
cause great confusion when you are trying to count bytes because seek() counts the
windows end of line sequences as two bytes, even if the file has been opened in
text mode.

See Also: get_bytes, puts, where
Example 1:

include std/io.e

integer fn
fn = open("my.data", "rb")
-- read and display first line of file 3 times:
for i = 1 to 3 do
 puts(STDOUT, gets(fn))
 if seek(fn, 0) then
 puts(STDOUT, "rewind failed!\n")
 end if
end for

unlock_file

unlocks (a portion of) an open file.
Signature:

unlock_file(file_number fn, byte_range r = {})

public procedure
include io.e
namespace io

Arguments: ≡ fn : an integer, the handle to the file or device to (partially) lock.
≡ r : a sequence, defining a section of the file to be locked, or {} for the whole file
(the default).

Comments: You must have previously locked the file using lock_file(). On windows you can
unlock a range of bytes within a file by specifying the r as {first_byte, last_byte}. The
same range of bytes must have been locked by a previous call to lock_file(). On unix
you can currently only lock or unlock an entire file. r should be {} when you want to
unlock an entire file. On unix, r must always be {}, which is the default.

You should unlock a file as soon as possible so other processes can use it.

Any files that you have locked, will automatically be unlocked when your program
terminates.

See Also: lock_file

where

retrieves the current file position for an opened file or device.
Signature:

where(file_number fn)

public function
include io.e
namespace io

Arguments: ≡ fn : an integer, the handle to the file or device to query.

Returns: An atom, the current byte position in the file.

Comments: The file position is is the place in the file where the next byte will be read from, or
written to. It is updated by reads, writes and seeks on the file. This procedure always
counts windows end of line sequences (CR LF) as two bytes even when the file
number has been opened in text mode.

write_file

writes a sequence of bytes to a file.
Signature:

write_file(object file, sequence data, integer as_text = BINARY_MODE)

public function
include io.e
namespace io

Arguments: ≡ file : an object, either a file path or the handle to an open file.
≡ data : the sequence of bytes to write

≡ as_text : integer
…… ♦ BINARY_MODE (the default) assumes binary mode that causes every byte
to be written out as is,
…… ♦ TEXT_MODE assumes text mode that causes a new line to be written out
according to the operating system end of line convention. On unix this is Control-J
and on windows this is the pair {Control-L, Control-J}.
…… ♦ UNIX_TEXT ensures that lines are written out with unix-style line endings
(Control-J).
…… ♦ DOS_TEXT ensures that lines are written out with windows-style line
endings {Control-L, Control-J}.

Returns: An integer, 1 on success, -1 on failure.

Comments:
• When file is a file handle, the file is not closed after writing is finished. When file
is a file name, it is opened, written to and then closed.
• Note that when writing the file in ony of the text modes, the file is truncated at the
first Control-Z character in the input data.

See Also: read_file, write_lines
Example 1:

if write_file("data.txt", "This is important data\nGoodbye") = -1 then
 puts(STDERR, "Failed to write data\n")
end if

write_lines

writes a sequence of lines to a file.
Signature:

write_lines(object file, sequence lines)

public function
include io.e
namespace io

Arguments: ≡ file : an object, either a file path or the handle to an open file.
≡ lines : the sequence of lines to write

Returns: An integer, 1 on success, -1 on failure.

Comments: If file was a sequence, the file will be closed on completion. Otherwise, it will
remain open, but at end of file.

Whatever integer the lines in lines holds will be truncated to its 8 lowest bits so as
to fall in the 0.255 range.

See Also: read_lines, write_file, puts
Example 1:

if write_lines("data.txt",{"This is important data","Goodbye"}) !=-1 then
 puts(STDERR, "Failed to write data\n")
end if

writef

writes formatted text to a file.
Signature:

writef(object fm, object data = {}, object fn = 1,
object data_not_string = 0)

public procedure
include io.e

NewLine.html

include io.e
namespace io

Arguments: There are two ways to pass arguments to this function, # Traditional way with first
arg being a file handle. : integer, The file handle. : sequence, The format
pattern. : object, The data that will be formatted. #
≡ data_not_string: object, If not 0 then the data is not a string. By
default this is 0 meaning that data could be a single string. #
Alternative way with first argument being the format pattern. : sequence,
Format pattern. : sequence, The data that will be formatted, : object, The file
to receive the formatted output. Default is to the STDOUT device (console). #
≡ data_not_string: object, If not 0 then the data is not a string. By default this is 0
meaning that data could be a single string.

Comments:
• With the traditional arguments, the first argument must be an integer file handle.
• With the alternative arguments, the thrid argument can be a file name string, in
which case it is opened for output, written to and then closed.
• With the alternative arguments, the third argument can be a two-element sequence
containing a file name string and an output type ("a" for append, "w" for write), in
which case it is opened accordingly, written to and then closed.
• With the alternative arguments, the third argument can a file handle, in which case
it is written to only
• The format pattern uses the formatting codes defined in text:format.
• When the data to be formatted is a single text string, it does not have to be
enclosed in braces,

See Also: text:format, writefln, write_lines
Example 1:

-- To console
writef("Today is [4], [u2:3] [3:02], [1:4].",
 {Year, MonthName, Day, DayName})
-- To "sample.txt"
writef("Today is [4], [u2:3] [3:02], [1:4].",
 {Year, MonthName, Day, DayName}, "sample.txt")
-- To "sample.dat"
integer dat = open("sample.dat", "w")
writef("Today is [4], [u2:3] [3:02], [1:4].",
 {Year, MonthName, Day, DayName}, dat)
-- Appended to "sample.log"
writef("Today is [4], [u2:3] [3:02], [1:4].",
 {Year, MonthName, Day, DayName}, {"sample.log", "a"})
-- Simple message to console
writef("A message")
-- Another console message
writef(STDERR, "This is a []", "message")
-- Outputs two numbers
writef(STDERR, "First [], second []", {65, 100},, 1)
 -- Note that {65, 100} is also "Ad"

writefln

writes formatted text to a file, ensuring that a new line is also output.
Signature:

writefln(object fm, object data = {}, object fn = 1,
object data_not_string = 0)

public procedure
include io.e
namespace io

Arguments: ≡ fm : sequence, Format pattern.
≡ data : sequence, The data that will be formatted,
≡ fn : object, The file to receive the formatted output. Default is to the STDOUT
device (console).

≡ data_not_string: object, If not 0 then the data is not a string. By default this is 0
meaning that data could be a single string.

Comments:
• This is the same as writef, except that it always adds a New Line to the output.
• When fn is a file name string, it is opened for output, written to and then closed.
• When fn is a two-element sequence containing a file name string and an output
type ("a" for append, "w" for write), it is opened accordingly, written to and then
closed.
• When fn is a file handle, it is written to only
• The fm uses the formatting codes defined in text:format.

See Also: text:format, writef, write_lines
Example 1:

-- To console
writefln("Today is [4], [u2:3] [3:02], [1:4].",
 {Year, MonthName, Day, DayName})
-- To "sample.txt"
writefln("Today is [4], [u2:3] [3:02], [1:4].",
 {Year, MonthName, Day, DayName}, "sample.txt")
-- Appended to "sample.log"
writefln("Today is [4], [u2:3] [3:02], [1:4].",
 {Year, MonthName, Day, DayName}, {"sample.log", "a"})

lcid

lcid
get_lcid

lcid API

get_lcid

returns the current locale context identifier.
Signature:

get_lcid(sequence name)

public function
include lcid.e
namespace lcid

Returns: # The lcid which is of type LCID in C/C++.

lcid

is the type for a locale context.
Signature:

lcid(object x)

public type
include lcid.e
namespace lcid

locale

Message translation functions
set_lang_path
get_lang_path
lang_load
set_def_lang
get_def_lang
translate
trsprintf

Time and Number Translation
set
get
money
number
datetime
get_text

locale API

datetime

formats a date according to current locale.
Signature:

datetime(sequence fmt, datetime :datetime dtm)

public function
include locale.e
namespace locale

Arguments: ≡ fmt : A format string, as described in datetime:format
≡ dtm : the datetime to write out.

Returns: A sequence, representing the formatted date.

See Also: datetime:format
Example 1:

include std/datetime.e

datetime("Today is a %A", datetime:now())

get

gets the current locale string.
Signature:

get()

public function
include locale.e
namespace locale

Returns: A sequence, a locale string.

See Also: set

get_def_lang

gets the default language (translation) map.
Signature:

get_def_lang()

public function
include locale.e
namespace locale

Returns: An object, a language map, or zero if there is no default language map yet.
Example 1:

object langmap = get_def_lang()

get_lang_path

gets the language path.
Signature:

get_lang_path()

public function
include locale.e
namespace locale

Returns: An object, the current language path.

See Also: get_lang_path

get_text

gets the text associated with the message number in the requested locale.
Signature:

get_text(integer MsgNum, sequence LocalQuals = {},
sequence DBBase = "teksto")

public function
include locale.e
namespace locale

Arguments: ≡ msg num : An integer. The message number whose text you are trying to get.
≡ local quals : A sequence. Zero or more locale codes. Default is {}.
≡ DBBase: A sequence. The base name for the database files containing the locale
text strings. The default is "teksto".

Returns: A string sequence, the text associated with the message number and locale.
The integer zero, if associated text can not be found for any reason.

Comments:
• This first scans the database(s) linked to the locale codes supplied.
• The database name for each locale takes the format of "<DBBase>_<Locale>.edb"
so if the default DBBase is used, and the locales supplied are {"enus", "enau"} the
databases scanned are "teksto_enus.edb" and "teksto_enau.edb". The database
table name searched is "1" with the key being the message number, and the text is

MsgNum.html
LocalQuals.html

the record data.
• If the message is not found in these databases (or the databases don't exist) a
database called "<DBBase>.edb" is searched. Again the table name is "1" but it first
looks for keys with the format {<locale>,msgnum} and failing that it looks for keys in
the format {"", msgnum}, and if that fails it looks for a key of just the msgnum.

lang_load

loads a language file.
Signature:

lang_load(sequence filename)

public function
include locale.e
namespace locale

Arguments: ≡ filename : a sequence, the name of the file to load. If no file extension is supplied,
then ".lng" is used.

Returns: A language map, if successful. This is to be used when calling translate().

If the load fails it returns a zero.

Comments: The language file must be made of lines which are either comments, empty lines or
translations. Note that leading whitespace is ignored on all lines except continuation
lines.

• Comments are lines that begin with a # character and extend to the end of the
line.
• Empty Lines are ignored.
• Translations have two forms ...

keyword translation_text In which the 'keyword' is a word that must not have any
spaces in it. keyphrase = translation_text In which the 'keyphrase' is anything up to
the first '=' symbol.

It is possible to have the translation text span multiple lines. You do this by having
'&' as the last character of the line. These are placed by newline characters when
loading.

See Also: translate
Example 1:

Example translation file
#

hello Hola
world Mundo
greeting %s, %s!

help text = &
This is an example of some &
translation text that spans &
multiple lines.

End of example PO #2

money

converts an amount of currency into a string representing that amount.
Signature:

money(object amount)

public function
include locale.e
namespace locale

Arguments: ≡ amount : an atom, the value to write out.

Returns: A sequence, a string that writes out amount of current currency.

See Also: set, number
Example 1:

-- Assuming an en_US locale
money(1020.5) -- returns"$1,020.50"

number

converts a number into a string representing that number.
Signature:

number(object num)

public function
include locale.e
namespace locale

Arguments: ≡ num : an atom, the value to write out.

Returns: A sequence, a string that writes out num.

See Also: set, money
Example 1:

-- Assuming an en_US locale
number(1020.5) -- returns "1,020.50"

set

sets the computer locale, and possibly load appropriate translation file.
Signature:

set(sequence new_locale)

public function
include locale.e
namespace locale

Arguments: ≡ new_locale : a sequence representing a new locale.

Returns: An integer, either 0 on failure or 1 on success.

Comments: Locale strings have the following format: xx_YY or xx_YY.xyz . The xx part refers to
a culture, or main language/script. For instance, "en" refers to English, "de" refers to
German, and so on. For some language, a script may be specified, like in
"mn_Cyrl_MN" (mongolian in cyrillic transcription).

The YY part refers to a subculture, or variant, of the main language. For instance,
"fr_FR" refers to metropolitan France, while "fr_BE" refers to the variant spoken in
Wallonie, the French speaking region of Belgium.

The optional .xyz part specifies an encoding (like .utf8 or .1252) which is required in
some cases.

set_def_lang

sets the default language (translation) map.
Signature:

set_def_lang(object langmap)

public procedure
include locale.e
namespace locale

Arguments: ≡ langmap : A value returned by lang_load(), or zero to remove any default map.
Example 1:

set_def_lang(lang_load("appmsgs"))

set_lang_path

sets the language path.
Signature:

set_lang_path(object pp)

public procedure
include locale.e
namespace locale

Arguments: ≡ pp : an object, either an actual path or an atom.

Comments: When the language path is not set, and it is unset by default, set() does not load any
language file.

See Also: set

translate

translates a word, using the current language file.
Signature:

translate(sequence word, object langmap = 0, object defval = "",
integer mode = 0)

public function
include locale.e
namespace locale

Arguments: ≡ word : a sequence, the word to translate.
≡ langmap : Either a value returned by lang_load() or zero to use the default
language map
≡ defval : a object. The value to return if the word cannot be translated. Default is "".
If defval is PINF then the word is returned if it can't be translated.
≡ mode : an integer. If zero (the default) it uses word as the keyword and returns the
translation text. If not zero it uses word as the translation and returns the keyword.

Returns: A sequence, the value associated with word, or defval if there is no association.

See Also: set, lang_load
Example 1:

sequence newword
newword = translate(msgtext)
if length(msgtext) = 0 then

if length(msgtext) = 0 then
 error_message(msgtext)
else
 error_message(newword)
end if

Example 2:

error_message(translate(msgtext, , PINF))

trsprintf

returns a formatted string with automatic translation performed on the parameters.
Signature:

trsprintf(sequence fmt, sequence data, object langmap = 0)

public function
include locale.e
namespace locale

Arguments: ≡ fmt : A sequence. Contains the formatting string. see printf() for details.
≡ data : A sequence. Contains the data that goes into the formatted result. see printf
for details.
≡ langmap : An object. Either 0 (the default) to use the default language maps, or the
result returned from lang_load() to specify a particular language map.

Returns: A sequence, the formatted result.

Comments: This works very much like the sprintf function. The difference is that the fmt
sequence and sequences contained in the data parameter are translated before
passing them to sprintf. If an item has no translation, it remains unchanged.

Further more, after the translation pass, if the result text begins with "__", the "__" is
removed. This method can be used when you do not want an item to be translated.

See Also: sprinf , translate
Example 1:

-- Assuming a language has been loaded and
-- "greeting" translates as '%s %s, %s'
-- "hello" translates as "G'day"
-- "how are you today" translates as "How's the family?"
sequence UserName = "Bob"
sequence result = trsprintf(
 "greeting",
 {"hello", "__" & UserName, "how are you today"})
 --> "G'day Bob, How's the family?"

localeconv

Constants
w32_names
w32_name_canonical
posix_names
locale_canonical
platform_locale

Locale Name Translation
canonical
decanonical
canon2win

unresolved.html

Constants Windows locale names:

af-ZA sq-AL gsw-FR am-ET ar-DZ ar-BH ar-EG ar-IQ
ar-JO ar-KW ar-LB ar-LY ar-MA ar-OM ar-QA ar-SA
ar-SY ar-TN ar-AE ar-YE hy-AM as-IN az-Cyrl-AZ az-Latn-AZ
ba-RU eu-ES be-BY bn-IN bs-Cyrl-BA bs-Latn-BA br-FR bg-BG
ca-ES zh-HK zh-MO zh-CN zh-SG zh-TW co-FR hr-BA
hr-HR cs-CZ da-DK prs-AF dv-MV nl-BE nl-NL en-AU
en-BZ en-CA en-029 en-IN en-IE en-JM en-MY en-NZ
en-PH en-SG en-ZA en-TT en-GB en-US en-ZW et-EE
fo-FO fil-PH fi-FI fr-BE fr-CA fr-FR fr-LU fr-MC
fr-CH fy-NL gl-ES ka-GE de-AT de-DE de-LI de-LU
de-CH el-GR kl-GL gu-IN ha-Latn-NG he-IL hi-IN hu-HU
is-IS ig-NG id-ID iu-Latn-CA iu-Cans-CA ga-IE it-IT it-CH
ja-JP kn-IN kk-KZ kh-KH qut-GT rw-RW kok-IN ko-KR
ky-KG lo-LA lv-LV lt-LT dsb-DE lb-LU mk-MK ms-BN
ms-MY ml-IN mt-MT mi-NZ arn-CL mr-IN moh-CA mn-Cyrl-MN
mn-Mong-CN ne-IN ne-NP nb-NO nn-NO oc-FR or-IN ps-AF
fa-IR pl-PL pt-BR pt-PT pa-IN quz-BO quz-EC quz-PE
ro-RO rm-CH ru-RU smn-FI smj-NO smj-SE se-FI se-NO
se-SE sms-FI sma-NO sma-SE sa-IN sr-Cyrl-BA sr-Latn-BA sr-Cyrl-CS
sr-Latn-CS ns-ZA tn-ZA si-LK sk-SK sl-SI es-AR es-BO
es-CL es-CO es-CR es-DO es-EC es-SV es-GT es-HN
es-MX es-NI es-PA es-PY es-PE es-PR es-ES es-ES_tradnl
es-US es-UY es-VE sw-KE sv-FI sv-SE syr-SY tg-Cyrl-TJ
tmz-Latn-DZ ta-IN tt-RU te-IN th-TH bo-BT bo-CN tr-TR
tk-TM ug-CN uk-UA wen-DE tr-IN ur-PK uz-Cyrl-UZ uz-Latn-UZ
vi-VN cy-GB wo-SN xh-ZA sah-RU ii-CN yo-NG zu-ZA

localeconv API

canon2win

gets the translation of a canoncial locale string for the windows platform.
Signature:

canon2win(sequence new_locale)

public function
include localeconv.e
namespace localconv

Arguments: ≡ new_locale: a sequence, the string for the locale.

Returns: A sequence, either the windows native locale name on success or "C" on failure.

Platform: windows
See Also: get, set, canonical, decanonical

canonical

Get canonical name for a locale.
Signature:

canonical(sequence new_locale)

public function
include localeconv.e
namespace localconv

Arguments: ≡ new_locale : a sequence, the string for the locale.

Returns: A sequence, either the translated locale on success or new_locale on failure.

See Also: get, set, decanonical

decanonical

gets the translation of a locale string for current platform.
Signature:

decanonical(sequence new_locale)

public function
include localeconv.e
namespace localconv

Arguments: ≡ new_locale: a sequence, the string for the locale.

Returns: A sequence, either the translated locale on success or new_locale on failure.

See Also: get, set, canonical

locale_canonical

Signature:

locale_canonical

public constant
include localeconv.e
namespace localconv

platform_locale

Signature:

platform_locale

public constant
include localeconv.e
namespace localconv

posix_names

Signature:

posix_names

public constant
include localeconv.e
namespace localconv

w32_name_canonical

Canonical locale names for windows:
Signature:

w32_name_canonical

public constant
include localeconv.e
namespace localconv

w32_names

Signature:

w32_names

public constant
include localeconv.e
namespace localconv

map

Operation codes for put
PUT
ADD
SUBTRACT
MULTIPLY
DIVIDE
APPEND
CONCAT
LEAVE

Types of Maps
SMALLMAP
LARGEMAP

Types
map

Routines
calc_hash
threshold
type_of
rehash
new
new_extra
compare
has
get
nested_get
put
nested_put

remove
clear
size
NUM_ENTRIES
NUM_IN_USE
NUM_BUCKETS
LARGEST_BUCKET
SMALLEST_BUCKET
AVERAGE_BUCKET
STDEV_BUCKET
statistics
keys
values
pairs
optimize
load_map
SM_TEXT
SM_RAW
save_map
copy
new_from_kvpairs
new_from_string
for_each

map API

ADD

Signature:

ADD

public enum
include map.e
namespace map

APPEND

Signature:

APPEND

public enum
include map.e
namespace map

AVERAGE_BUCKET

Signature:

AVERAGE_BUCKET

public enum
include map.e
namespace map

CONCAT

Signature:

CONCAT

public enum
include map.e
namespace map

DIVIDE

Signature:

DIVIDE

public enum
include map.e
namespace map

LARGEMAP

Signature:

LARGEMAP

public constant
include map.e
namespace map

LARGEST_BUCKET

Signature:

LARGEST_BUCKET

public enum
include map.e
namespace map

LEAVE

Signature:

LEAVE

public enum
include map.e
namespace map

MULTIPLY

Signature:

MULTIPLY

public enum
include map.e
namespace map

NUM_BUCKETS

Signature:

NUM_BUCKETS

public enum
include map.e
namespace map

NUM_ENTRIES

Signature:

NUM_ENTRIES

public enum
include map.e
namespace map

NUM_IN_USE

Signature:

NUM_IN_USE

public enum
include map.e
namespace map

PUT

Signature:

PUT

public enum
include map.e
namespace map

SMALLEST_BUCKET

Signature:

SMALLEST_BUCKET

public enum
include map.e
namespace map

SMALLMAP

Signature:

SMALLMAP

public constant
include map.e
namespace map

SM_RAW

Signature:

SM_RAW

public enum
include map.e
namespace map

SM_TEXT

Signature:

SM_TEXT

public enum
include map.e
namespace map

STDEV_BUCKET

Signature:

STDEV_BUCKET

public enum
include map.e
namespace map

SUBTRACT

Signature:

SUBTRACT

public enum
include map.e
namespace map

calc_hash

calculate a hashing value from the supplied data.
Signature:

calc_hash(object key_p, integer max_hash_p)

public function
include map.e
namespace map

Arguments: ≡ key_p : The data for which you want a hash value calculated.
≡ max_hash_p : The returned value will be no larger than this value.

Returns: An integer, the value of which depends only on the supplied data.

Comments: This is used whenever you need a single number to represent the data you supply.
It can calculate the number based on all the data you give it, which can be an atom
or sequence of any value.

Example 1:

integer h1
-- calculate a hash value and ensure it will be a value from 1 to 4097.
h1 = calc_hash(symbol_name, 4097)

clear

removes all entries in a map.
Signature:

clear(map the_map_p)

public procedure
include map.e
namespace map

Arguments: ≡ the_map_p : the map to operate on

Comments:
• This is much faster than removing each entry individually.
• If you need to remove just one entry, see remove

See Also: remove, has
Example 1:

map the_map_p
the_map_p = new()
put(the_map_p, "Amy", 66.9)
put(the_map_p, "Betty", 67.8)
put(the_map_p, "Claire", 64.1)
..
clear(the_map_p)
-- the_map_p is now an empty map again

compare

tests if two maps are equal.
Signature:

compare(map map_1_p, map map_2_p, integer scope_p = 'd')

public function

include map.e
namespace map

Arguments: ≡ map_1_p : A map
≡ map_2_p : A map
≡ scope_p : An integer that specifies what to compare.
…… ♦ 'k' or 'K' to only compare keys.
…… ♦ 'v' or 'V' to only compare values.
…… ♦ 'd' or 'D' to compare both keys and values. This is the default.

Returns: An integer,
• -1 if they are not equal.
• 0 if they are literally the same map.
• 1 if they contain the same keys and/or values.

Example 1:

map map_1_p = foo()
map map_2_p = bar()
if compare(map_1_p, map_2_p, 'k') >= 0 then
 ..

copy

duplicates a map.
Signature:

copy(map source_map, object dest_map = 0, integer put_operation = PUT)

public function
include map.e
namespace map

Arguments: ≡ source_map : map to copy from
≡ dest_map : optional, map to copy to
≡ put_operation : optional, operation to use when dest_map is used. The default is
PUT.

Returns: If dest_map was not provided, an exact duplicate of source_map otherwise dest_map,
which does not have to be empty, is returned with the new values copied from
source_map, according to the put_operation value.

See Also: put
Example 1:

map m1 = new()
put(m1, 1, "one")
put(m1, 2, "two")

map m2 = copy(m1)
printf(1, "%s, %s\n", { get(m2, 1), get(m2, 2) })
-- one, two

put(m1, 1, "one hundred")
printf(1, "%s, %s\n", { get(m1, 1), get(m1, 2) })
-- one hundred, two

printf(1, "%s, %s\n", { get(m2, 1), get(m2, 2) })
-- one, two

Example 2:

map m1 = new()
map m2 = new()

put(m1, 1, "one")
put(m1, 2, "two")
put(m2, 3, "three")

copy(m1, m2)

? keys(m2)
-- { 1, 2, 3 }

Example 3:

map m1 = new()
map m2 = new()

put(m1, "XY", 1)
put(m1, "AB", 2)
put(m2, "XY", 3)

pairs(m1) --> { {"AB", 2}, {"XY", 1} }
pairs(m2) --> { {"XY", 3} }

-- Add same keys' values.
copy(m1, m2, ADD)

pairs(m2) --> { {"AB", 2}, {"XY", 4} }

for_each

calls a user-defined routine for each of the items in a map.
Signature:

for_each(map source_map, integer user_rid, object user_data = 0,
integer in_sorted_order = 0, integer signal_boundary = 0)

public function
include map.e
namespace map

Arguments: ≡ source_map : The map containing the data to process
≡ user_rid: The routine_id of a user defined processing function
≡ user_data: An object. Optional. This is passed, unchanged to each call of the user
defined routine. By default, zero (0) is used.
≡ in_sorted_order: An integer. Optional. If non-zero the items in the map are
processed in ascending key sequence otherwise the order is undefined. By default
they are not sorted.
≡ signal_boundary: A integer; 0 (the default) means that the user routine is not
called if the map is empty and when the last item is passed to the user routine, the
Progress Code is not negative.

Returns: An integer: 0 means that all the items were processed, and anything else is
whatever was returned by the user routine to abort the for_each() process.

Comments:
• The user defined routine is a function that must accept four parameters. Object:
an Item Key Object: an Item Value Object: The user_data value. This is never
used by for_each() itself, merely passed to the user routine. Integer:
Progress code. * The abs() value of the progress code is the ordinal call
number. That is 1 means the first call, 2 means the second call, etc ... * If the
progress code is negative, it is also the last call to the routine. * If the progress
code is zero, it means that the map is empty and thus the item key and value
cannot be used. * note that if signal_boundary is zero, the Progress Code is never
less than 1.
• The user routine must return 0 to get the next map item. Anything else will cause
for_each() to stop running, and is returned to whatever called for_each().
• Note that any changes that the user routine makes to the map do not affect the
order or number of times the routine is called. for_each() takes a copy of the map
keys and data before the first call to the user routine and uses the copied data to call
the user routine.

Example 1:

include std/map.e
include std/math.e
include std/io.e

function Process_A(object k, object v, object d, integer pc)
 writefln("[] = []", {k, v})
 return 0
end function

function Process_B(object k, object v, object d, integer pc)
 if pc = 0 then
 writefln("The map is empty")
 else
 integer c
 c = abs(pc)
 if c = 1 then
 writefln("---[]---", {d}) -- Write the report title.
 end if
 writefln("[]: [:15] = []", {c, k, v})
 if pc < 0 then
 writefln(repeat('-', length(d) + 6), {}) -- Write the report end.
 end if
 end if
 return 0
end function

map m1 = new()
map:put(m1, "application", "Euphoria")
map:put(m1, "version", "4.0")
map:put(m1, "genre", "programming language")
map:put(m1, "crc", "4F71AE10")

-- Unsorted
map:for_each(m1, routine_id("Process_A"))
-- Sorted
map:for_each(m1, routine_id("Process_B"), "List of Items", 1)

The output from the first call could be...

application = Euphoria
version = 4.0
genre = programming language
crc = 4F71AE10

The output from the second call should be...

---List of Items---
1: application = Euphoria
2: crc = 4F71AE10
3: genre = programming language
4: version = 4.0

get

retrieves the value associated to a key in a map.
Signature:

get(integer the_map_p, object the_key_p, object default_value_p = 0)

public function
include map.e
namespace map

Arguments: ≡ the_map_p : the map to inspect
≡ the_key_p : an object, the the_key_p being looked tp
≡ default_value_p : an object, a default value returned if the_key_p not found. The
default is 0.

Returns: An object, the value that corresponds to the_key_p in the_map_p. If the_key_p is not
in the_map_p, default_value_p is returned instead.

See Also: has
Example 1:

map ages
ages = new()
put(ages, "Andy", 12)
put(ages, "Budi", 13)

integer age
age = get(ages, "Budi", -1)
if age = -1 then
 puts(1, "Age unknown")
else
 printf(1, "The age is %d", age)
end if

has

tests if a key exists in a map.
Signature:

has(integer the_map_p, object the_key_p)

public function
include map.e
namespace map

Arguments: ≡ the_map_p : the map to inspect
≡ the_key_p : an object to be looked up

Returns: An integer, 0 if not present, 1 if present.

See Also: get
Example 1:

map the_map_p
the_map_p = new()
put(the_map_p, "name", "John")
? has(the_map_p, "name") -- 1
? has(the_map_p, "age") -- 0

keys

returns all keys in a map.
Signature:

keys(map the_map_p, integer sorted_result = 0)

public function
include map.e
namespace map

Arguments: ≡ the_map_p: the map being queried
≡ sorted_result: optional integer. 0 [default] means do not sort the output and 1
means to sort the output before returning.

Returns: A sequence made of all the keys in the map.

Comments: If sorted_result is not used, the order of the keys returned is not predicable.

See Also: has, values, pairs
Example 1:

map the_map_p
the_map_p = new()
put(the_map_p, 10, "ten")
put(the_map_p, 20, "twenty")
put(the_map_p, 30, "thirty")
put(the_map_p, 40, "forty")

sequence keys
keys = keys(the_map_p) -- keys might be {20,40,10,30} or some other order
keys = keys(the_map_p, 1) -- keys will be {10,20,30,40}

load_map

loads a map from a file.
Signature:

load_map(object input_file_name)

public function
include map.e
namespace map

Arguments: ≡ file_name_p : The file to load from. This file may have been created by the
save_map function. This can either be a name of a file or an already opened file
handle.

Returns: Either a map, with all the entries found in file_name_p, or -1 if the file failed to open,
or -2 if the file is incorrectly formatted.

Comments: If file_name_p is an already opened file handle, this routine will write to that file and
not close it. Otherwise, the named file will be created and closed by this routine.

The input file can be either one created by the save_map function or a manually
created/edited text file. See save_map for details about the required layout of the
text file.

See Also: new, save_map
Example 1:

include std/error.e

object loaded
map AppOptions
sequence SavedMap = "c:\\myapp\\options.txt"

loaded = load_map(SavedMap)
if equal(loaded, -1) then
 crash("Map '%s' failed to open", SavedMap)
end if

-- By now we know that it was loaded and a new map created,
-- so we can assign it to a 'map' variable.
AppOptions = loaded
if get(AppOptions, "verbose", 1) = 3 then
 ShowIntructions()
end if

map

defines the datatype 'map'.
Signature:

map(object obj_p)

public type
include map.e
namespace map

Comments: Used when declaring a map variable.
Example 1:

map SymbolTable = new() -- Create a new map to hold the symbol table.

nested_get

returns the value that corresponds to the object the_keys_p in the nested map
Signature:

nested_get(map the_map_p, sequence the_keys_p, object default_value_p = 0)

public function
include map.e
namespace map

Comments: the_keys_p is a sequence of keys. If any key is not in the map, the object
default_value_p is returned instead.

nested_put

adds or updates an entry on a map.
Signature:

nested_put(map the_map_p, sequence the_keys_p, object the_value_p,
integer operation_p = PUT, integer trigger_p = threshold_size)

public procedure
include map.e
namespace map

Arguments: ≡ the_map_p : the map where an entry is being added or updated
≡ the_keys_p : a sequence of keys for the nested maps
≡ the_value_p : an object, the value to add, or to use for updating.
≡ operation_p : an integer, indicating what is to be done with value. Defaults to
PUT.
≡ trigger_p : an integer. Default is the current threshold size. See Comments for
details.

Comments:
• If existing entry with the same key is already in the map, the value of the entry is
updated.
• The trigger parameter is used when you need to keep the average number of keys
in a hash bucket to a specific maximum. The trigger value is the maximum allowed.
Each time a put operation increases the hash table's average bucket size to be
more than the trigger value the table is expanded by a factor 3.5 and the keys are
rehashed into the enlarged table. This can be a time intensive action so set the
value to one that is appropriate to your application.
…… ♦ By keeping the average bucket size to a certain maximum, it can speed up
lookup times.
…… ♦ If you set the trigger to zero, it will not check to see if the table needs
reorganizing. You might do this if you created the original bucket size to an optimal
value. See new on how to do this.

Example 1:

map city_population
city_population = new()
nested_put(city_population, {"United States", "California", "Los Angeles"},
 3819951)
nested_put(city_population, {"Canada", "Ontario", "Toronto"},
 2503281)

new

creates a new map data structure.
Signature:

new(integer initial_size_p = 690)

public function
include map.e
namespace map

Arguments: ≡ initial_size_p : An estimate of how many initial elements will be stored in the
map. If this value is less than the threshold value, the map will initially be a small
map otherwise it will be a large map.

Returns: An empty map.

Comments: A new object of type map is created. The resources allocated for the map will be
automatically cleaned up if the reference count of the returned value drops to zero,
or if passed in a call to delete.

Example 1:

map m = new() -- m is now an empty map
map x = new(threshold()) -- Forces a small map to be initialized
x = new() -- the resources for the map previously stored in x
 -- are released automatically
delete(m) -- the resources for the map are released

new_extra

returns either the supplied map or a new map.
Signature:

new_extra(object the_map_p, integer initial_size_p = 690)

public function
include map.e
namespace map

Arguments: ≡ the_map_p : An object, that could be an existing map
≡ initial_size_p : An estimate of how many initial elements will be stored in a new
map.

Returns: A map, If m is an existing map then it is returned otherwise this returns a new empty
map.

Comments: This is used to return a new map if the supplied variable isn't already a map.
Example 1:

map m = new_extra(foo()) -- If foo() returns a map it is used, otherwise
 -- a new map is created.

new_from_kvpairs

converts a set of key/value pairs to a map.
Signature:

new_from_kvpairs(sequence kv_pairs)

public function
include map.e
namespace map

Arguments: ≡ kv_pairs : A seqeuence containing any number of subsequences that have the
format {KEY, VALUE}. These are loaded into a new map which is then returned by
this function.

Returns: A map, containing the data from kv_pairs
Example 1:

map m1 = new_from_kvpairs({
 { "application", "Euphoria" },
 { "version", "4.0" },
 { "genre", "programming language" },
 { "crc", 0x4F71AE10 }
})

v = map:get(m1, "application") --> "Euphoria"

new_from_string

converts a set of key/value pairs contained in a string to a map.
Signature:

new_from_string(sequence kv_string)

public function
include map.e
namespace map

Arguments: ≡ kv_string : A string containing any number of lines that have the format
KEY=VALUE. These are loaded into a new map which is then returned by this
function.

Returns: A map, containing the data from kv_string
Example 1:

application = Euphoria,
version = 4.0,
genre = "programming language",
crc = 4F71AE10

map m1 = new_from_string(read_file("xyz.config", TEXT_MODE))

printf(1, "%s\n", {map:get(m1, "application")}) --> "Euphoria"
printf(1, "%s\n", {map:get(m1, "genre")}) --> "programming language"
printf(1, "%s\n", {map:get(m1, "version")}) --> "4.0"
printf(1, "%s\n", {map:get(m1, "crc")}) --> "4F71AE10"

optimize

widens a map to increase performance.
Signature:

optimize(map the_map_p, integer max_p = threshold_size,
atom grow_p = 1.333)

public procedure
include map.e
namespace map

Arguments: ≡ the_map_p : the map being optimized
≡ max_p : an integer, the maximum desired size of a bucket. Default is the current
threshold size. This must be 3 or higher.
≡ grow_p : an atom, the factor to grow the number of buckets for each iteration of
rehashing. Default is 1.333. This must be greater than 1.

Comments: This rehashes the map until either the maximum bucket size is less than the desired
maximum or the maximum bucket size is less than the largest size statistically
expected (mean + 3 standard deviations).

See Also: statistics, rehash

pairs

Signature:

pairs(map the_map_p, integer sorted_result = 0)

public function
include map.e
namespace map

Arguments: ≡ the_map_p : the map to get the data from
≡ sorted_result : optional integer. 0 [default] means do not sort the output and 1
means to sort the output before returning.

Returns: A sequence, of all key/value pairs stored in the_map_p. Each pair is a sub-
sequence in the form {key, value}

Comments: If sorted_result is not used, the order of the values returned is not predicable.

See Also: get, keys, values
Example 1:

map the_map_p

the_map_p = new()
put(the_map_p, 10, "ten")
put(the_map_p, 20, "twenty")
put(the_map_p, 30, "thirty")
put(the_map_p, 40, "forty")

sequence keyvals
keyvals = pairs(the_map_p)
-- might be {{20,"twenty"},{40,"forty"},{10,"ten"},{30,"thirty"}}

keyvals = pairs(the_map_p, 1)
-- will be {{10,"ten"},{20,"twenty"},{30,"thirty"},{40,"forty"}}

put

adds or updates an entry in a map.
Signature:

put(integer the_map_p, object the_key_p, object the_value_p,
integer operation_p = map :PUT, integer trigger_p = threshold_size)

public procedure
include map.e
namespace map

Arguments: ≡ the_map_p : the map where an entry is being added or updated
≡ the_key_p : an object, the the_key_p to look up
≡ the_value_p : an object, the value to add, or to use for updating.
≡ operation : an integer, indicating what is to be done with the_value_p. Defaults to
PUT.
≡ trigger_p : an integer. Default is the current threshold size. See Comments for
details.

Comments:
• The operation parameter can be used to modify the existing value. Valid

operations are:

…… ♦ PUT -- This is the default, and it replaces any value in there already
…… ♦ ADD -- Equivalent to using the += operator
…… ♦ SUBTRACT -- Equivalent to using the -= operator
…… ♦ MULTIPLY -- Equivalent to using the *= operator
…… ♦ DIVIDE -- Equivalent to using the /= operator
…… ♦ APPEND -- Appends the value to the existing data
…… ♦ CONCAT -- Equivalent to using the &= operator
…… ♦ LEAVE -- If it already exists, the current value is left unchanged otherwise the
new value is added to the map.

• The trigger parameter is used when you need to keep the average number of keys
in a hash bucket to a specific maximum. The trigger value is the maximum allowed.
Each time a put operation increases the hash table's average bucket size to be
more than the trigger value the table is expanded by a factor of 3.5 and the keys are
rehashed into the enlarged table. This can be a time intensive action so set the
value to one that is appropriate to your application.
…… ♦ By keeping the average bucket size to a certain maximum, it can speed up
lookup times.
…… ♦ If you set the trigger to zero, it will not check to see if the table needs
reorganizing. You might do this if you created the original bucket size to an optimal
value. See new on how to do this.

See Also: remove, has, nested_put
Example 1:

map ages
ages = new()
put(ages, "Andy", 12)
put(ages, "Budi", 13)
put(ages, "Budi", 14)

-- ages now contains 2 entries: "Andy" => 12, "Budi" => 14

rehash

changes the width (the number of buckets) of a map.
Signature:

rehash(integer the_map_p, integer requested_bucket_size_p = 0)

public procedure
include map.e
namespace map

Arguments: ≡ m : the map to resize
≡ requested_bucket_size_p : a lower limit for the new size.

Comments: Only affects large maps.

If the requested_bucket_size_p is not greater than zero, a new width is
automatically derived from the current one.

See Also: statistics, optimize

remove

remove an entry with given key from a map.
Signature:

remove(map the_map_p, object the_key_p)

public procedure
include map.e
namespace map

Arguments: ≡ the_map_p : the map to operate on
≡ key : an object, the key to remove.

Comments:
• If key is not on the_map_p, the the_map_p is returned unchanged.
• If you need to remove all entries, see clear

See Also: clear, has
Example 1:

map the_map_p
the_map_p = new()
put(the_map_p, "Amy", 66.9)
remove(the_map_p, "Amy")
-- the_map_p is now an empty map again

save_map

saves a map to a file.
Signature:

save_map(map the_map_, object file_name_p, integer type_ = SM_TEXT)

public function
include map.e
namespace map

Arguments: ≡ m : a map.
≡ file_name_p : Either a sequence, the name of the file to save to, or an open file
handle as returned by open().
≡ type : an integer. SM_TEXT for a human-readable format (default), SM_RAW for a
smaller and faster format, but not human-readable.

Returns: An integer, the number of keys saved to the file, or -1 if the save failed.

Comments: If file_name_p is an already opened file handle, this routine will write to that file and
not close it. Otherwise, the named file will be created and closed by this routine.

The SM_TEXT type saves the map keys and values in a text format which can be
read and edited by standard text editor. Each entry in the map is saved as a
KEY/VALUE pair in the form
key = value Note that if the 'key' value is a normal string value, it can be enclosed in
double quotes. If it is not thus quoted, the first character of the key determines its
Euphoria value type. A dash or digit implies an atom, an left-brace implies a
sequence, an alphabetic character implies a text string that extends to the next
equal '=' symbol, and anything else is ignored.

Note that if a line contains a double-dash, then all text from the double-dash to the
end of the line will be ignored. This is so you can optionally add comments to the
saved map. Also, any blank lines are ignored too.

All text after the '=' symbol is assumed to be the map item's value data.

Because some map data can be rather long, it is possible to split the text into
multiple lines, which will be considered by load_map as a single logical line. If an
line ends with a comma (,) or a dollar sign ($), then the next actual line is appended
to the end of it. After all these physical lines have been joined into one logical line,
all combinations of `",$"` and `,$` are removed.

See Also: load_map
Example 1:

include std/error.e

map AppOptions
if save_map(AppOptions,
 crash("Failed to save application options")
end if

if save_map(AppOptions,
 crash("Failed to save application options")
end if

size

returns the number of entries in a map.
Signature:

size(map the_map_p)

public function
include map.e
namespace map

Arguments: the_map_p : the map being queried

Returns: An integer, the number of entries it has.

Comments: For an empty map, size will be zero

See Also: statistics
Example 1:

map the_map_p
put(the_map_p, 1, "a")
put(the_map_p, 2, "b")
? size(the_map_p) -- outputs 2

statistics

retrieves the characteristics of a map.
Signature:

statistics(map the_map_p)

public function
include map.e
namespace map

Arguments: ≡ the_map_p : the map being queried

Returns: A sequence, of 7 integers:
• NUM_ENTRIES -- number of entries
• NUM_IN_USE -- number of buckets in use
• NUM_BUCKETS -- number of buckets
• LARGEST_BUCKET -- size of largest bucket
• SMALLEST_BUCKET -- size of smallest bucket
• AVERAGE_BUCKET -- average size for a bucket
• STDEV_BUCKET -- standard deviation for the bucket length series

Example 1:

sequence s = statistics(mymap)
printf(1, "The average size of the buckets is %d", s[AVERAGE_BUCKET])

threshold

gets or sets the threshold value that determines at what point a small map
Signature:

threshold(integer new_value_p = 0)

public function
include map.e
namespace map

Arguments: ≡ new_value_p : If this is greater than zero then it sets the threshold value.

Returns: An integer, the current value (when new_value_p is less than 1) or the old value
prior to setting it to new_value_p.

Comments: The initial threshold is set to twenty-three, meaning that maps up to 23 elements use
the small map structure.

type_of

determines the type of the map.
Signature:

type_of(map the_map_p)

public function
include map.e
namespace map

Arguments: ≡ m : A map

Returns: An integer, Either SMALLMAP or LARGEMAP

values

returns values, without their keys, from a map.
Signature:

values(map the_map, object keys = 0, object default_values = 0)

public function
include map.e
namespace map

Arguments: ≡ the_map : the map being queried
≡ keys : optional, key list of values to return.
≡ default_values : optional default values for keys list

Returns: A sequence, of all values stored in the_map.

Comments:
• The order of the values returned may not be the same as the putting order.
• Duplicate values are not removed.
• You use the keys parameter to return a specific set of values from the map. They
are returned in the same order as the keys parameter. If no default_values is given
and one is needed, 0 will be used.
• If default_values is an atom, it represents the default value for all values in keys.
• If default_values is a sequence, and its length is less than keys, then the last item
in default_values is used for the rest of the keys.

See Also: get, keys, pairs

Example 1:

map the_map_p
the_map_p = new()
put(the_map_p, 10, "ten")
put(the_map_p, 20, "twenty")
put(the_map_p, 30, "thirty")
put(the_map_p, 40, "forty")

sequence values
values = values(the_map_p)
-- values might be {"twenty","forty","ten","thirty"}
-- or some other order

Example 2:

map the_map_p
the_map_p = new()
put(the_map_p, 10, "ten")
put(the_map_p, 20, "twenty")
put(the_map_p, 30, "thirty")
put(the_map_p, 40, "forty")

sequence values
values = values(the_map_p, { 10, 50, 30, 9000 })
-- values WILL be { "ten", 0, "thirty", 0 }
values = values(the_map_p, { 10, 50, 30, 9000 }, {-1,-2,-3,-4})
-- values WILL be { "ten", -2, "thirty", -4 }

math

Sign and comparisons
abs
sign
larger_of
smaller_of
max
min
ensure_in_range
ensure_in_list

Roundings and remainders
remainder
mod
trunc
frac
intdiv
floor
ceil
round

Trigonometry
arctan
tan
cos
sin
arccos
arcsin
atan2
rad2deg

deg2rad
Logarithms and powers.

log
log10
exp
power
sqrt
fib

Hyperbolic trigonometry
cosh
sinh
tanh
arcsinh
arccosh
arctanh

Accumulation
sum
product
or_all

Bitwise operations
and_bits
xor_bits
or_bits
not_bits
shift_bits
rotate_bits
gcd
approx
powof2
is_even
is_even_obj

math API

abs

Returns the absolute value of numbers.
Signature:

abs(object a)

public function
include math.e
namespace math

Arguments: ≡ value : an object, each atom is processed, no matter how deeply nested.

Returns: An object, the same shape as value. When value is an atom, the result is the same
if not less than zero, and the opposite value otherwise.

Comments: This function may be applied to an atom or to all elements of a sequence

See Also: sign
Example 1:

x = abs({10.5, -12, 3})
-- x is {10.5, 12, 3}

i = abs(-4)
-- i is 4

and_bits

Perform the bitwise AND operation on corresponding bits in two objects. A bit in the
Signature:

and_bits(object a, object b)

<built-in> function

Arguments: ≡ a : one of the objects involved
≡ b : the second object

Returns: An object, whose shape depends on the shape of both arguments. Each atom in
this object is obtained by bitwise AND between atoms on both objects.

Comments: The arguments to this function may be atoms or sequences. The rules for operations
on sequences apply. The atoms in the arguments must be representable as 32-bit
numbers, either signed or unsigned.

If you intend to manipulate full 32-bit values, you should declare your variables as
atom, rather than integer. Euphoria's integer type is limited to 31-bits.

Results are treated as signed numbers. They will be negative when the highest-
order bit is 1.

To understand the binary representation of a number you should display it in
hexadecimal notation. Use the %x format of printf(). Using int_to_bits() is an even
more direct approach.

See Also: or_bits, xor_bits, not_bits, int_to_bits
Example 1:

a = and_bits(#0F0F0000, #12345678)
-- a is #02040000

Example 2:

a = and_bits(#FF, {#123456, #876543, #2211})
-- a is {#56, #43, #11}

Example 3:

a = and_bits(#FFFFFFFF, #FFFFFFFF)
-- a is -1
-- Note that #FFFFFFFF is a positive number,
-- but the result of a bitwise operation is interpreted
-- as a signed 32-bit number, so it's negative.

approx

Compares two (sets of) numbers based on approximate equality.
Signature:

approx(object p, object q, atom epsilon = 0.005)

public function
include math.e
namespace math

Arguments: ≡ p : an object, one of the sets to consider
≡ q : an object, the other set.
≡ epsilon : an atom used to define the amount of inequality allowed. This must be a
positive value. Default is 0.005

Returns: An integer,
• 1 when p > (q + epsilon) : P is definitely greater than q.
• -1 when p < (q - epsilon) : P is definitely less than q.
• 0 when p >= (q - epsilon) and p <= (q + epsilon) : p and q are approximately equal.

Comments: This can be used to see if two numbers are near enough to each other.

Also, because of the way floating point numbers are stored, it not always possible
express every real number exactly, especially after a series of arithmetic operations.
You can use approx() to see if two floating point numbers are almost the same
value.

If p and q are both sequences, they must be the same length as each other.

If p or q is a sequence, but the other is not, then the result is a sequence of results
whose length is the same as the sequence argument.

Example 1:

? approx(10, 33.33 * 30.01 / 100)
 --> 0 because 10 and 10.002333 are within 0.005 of each other
? approx(10, 10.001)
 --> 0 because 10 and 10.001 are within 0.005 of each other
? approx(10, {10.001,9.999, 9.98, 10.04})
 --> {0,0,1,-1}
? approx({10.001,9.999, 9.98, 10.04}, 10)
 --> {0,0,-1,1}
? approx({10.001,{9.999, 10.01}, 9.98, 10.04}, {10.01,9.99, 9.8, 10.4})
 --> {-1,{1,1},1,-1}
? approx(23,32, 10)
 --> 0 because 23 and 32 are within 10 of each other.

arccos

Return an angle given its cosine.
Signature:

arccos(trig_range x)

public function
include math.e
namespace math

Arguments: ≡ value : an object, each atom in which will be acted upon.

Returns: An object, the same shape as value. When value is an atom, the result is an atom,
an angle whose cosine is value.

Comments: A value between 0 and PI radians will be returned.

This function may be applied to an atom or to all elements of a sequence.

arccos() is not as fast as arctan().

See Also: cos, PI, arctan
Example 1:

s = arccos({-1,0,1})
-- s is {3.141592654, 1.570796327, 0}

arccosh

Computes the reverse hyperbolic cosine of an object.
Signature:

arccosh(not_below_1 a)

public function
include math.e
namespace math

Arguments: ≡ x : the object to process.

Returns: An object, the same shape as x, each atom of which was acted upon.

Comments: The hyperbolic cosine grows like the logarithm function.

See Also: arccos, arcsinh, cosh
Example 1:

? arccosh(1) -- prints out 0

arcsin

Return an angle given its sine.
Signature:

arcsin(trig_range x)

public function
include math.e
namespace math

Arguments: ≡ value : an object, each atom in which will be acted upon.

Returns: An object, the same shape as value. When value is an atom, the result is an atom,
an angle whose sine is value.

Comments: A value between -PI/2 and +PI/2 (radians) inclusive will be returned.

This function may be applied to an atom or to all elements of a sequence.

arcsin() is not as fast as arctan().

See Also: arccos, arccos, sin
Example 1:

s = arcsin({-1,0,1})
s is {-1.570796327, 0, 1.570796327}

arcsinh

Computes the reverse hyperbolic sine of an object.
Signature:

arcsinh(object a)

public function
include math.e
namespace math

Arguments: ≡ x : the object to process.

Returns: An object, the same shape as x, each atom of which was acted upon.

Comments: The hyperbolic sine grows like the logarithm function.

Comments: The hyperbolic sine grows like the logarithm function.

See Also: arccosh, arcsin, sinh
Example 1:

? arcsinh(1) -- prints out 0,4812118250596034

arctan

Return an angle with given tangent.
Signature:

arctan(object tangent)

<built-in> function

Arguments: ≡ tangent : an object, each atom of which will be converted, no matter how deeply
nested.

Returns: An object, of the same shape as tangent. For each atom in flatten(tangent), the
angle with smallest magnitude that has this atom as tangent is computed.

Comments: All atoms in the returned value lie between -PI/2 and PI/2, exclusive.

This function may be applied to an atom or to all elements of a sequence (of
sequence (...)).

arctan() is faster than arcsin() or arccos().

See Also: arcsin, arccos, tan, flatten
Example 1:

s = arctan({1,2,3})
-- s is {0.785398, 1.10715, 1.24905}

arctanh

Computes the reverse hyperbolic tangent of an object.
Signature:

arctanh(abs_below_1 a)

public function
include math.e
namespace math

Arguments: ≡ x : the object to process.

Returns: An object, the same shape as x, each atom of which was acted upon.

Comments: The hyperbolic cosine grows like the logarithm function.

See Also: arccos, arcsinh, cosh
Example 1:

? arctanh(1/2) -- prints out 0,5493061443340548456976

atan2

Calculate the arctangent of a ratio.
Signature:

atan2(atom y, atom x)

public function
include math.e
namespace math

Arguments: ≡ y : an atom, the numerator of the ratio
≡ x : an atom, the denominator of the ratio

Returns: An atom, which is equal to arctan(y/x), except that it can handle zero denominator
and is more accurate.

See Also: arctan
Example 1:

a = atan2(10.5, 3.1)
-- a is 1.283713958

ceil

Computes the next integer equal or greater than the argument.
Signature:

ceil(object a)

public function
include math.e
namespace math

Arguments: ≡ value : an object, each atom of which processed, no matter how deeply nested.

Returns: An object, the same shape as value. Each atom in value is returned as an integer
that is the smallest integer equal to or greater than the corresponding atom in value.

Comments: This function may be applied to an atom or to all elements of a sequence.

ceil(X) is 1 more than floor(X) for non-integers. For integers, X = floor(X) =
ceil(X).

See Also: floor, round
Example 1:

sequence nums
nums = {8, -5, 3.14, 4.89, -7.62, -4.3}
nums = ceil(nums) -- {8, -5, 4, 5, -7, -4}

cos

Return the cosine of an angle expressed in radians
Signature:

cos(object angle)

<built-in> function

Arguments: ≡ angle : an object, each atom of which will be converted, no matter how deeply
nested.

Returns: An object, the same shape as angle. Each atom in angle is turned into its cosine.

Comments: This function may be applied to an atom or to all elements of a sequence.

The cosine of an angle is an atom between -1 and 1 inclusive. 0.0 is hit by odd
multiples of PI/2 only.

See Also: sin, tan, arccos, PI, deg2rad
Example 1:

x = cos({0.5, 0.6, 0.7})
-- x is {0.8775826, 0.8253356, 0.7648422}

cosh

Computes the hyperbolic cosine of an object.
Signature:

cosh(object a)

public function
include math.e
namespace math

Arguments: ≡ x : the object to process.

Returns: An object, the same shape as x, each atom of which was acted upon.

Comments: The hyperbolic cosine grows like the exponential function.

For all reals, power(cosh(x), 2) - power(sinh(x), 2) = 1. Compare with ordinary
trigonometry.

See Also: cos, sinh, arccosh
Example 1:

? cosh(LN2) -- prints out 1.25

deg2rad

Convert an angle measured in degrees to an angle measured in radians
Signature:

deg2rad(object x)

public function
include math.e
namespace math

Arguments: ≡ angle : an object, all atoms of which will be converted, no matter how deeply
nested.

Returns: An object, the same shape as angle, all atoms of which were multiplied by PI/180.

Comments: This function may be applied to an atom or sequence. A flat angle is PI radians and
180 degrees. sin(), cos() and tan() expect angles in radians.

See Also: rad2deg
Example 1:

x = deg2rad(194)
-- x is 3.385938749

ensure_in_list

Ensures that the item is in a list of values supplied by list
Signature:

ensure_in_list(object item, sequence list, integer default = 1)

public function
include math.e

namespace math

Arguments: ≡ item : The object to test for.
≡ list : A sequence of elements that item should be a member of.
≡ default : an integer, the index of the list item to return if item is not found. Defaults
to 1.

Returns: An object, if item is not in the list, it returns the list item of index default, otherwise
it returns item.

Comments: If default is set to an invalid index, the first item on the list is returned instead when
item is not on the list.

Example 1:

object valid_data = ensure_in_list(user_data, {100, 45, 2, 75, 121})
if not equal(valid_data, user_data) then
 errmsg("Invalid input supplied. Using %d instead.", valid_data)
end if
procA(valid_data)

ensure_in_range

Ensures that the item is in a range of values supplied by inclusive range_limits
Signature:

ensure_in_range(object item, sequence range_limits)

public function
include math.e
namespace math

Arguments: ≡ item : The object to test for.
≡ range_limits : A sequence of two or more elements. The first is assumed to be
the smallest value and the last is assumed to be the highest value.

Returns: A object, If item is lower than the first item in the range_limits it returns the first
item. If item is higher than the last element in the range_limits it returns the last
item. Otherwise it returns item.

Example 1:

object valid_data = ensure_in_range(user_data, {2, 75})
if not equal(valid_data, user_data) then
 errmsg("Invalid input supplied. Using %d instead.", valid_data)
end if
procA(valid_data)

exp

Computes some power of E.
Signature:

exp(atom x)

public function
include math.e
namespace math

Arguments: ≡ value : an object, all atoms of which will be acted upon, no matter how deeply
nested.

Returns: An object, the same shape as value. When value is an atom, its exponential is
being returned.

Comments: This function can be applied to a single atom or to a sequence of any shape.

Due to its rapid growth, the returned values start losing accuracy as soon as values
are greater than 10. Values above 710 will cause an overflow in hardware.

See Also: log
Example 1:

x = exp(5.4)
-- x is 221.4064162

fib

Computes the Nth Fibonacci Number
Signature:

fib(integer i)

public function
include math.e
namespace math

Arguments: ≡ value : an integer. The starting value to compute a Fibonacci Number from.

Returns: An atom,
• The Fibonacci Number specified by value.

Comments:
• Note that due to the limitations of the floating point implementation, only 'i' values
less than 76 are accurate on Windows platforms, and 69 on other platforms (due to
rounding differences in the native C runtime libraries).

Example 1:

? fib(6)
-- output ...
-- 8

floor

Rounds value down to the next integer less than or equal to value. It
Signature:

floor(object value)

<built-in> function

Arguments: ≡ value : any Euphoria object; each atom in value will be acted upon.

Returns: An object, the same shape as value but with each item guarenteed to be an integer
less than or equal to the corresponding item in value.

See Also: ceil, round
Example 1:

y = floor({0.5, -1.6, 9.99, 100})
-- y is {0, -2, 9, 100}

frac

Return the fractional portion of a number.
Signature:

frac(object x)

public function
include math.e
namespace math

Arguments: ≡ value : any Euphoria object.

Returns: An object, the shape of which depends on values's. Each item in the returned
object will be the same corresponding items in value except with the integer portion
removed.

Comments: Note that trunc(x) + frac(x) = x

See Also: trunc
Example 1:

a = frac(9.4)
-- a is 0.4

Example 2:

s = frac({81, -3.5, -9.999, 5.5})
-- s is {0, -0.5, -0.999, 0.5}

gcd

Returns the greater common divisor of to atoms
Signature:

gcd(atom p, atom q)

public function
include math.e
namespace math

Arguments: ≡ p : one of the atoms to consider
≡ q : the other atom.

Returns: A positive atom, without a fractional part, evenly dividing both parameters, and is
the greatest value with those properties.

Comments: Signs are ignored. Atoms are rounded down to integers.

Any zero parameter causes 0 to be returned.

Parameters and return value are atoms so as to take mathematical integers up to
power(2,53).

Example 1:

? gcd(76.3, -114) -- prints out gcd(76,114), which is 38

Floating Point

intdiv

Return an integral division of two objects.
Signature:

intdiv(object a, object b)

public function
include math.e
namespace math

Arguments: ≡ divided : any Euphoria object.
≡ divisor : any Euphoria object.

Returns: An object, which will be a sequence if either dividend or divisor is a sequence.

Comments:
• This calculates how many non-empty sets when dividend is divided by divisor.
• The result's sign is the same as the dividend's sign.

Example 1:

object Tokens = 101
object MaxPerEnvelope = 5
integer Envelopes = intdiv(Tokens, MaxPerEnvelope) --> 21

is_even

Test if the supplied integer is a even or odd number.
Signature:

is_even(integer test_integer)

public function
include math.e
namespace math

Arguments: ≡ test_integer : an integer. The item to test.

Returns: An integer,
• 1 if its even.
• 0 if its odd.

Example 1:

for i = 1 to 10 do
 ? {i, is_even(i)}
end for
-- output ...
-- {1,0}
-- {2,1}
-- {3,0}
-- {4,1}
-- {5,0}
-- {6,1}
-- {7,0}
-- {8,1}
-- {9,0}
-- {10,1}

is_even_obj

Test if the supplied Euphoria object is even or odd.
Signature:

is_even_obj(object test_object)

public function
include math.e
namespace math

Arguments: ≡ test_object : any Euphoria object. The item to test.

Returns: An object,
• If test_object is an integer...
…… ♦ 1 if its even.
…… ♦ 0 if its odd.
• Otherwise if test_object is an atom this always returns 0

• otherwise if test_object is an sequence it tests each element recursively,
returning a sequence of the same structure containing ones and zeros for each
element. A 1 means that the element at this position was even otherwise it was odd.

Example 1:

for i = 1 to 5 do
 ? {i, is_even_obj(i)}
end for
-- output ...
-- {1,0}
-- {2,1}
-- {3,0}
-- {4,1}
-- {5,0}

Example 2:

? is_even_obj(3.4) --> 0

Example 3:

? is_even_obj({{1,2,3}, {{4,5},6,{7,8}},9})
--> {{0,1,0},{{1,0},1,{0,1}},0}

larger_of

Returns the larger of two objects.
Signature:

larger_of(object objA, object objB)

public function
include math.e
namespace math

Arguments: ≡ objA : an object.
≡ objB : an object.

Returns: Whichever of objA and objB is the larger one.

Comments: Introduced in v4.0.3

See Also: max, compare, smaller_of
Examples:

? larger_of(10, 15.4) -- returns 15.4
? larger_of("cat", "dog") -- returns "dog"
? larger_of("apple", "apes") -- returns "apple"
? larger_of(10, 10) -- returns 10

log

Return the natural logarithm of a positive number.
Signature:

log(object value)

<built-in> function

Arguments: ≡ value : an object, any atom of which log() acts upon.

Returns: An object, the same shape as value. For an atom, the returned atom is its logarithm
of base E.

Comments: This function may be applied to an atom or to all elements of a sequence.

To compute the inverse, you can use power(E, x) where E is 2.7182818284590452,
or equivalently exp(x). Beware that the logarithm grows very slowly with x, so that
exp() grows very fast.

See Also: E, exp, log10
Example 1:

a = log(100)
-- a is 4.60517

log10

Return the base 10 logarithm of a number.
Signature:

log10(object x1)

public function
include math.e
namespace math

Arguments: ≡ value : an object, each atom of which will be converted, no matter how deeply
nested.

Returns: An object, the same shape as value. When value is an atom, raising 10 to the
returned atom yields value back.

Comments: This function may be applied to an atom or to all elements of a sequence.

log10() is proportional to log() by a factor of 1/log(10), which is about 0.435 .

See Also: log
Example 1:

a = log10(12)
-- a is 2.48490665

max

Computes the maximum value among all the argument's elements
Signature:

max(object a)

public function
include math.e
namespace math

Arguments: ≡ values : an object, all atoms of which will be inspected, no matter how deeply
nested.

Returns: An atom, the maximum of all atoms in flatten(values).

Comments: This function may be applied to an atom or to a sequence of any shape.

See Also: min, compare, flatten
Example 1:

a = max({10,15.4,3})
-- a is 15.4

min

Computes the minimum value among all the argument's elements
Signature:

min(object a)

public function
include math.e
namespace math

Arguments: ≡ values : an object, all atoms of which will be inspected, no matter how deeply
nested.

Returns: An atom, the minimum of all atoms in flatten(values).

Comments: This function may be applied to an atom or to a sequence of any shape.
Example 1:

a = min({10,15.4,3})
-- a is 3

mod

Compute the remainder of the division of two objects using floored division.
Signature:

mod(object x, object y)

public function
include math.e
namespace math

Arguments: ≡ dividend : any Euphoria object.
≡ divisor : any Euphoria object.

Returns: An object, the shape of which depends on dividend's and divisor's. For two atoms,
this is the remainder of dividing dividend by divisor, with divisor's sign.

Comments:
• There is a integer N such that dividend = N * divisor + result.
• The result is non-negative and has lesser magnitude than divisor. n needs not fit
in an Euphoria integer.
• The result has the same sign as the dividend.
• The arguments to this function may be atoms or sequences. The rules for
operations on sequences apply, and determine the shape of the returned object.
• When both arguments have the same sign, mod() and remainder() return the same
result.
• This differs from remainder() in that when the operands' signs are different this
function rounds dividend/divisior away from zero whereas remainder() rounds
towards zero.

See Also: remainder, Relational operators, Operations on sequences
Example 1:

a = mod(9, 4)
-- a is 1

Example 2:

s = mod({81, -3.5, -9, 5.5}, {8, -1.7, 2, -4})
-- s is {1,-0.1,1,-2.5}

Example 3:

s = mod({17, 12, 34}, 16)

unresolved.html
unresolved.html
unresolved.html

-- s is {1, 12, 2}

Example 4:

s = mod(16, {2, 3, 5})
-- s is {0, 1, 1}

not_bits

Perform the bitwise NOT operation on each bit in an object. A bit in the result will be
1

Signature:

not_bits(object a)

<built-in> function

Arguments: ≡ a : the object to invert the bits of.

Returns: An object, the same shape as a. Each bit in an atom of the result is the reverse of
the corresponding bit inside a.

Comments: The argument to this function may be an atom or a sequence.

The argument must be representable as a 32-bit number, either signed or unsigned.

If you intend to manipulate full 32-bit values, you should declare your variables as
atom, rather than integer. Euphoria's integer type is limited to 31-bits.

Results are treated as signed numbers. They will be negative when the highest-
order bit is 1.

A simple equality holds for an atom a: a + not_bits(a) = -1.

See Also: and_bits, or_bits, xor_bits, int_to_bits
Example 1:

a = not_bits(#000000F7)
-- a is -248 (i.e. FFFFFF08 interpreted as a negative number)

or_all

Or's together all atoms in the argument, no matter how deeply nested.
Signature:

or_all(object a)

public function
include math.e
namespace math

Arguments: ≡ values : an object, all atoms of which will be added up, no matter how nested.

Returns: An atom, the result of or'ing all atoms in flatten(values).

Comments: This function may be applied to an atom or to all elements of a sequence. It performs
or_bits() operations repeatedly.

See Also: sum, product, or_bits
Example 1:

a = sum({10, 7, 35})
-- a is 47

or_bits

Perform the bitwise OR operation on corresponding bits in two objects. A bit in the
Signature:

or_bits(object a, object b)

<built-in> function

Arguments: ≡ a : one of the objects involved
≡ b : the second object

Returns: An object, whose shape depends on the shape of both arguments. Each atom in
this object is obtained by bitwise OR between atoms on both objects.

Comments: The arguments must be representable as 32-bit numbers, either signed or unsigned.

If you intend to manipulate full 32-bit values, you should declare your variables as
atom, rather than integer. Euphoria's integer type is limited to 31-bits.

Results are treated as signed numbers. They will be negative when the highest-
order bit is 1.

See Also: and_bits, xor_bits, not_bits, int_to_bits
Example 1:

a = or_bits(#0F0F0000, #12345678)
-- a is #1F3F5678

Example 2:

a = or_bits(#FF, {#123456, #876543, #2211})
-- a is {#1234FF, #8765FF, #22FF}

power

Raise a base value to some power.
Signature:

power(object base, object exponent)

<built-in> function

Arguments: ≡ base : an object, the value(s) to raise to some power.
≡ exponent : an object, the exponent(s) to apply to base.

Returns: An object, the shape of which depends on base's and exponent's. For two atoms,
this will be base raised to the power exponent.

Comments: The arguments to this function may be atoms or sequences. The rules for operations
on sequences apply.

Powers of 2 are calculated very efficiently.

Other languages have a ** or ^ operator to perform the same action. But they don't
have sequences.

See Also: log, Operations on sequences
Example 1:

? power(5, 2)
-- 25 is printed

Example 2:

unresolved.html
unresolved.html

? power({5, 4, 3.5}, {2, 1, -0.5})
-- {25, 4, 0.534522} is printed

Example 3:

? power(2, {1, 2, 3, 4})
-- {2, 4, 8, 16}

Example 4:

? power({1, 2, 3, 4}, 2)
-- {1, 4, 9, 16}

powof2

Tests for power of 2
Signature:

powof2(object p)

public function
include math.e
namespace math

Arguments: ≡ p : an object. The item to test. This can be an integer, atom or sequence.

Returns: An integer,
• 1 for each item in p that is a power of two, eg. 2,4,8,16,32, ...
• 0 for each item in p that is not a power of two, eg. 3, 54.322, -2

Example 1:

for i = 1 to 10 do
 ? {i, powof2(i)}
end for
-- output ...
-- {1,1}
-- {2,1}
-- {3,0}
-- {4,1}
-- {5,0}
-- {6,0}
-- {7,0}
-- {8,1}
-- {9,0}
-- {10,0}

product

Compute the product of all the atom in the argument, no matter how deeply nested.
Signature:

product(object a)

public function
include math.e
namespace math

Arguments: ≡ values : an object, all atoms of which will be multiplied up, no matter how nested.

Returns: An atom, the product of all atoms in flatten(values).

Comments: This function may be applied to an atom or to all elements of a sequence

See Also: sum, or_all
Example 1:

a = product({10, 20, 30})
-- a is 6000

a = product({10.5, {11.2} , 8.1})
-- a is 952.56

rad2deg

Convert an angle measured in radians to an angle measured in degrees
Signature:

rad2deg(object x)

public function
include math.e
namespace math

Arguments: ≡ angle : an object, all atoms of which will be converted, no matter how deeply
nested.

Returns: An object, the same shape as angle, all atoms of which were multiplied by 180/PI.

Comments: This function may be applied to an atom or sequence. A flat angle is PI radians and
180 degrees.

arcsin(), arccos() and arctan() return angles in radians.

See Also: deg2rad
Example 1:

x = rad2deg(3.385938749)
-- x is 194

remainder

Compute the remainder of the division of two objects using truncated division.
Signature:

remainder(object dividend, object divisor)

<built-in> function

Arguments: ≡ dividend : any Euphoria object.
≡ divisor : any Euphoria object.

Returns: An object, the shape of which depends on dividend's and divisor's. For two atoms,
this is the remainder of dividing dividend by divisor, with dividend's sign.

Comments:
• There is a integer N such that dividend = N * divisor + result.
• The result has the sign of dividend and lesser magnitude than divisor.
• The result has the same sign as the dividend.
• This differs from mod() in that when the operands' signs are different this function
rounds dividend/divisior towards zero whereas mod() rounds away from zero.

The arguments to this function may be atoms or sequences. The rules for operations
on sequences apply, and determine the shape of the returned object.

See Also: mod, Relational operators, Operations on sequences
Example 1:

a = remainder(9, 4)
-- a is 1

unresolved.html
unresolved.html
unresolved.html

Example 2:

s = remainder({81, -3.5, -9, 5.5}, {8, -1.7, 2, -4})
-- s is {1, -0.1, -1, 1.5}

Example 3:

s = remainder({17, 12, 34}, 16)
-- s is {1, 12, 2}

Example 4:

s = remainder(16, {2, 3, 5})
-- s is {0, 1, 1}

rotate_bits

Rotates the bits in the input value by the specified distance.
Signature:

rotate_bits(object source_number, integer shift_distance)

public function
include math.e
namespace math

Arguments: ≡ source_number : object: value(s) whose bits will be be rotated.
≡ shift_distance : integer: number of bits to be moved by.

Returns: Atom(s) containing a 32-bit integer. A single atom in source_number is an atom, or a
sequence in the same form as source_number containing 32-bit integers.

Comments:
• If source_number is a sequence, each element is rotated.
• The value(s) in source_number are first truncated to a 32-bit integer.
• The output is truncated to a 32-bit integer.
• If shift_distance is negative, the bits in source_number are rotated left.
• If shift_distance is positive, the bits in source_number are rotated right.
• If shift_distance is zero, the bits in source_number are not rotated.

See Also: shift_bits

Arithmetics
Example 1:

? rotate_bits(7, -3) --> 56
? rotate_bits(0, -9) --> 0
? rotate_bits(4, -7) --> 512
? rotate_bits(8, -4) --> 128
? rotate_bits(0xFE427AAC, -7) --> 0x213D567F
? rotate_bits(-7, -3) --> -49 which is 0xFFFFFFCF
? rotate_bits(131, 0) --> 131
? rotate_bits(184.464, 0) --> 184
? rotate_bits(999_999_999_999_999, 0) --> -1530494977 which is 0xA4C67FFF
? rotate_bits(184, 3) -- 23
? rotate_bits(48, 2) --> 12
? rotate_bits(121, 3) --> 536870927
? rotate_bits(0xFE427AAC, 7) --> 0x59FC84F5
? rotate_bits(-7, 3) --> 0x3FFFFFFF
? rotate_bits({48, 121}, 2) --> {12, 1073741854}

round

Return the argument's elements rounded to some precision

Signature:

round(object a, object precision = 1)

public function
include math.e
namespace math

Arguments: ≡ value : an object, each atom of which will be acted upon, no matter how deeply
nested.
≡ precision : an object, the rounding precision(s). If not passed, this defaults to 1.

Returns: An object, the same shape as value. When value is an atom, the result is that atom
rounded to the nearest integer multiple of 1/precision.

Comments: This function may be applied to an atom or to all elements of a sequence.

See Also: floor, ceil
Example 1:

round(5.2) -- 5
round({4.12, 4.67, -5.8, -5.21}, 10) -- {4.1, 4.7, -5.8, -5.2}
round(12.2512, 100) -- 12.25

shift_bits

Moves the bits in the input value by the specified distance.
Signature:

shift_bits(object source_number, integer shift_distance)

public function
include math.e
namespace math

Arguments: ≡ source_number : object: The value(s) whose bits will be be moved.
≡ shift_distance : integer: number of bits to be moved by.

Returns: Atom(s) containing a 32-bit integer. A single atom in source_number is an atom, or a
sequence in the same form as source_number containing 32-bit integers.

Comments:
• If source_number is a sequence, each element is shifted.
• The value(s) in source_number are first truncated to a 32-bit integer.
• The output is truncated to a 32-bit integer.
• Vacated bits are replaced with zero.
• If shift_distance is negative, the bits in source_number are moved left.
• If shift_distance is positive, the bits in source_number are moved right.
• If shift_distance is zero, the bits in source_number are not moved.

See Also: rotate_bits
Example 1:

? shift_bits((7, -3) --> 56
? shift_bits((0, -9) --> 0
? shift_bits((4, -7) --> 512
? shift_bits((8, -4) --> 128
? shift_bits((0xFE427AAC, -7) --> 0x213D5600
? shift_bits((-7, -3) --> -56 which is 0xFFFFFFC8
? shift_bits((131, 0) --> 131
? shift_bits((184.464, 0) --> 184
? shift_bits((999_999_999_999_999, 0) --> -1530494977 which is 0xA4C67FFF
? shift_bits((184, 3) -- 23
? shift_bits((48, 2) --> 12
? shift_bits((121, 3) --> 15
? shift_bits((0xFE427AAC, 7) --> 0x01FC84F5
? shift_bits((-7, 3) --> 0x1FFFFFFF

? shift_bits((-7, 3) --> 0x1FFFFFFF
? shift_bits({48, 121}, 2) --> {12, 30}

sign

Return -1, 0 or 1 for each element according to it being negative, zero or positive
Signature:

sign(object a)

public function
include math.e
namespace math

Arguments: ≡ value : an object, each atom of which will be acted upon, no matter how deeply
nested.

Returns: An object, the same shape as value. When value is an atom, the result is -1 if value
is less than zero, 1 if greater and 0 if equal.

Comments: This function may be applied to an atom or to all elements of a sequence.

For an atom, sign(x) is the same as compare(x,0).

See Also: compare
Example 1:

i = sign(5)
i is 1

i = sign(0)
-- i is 0

i = sign(-2)
-- i is -1

sin

Return the sine of an angle expressed in radians
Signature:

sin(object angle)

<built-in> function

Arguments: ≡ angle : an object, each atom in which will be acted upon.

Returns: An object, the same shape as angle. When angle is an atom, the result is the sine
of angle.

Comments: This function may be applied to an atom or to all elements of a sequence.

The sine of an angle is an atom between -1 and 1 inclusive. 0.0 is hit by integer
multiples of PI only.

See Also: cos, arcsin, PI, deg2rad
Example 1:

sin_x = sin({0.5, 0.9, 0.11})
-- sin_x is {.479, .783, .110}

sinh

Computes the hyperbolic sine of an object.
Signature:

sinh(object a)

public function
include math.e
namespace math

Arguments: ≡ x : the object to process.

Returns: An object, the same shape as x, each atom of which was acted upon.

Comments: The hyperbolic sine grows like the exponential function.

For all reals, power(cosh(x), 2) - power(sinh(x), 2) = 1. Compare with ordinary
trigonometry.

See Also: cosh, sin, arcsinh
Example 1:

? sinh(LN2) -- prints out 0.75

smaller_of

Returns the smaller of two objects.
Signature:

smaller_of(object objA, object objB)

public function
include math.e
namespace math

Arguments: ≡ objA : an object.
≡ objB : an object.

Returns: Whichever of objA and objB is the smaller one.

Comments: Introduced in v4.0.3

See Also: min, compare, larger_of
Examples:

? smaller_of(10, 15.4) -- returns 10
? smaller_of("cat", "dog") -- returns "cat"
? smaller_of("apple", "apes") -- returns "apes"
? smaller_of(10, 10) -- returns 10

sqrt

Calculate the square root of a number.
Signature:

sqrt(object value)

<built-in> function

Arguments: ≡ value : an object, each atom in which will be acted upon.

Returns: An object, the same shape as value. When value is an atom, the result is the
positive atom whose square is value.

Comments: This function may be applied to an atom or to all elements of a sequence.

See Also: power, Operations on sequences

unresolved.html

Example 1:

r = sqrt(16)
-- r is 4

sum

Compute the sum of all atoms in the argument, no matter how deeply nested
Signature:

sum(object a)

public function
include math.e
namespace math

Arguments: ≡ values : an object, all atoms of which will be added up, no matter how nested.

Returns: An atom, the sum of all atoms in flatten(values).

Comments: This function may be applied to an atom or to all elements of a sequence

See Also: product, or_all
Example 1:

a = sum({10, 20, 30})
-- a is 60

a = sum({10.5, {11.2} , 8.1})
-- a is 29.8

tan

Return the tangent of an angle, or a sequence of angles.
Signature:

tan(object angle)

<built-in> function

Arguments: ≡ angle : an object, each atom of which will be converted, no matter how deeply
nested.

Returns: An object, of the same shape as angle. Each atom in the flattened angle is replaced
by its tangent.

Comments: This function may be applied to an atom or to all elements of a sequence of arbitrary
shape, recursively.

See Also: sin, cos, arctan
Example 1:

t = tan(1.0)
-- t is 1.55741

tanh

Computes the hyperbolic tangent of an object.
Signature:

tanh(object a)

public function

include math.e
namespace math

Arguments: ≡ x : the object to process.

Returns: An object, the same shape as x, each atom of which was acted upon.

Comments: The hyperbolic tangent takes values from -1 to +1.

tanh() is the ratio sinh() / cosh(). Compare with ordinary trigonometry.

See Also: cosh, sinh, tan, arctanh
Example 1:

? tanh(LN2) -- prints out 0.6

trunc

Return the integer portion of a number.
Signature:

trunc(object x)

public function
include math.e
namespace math

Arguments: ≡ value : any Euphoria object.

Returns: An object, the shape of which depends on values's. Each item in the returned
object will be an integer. These are the same corresponding items in value except
with any fractional portion removed.

Comments:
• This is essentially done by always rounding towards zero. The floor() function
rounds towards negative infinity, which means it rounds towards zero for positive
values and away from zero for negative values.
• Note that trunc(x) + frac(x) = x

See Also: floor frac
Example 1:

a = trunc(9.4)
-- a is 9

Example 2:

s = trunc({81, -3.5, -9.999, 5.5})
-- s is {81,-3, -9, 5}

xor_bits

Perform the bitwise XOR operation on corresponding bits in two objects. A bit in the
Signature:

xor_bits(object a, object b)

<built-in> function

Arguments: ≡ a : one of the objects involved
≡ b : the second object

Returns: An object, whose shape depends on the shape of both arguments. Each atom in
this object is obtained by bitwisel XOR between atoms on both objects.

Comments: The arguments must be representable as 32-bit numbers, either signed or unsigned.

If you intend to manipulate full 32-bit values, you should declare your variables as
atom, rather than integer. Euphoria's integer type is limited to 31-bits.

Results are treated as signed numbers. They will be negative when the highest-
order bit is 1.

See Also: and_bits, or_bits, not_bits, int_to_bits
Example 1:

a = xor_bits(#0110, #1010)
-- a is #1100

mathcons

Constants
PI
QUARTPI
HALFPI
TWOPI
PISQR
INVSQ2PI
PHI
E
LN2
INVLN2
LN10
INVLN10
SQRT2
HALFSQRT2
SQRT3
DEGREES_TO_RADIANS
RADIANS_TO_DEGREES
EULER_GAMMA
SQRTE
PINF
MINF
SQRT5

mathcons API

DEGREES_TO_RADIANS

Conversion factor: Degrees to Radians = PI / 180
Signature:

DEGREES_TO_RADIANS

public constant
include mathcons.e
namespace mathcons

E

Euler (e)The base of the natural logarithm.
Signature:

E

public constant
include mathcons.e
namespace mathcons

EULER_GAMMA

Gamma (Euler Gamma)
Signature:

EULER_GAMMA

public constant
include mathcons.e
namespace mathcons

HALFPI

Half of PI
Signature:

HALFPI

public constant
include mathcons.e
namespace mathcons

HALFSQRT2

sqrt(2)/ 2
Signature:

HALFSQRT2

public constant
include mathcons.e
namespace mathcons

INVLN10

1 / ln(10)
Signature:

INVLN10

public constant
include mathcons.e
namespace mathcons

namespace mathcons

INVLN2

1 / (ln(2))
Signature:

INVLN2

public constant
include mathcons.e
namespace mathcons

INVSQ2PI

1 / (sqrt(2PI))
Signature:

INVSQ2PI

public constant
include mathcons.e
namespace mathcons

LN10

ln(10) :: 10 = power(E, LN10)
Signature:

LN10

public constant
include mathcons.e
namespace mathcons

LN2

ln(2) :: 2 = power(E, LN2)
Signature:

LN2

public constant
include mathcons.e
namespace mathcons

MINF

Negative Infinity
Signature:

MINF

public constant
include mathcons.e

include mathcons.e
namespace mathcons

PHI

phi => Golden Ratio = (1 + sqrt(5)) / 2
Signature:

PHI

public constant
include mathcons.e
namespace mathcons

PI

PI is the ratio of a circle's circumference to it's diameter.
Signature:

PI

public constant
include mathcons.e
namespace mathcons

PINF

Positive Infinity
Signature:

PINF

public constant
include mathcons.e
namespace mathcons

PISQR

PI ^ 2
Signature:

PISQR

public constant
include mathcons.e
namespace mathcons

QUARTPI

Quarter of PI
Signature:

QUARTPI

public constant

public constant
include mathcons.e
namespace mathcons

RADIANS_TO_DEGREES

Conversion factor: Radians to Degrees = 180 / PI
Signature:

RADIANS_TO_DEGREES

public constant
include mathcons.e
namespace mathcons

SQRT2

sqrt(2)
Signature:

SQRT2

public constant
include mathcons.e
namespace mathcons

SQRT3

Square root of 3
Signature:

SQRT3

public constant
include mathcons.e
namespace mathcons

SQRT5

sqrt(5)
Signature:

SQRT5

public constant
include mathcons.e
namespace mathcons

SQRTE

sqrt(e)
Signature:

SQRTE

public constant
include mathcons.e
namespace mathcons

TWOPI

Two times PI
Signature:

TWOPI

public constant
include mathcons.e
namespace mathcons

memconst

Microsoft Windows Memory Protection Constants
PAGE_EXECUTE
PAGE_EXECUTE_READ
PAGE_EXECUTE_READWRITE
PAGE_EXECUTE_WRITECOPY
PAGE_WRITECOPY
PAGE_READWRITE
PAGE_READONLY
PAGE_NOACCESS

Standard Library Memory Protection Constants
PAGE_NONE
PAGE_READ_EXECUTE
PAGE_READ_WRITE
PAGE_READ
PAGE_READ_WRITE_EXECUTE
PAGE_WRITE_EXECUTE_COPY
PAGE_WRITE_COPY

Microsoft Windows Memory Protection Constants microsoftsmemoryprotectionconstants
These Memory Protection constants are as provided by Microsoft.

Standard Library Memory Protection Constants stardardlibrarymemoryprotectionconstants

Memory Protection Constants are the same constants names and meaning across all platforms
yet possibly of different numeric value. They are only necessary for allocate_protect

The constant names are created like this: You have four aspects of protection READ, WRITE,
EXECUTE and COPY. You take the word PAGE and you concatonate an underscore and the
aspect in the order above. For example: PAGE_WRITE_EXECUTE The sole exception to this
nomenclature is when you will have no acesss to the page the constant is called PAGE_NONE.

memconst API

PAGE_EXECUTE

unresolved.html

You may run the data in this page
Signature:

PAGE_EXECUTE

public constant
include memconst.e
namespace memconst

PAGE_EXECUTE_READ

You may read or run the data
Signature:

PAGE_EXECUTE_READ

public constant
include memconst.e
namespace memconst

PAGE_EXECUTE_READWRITE

You may run, read or write in this page
Signature:

PAGE_EXECUTE_READWRITE

public constant
include memconst.e
namespace memconst

PAGE_EXECUTE_WRITECOPY

You may run or write in this page
Signature:

PAGE_EXECUTE_WRITECOPY

public constant
include memconst.e
namespace memconst

PAGE_NOACCESS

You have no access to this page
Signature:

PAGE_NOACCESS

public constant
include memconst.e
namespace memconst

PAGE_NONE

You have no access to this page.
Signature:

PAGE_NONE

public constant
include memconst.e
namespace memconst

PAGE_READ

You may only read to this page
Signature:

PAGE_READ

public constant
include memconst.e
namespace memconst

PAGE_READONLY

You may only read data in this page
Signature:

PAGE_READONLY

public constant
include memconst.e
namespace memconst

PAGE_READWRITE

You may read or write in this page.
Signature:

PAGE_READWRITE

public constant
include memconst.e
namespace memconst

PAGE_READ_EXECUTE

You may read or run the data
Signature:

PAGE_READ_EXECUTE

public constant
include memconst.e
namespace memconst

PAGE_READ_WRITE

You may read or write to this page
Signature:

PAGE_READ_WRITE

public constant
include memconst.e
namespace memconst

PAGE_READ_WRITE_EXECUTE

You may run, read or write in this page
Signature:

PAGE_READ_WRITE_EXECUTE

public constant
include memconst.e
namespace memconst

PAGE_WRITECOPY

You may write to this page.
Signature:

PAGE_WRITECOPY

public constant
include memconst.e
namespace memconst

PAGE_WRITE_COPY

You may write to this page. Data
Signature:

PAGE_WRITE_COPY

public constant
include memconst.e
namespace memconst

PAGE_WRITE_EXECUTE_COPY

You may run or write to this page. Data
Signature:

PAGE_WRITE_EXECUTE_COPY

public constant
include memconst.e
namespace memconst

memory

Usage Notes
Safe memory access

Usage Notes

Positive integer type

Machine address type

memory API

os

CMD_SWITCHES
Operating System Constants

WIN32
WINDOWS
LINUX
OSX
OPENBSD
NETBSD
FREEBSD

Environment.
instance
get_pid
uname
is_win_nt
getenv
setenv
unsetenv
platform

Interacting with the OS
system
system_exec

Miscellaneous
sleep

os API

CMD_SWITCHES

Signature:

CMD_SWITCHES

public constant
include os.e
namespace os

FREEBSD

These constants are returned by the platform function.
Signature:

FREEBSD

public enum
include os.e
namespace os

LINUX

Signature:

LINUX

public enum
include os.e
namespace os

NETBSD

Signature:

NETBSD

public enum
include os.e
namespace os

OPENBSD

Signature:

OPENBSD

public enum
include os.e
namespace os

OSX

Signature:

OSX

public enum
include os.e
namespace os

WIN32

Signature:

WIN32

public enum
include os.e
namespace os

WINDOWS

Signature:

WINDOWS

public enum
include os.e
namespace os

get_pid

returns the ID of the current Process (pid).
Signature:

get_pid()

public function
include os.e
namespace os

Returns: An atom: The current process' id.
Example 1:

mypid = get_pid()

getenv

returns the value of an environment variable.
Signature:

getenv(sequence var_name)

<built-in> function

Arguments: ≡ var_name : a string, the name of the variable being queried.

Returns: An object, -1 if the variable does not exist, else a sequence holding its value.

Comments: Both the argument and the return value, may, or may not be, case sensitive. You
might need to test this on your own system.

See Also: setenv, command_line
Example: <

instance

returns hInstance on windows and Process ID (pid) on unix.
Signature:

instance()

public function
include os.e
namespace os

Comments: On windows the hInstance can be passed around to various windows routines.

is_win_nt

tests if the host system is a newer Windows version (NT/2K/XP/Vista).
Signature:

is_win_nt()

public function
include os.e
namespace os

Returns: An integer, 1 if host system is a newer Windows (NT/2K/XP/Vista), else 0.

platform

Indicates the platform that the program is being executed on.
Signature:

platform()

<built-in> function

Returns: An integer,

WIN32 = WINDOWS,
LINUX,
FREEBSD,
OSX,
OPENBSD,
NETBSD,
FREEBSD

Comments: The ifdef statement is much more versatile and in most cases supersedes
platform().

platform() used to be the way to execute different code depending on which
platform the program is running on. Additional platforms will be added as Euphoria
is ported to new machines and operating environments.

See Also: Platform-Specific Issues, ifdef statement
Example 1:

ifdef WINDOWS then
 -- call system Beep routine
 err = c_func(Beep, {0,0})
elsedef
 -- do nothing (Linux/FreeBSD)
end if

setenv

unresolved.html
unresolved.html
unresolved.html

sets an environment variable.
Signature:

setenv(sequence name, sequence val, integer overwrite = 1)

public function
include os.e
namespace os

Arguments: ≡ name : a string, the environment variable name
≡ val : a string, the value to set to
≡ overwrite : an integer, nonzero to overwrite an existing variable, 0 to disallow this.

See Also: getenv, unsetenv
Example 1:

? setenv("NAME", "John Doe")
? setenv("NAME", "Jane Doe")
? setenv("NAME", "Jim Doe", 0)

sleep

suspends thread execution for t seconds.
Signature:

sleep(atom t)

public procedure
include os.e
namespace os

Arguments: ≡ t : an atom, the number of seconds for which to sleep.

Comments: The operating system will suspend your process and schedule other processes.

With multiple tasks, the whole program sleeps, not just the current task. To make
just the current task sleep, you can call task_schedule(task_self(), {i, i}) and
then execute task_yield(). Another option is to call task_delay().

See Also: task_schedule, task_yield, task_delay
Example 1:

puts(1, "Waiting 15 seconds and a quarter...\n")
sleep(15.25)
puts(1, "Done.\n")

system

passes a command string to the operating system command interpreter.
Signature:

system(sequence command, integer mode=0)

<built-in> procedure

Arguments: ≡ command : a string to be passed to the shell
≡ mode : an integer, indicating the manner in which to return from the call.

Comments: Allowable values for mode are:
• 0: the previous graphics mode is restored and the screen is cleared.
• 1: a beep sound will be made and the program will wait for the user to press a key

before the previous graphics mode is restored.
• 2: the graphics mode is not restored and the screen is not cleared.

mode = 2 should only be used when it is known that the command executed by
system() will not change the graphics mode.

You can use Euphoria as a sophisticated "batch" (.bat) language by making calls to
system() and system_exec().

system() will start a new command shell.

system() allows you to use command-line redirection of standard input and output in
command.

See Also: system_exec, command_line, current_dir, getenv
Example 1:

system("copy temp.txt a:\\temp.bak", 2)
-- note use of double backslash in literal string to get
-- single backslash

Example 2:

system("eui \\test\\myprog.ex < indata > outdata", 2)
-- executes myprog by redirecting standard input and
-- standard output

system_exec

tries to run the a shell executable command.
Signature:

system_exec(sequence command, integer mode=0)

<built-in> function

Arguments: ≡ command : a string to be passed to the shell, representing an executable command
≡ mode : an integer, indicating the manner in which to return from the call.

Returns: An integer, basically the exit/return code from the called process.

Comments: Allowable values for mode are:
• 0 -- the previous graphics mode is restored and the screen is cleared.
• 1 -- a beep sound will be made and the program will wait for the user to press a
key before the previous graphics mode is restored.
• 2 -- the graphics mode is not restored and the screen is not cleared.

If it is not possible to run the program, system_exec() will return -1.

On windows system_exec() will only run .exe and .com programs. To run .bat files, or
built-in shell commands, you need system(). Some commands, such as DEL, are
not programs, they are actually built-in to the command interpreter.

On windows system_exec() does not allow the use of command-line redirection in
command. Nor does it allow you to quote strings that contain blanks, such as file
names.

exit codes from windows programs are normally in the range 0 to 255, with 0
indicating "success".

You can run a Euphoria program using system_exec(). A Euphoria program can
return an exit code using abort().

system_exec() does not start a new command shell.

See Also: system, abort
Example 1:

integer exit_code
exit_code = system_exec("xcopy temp1.dat temp2.dat", 2)

if exit_code = -1 then
 puts(2, "\n couldn't run xcopy.exe\n")
elsif exit_code = 0 then
 puts(2, "\n xcopy succeeded\n")
else
 printf(2, "\n xcopy failed with code %d\n", exit_code)
end if

Example 2:

-- executes myprog with two file names as arguments
if system_exec("eui \\test\\myprog.ex indata outdata", 2) then
 puts(2, "failure!\n")
end if

uname

retrieves the name of the host OS.
Signature:

uname()

public function
include os.e
namespace os

Returns: A sequence, starting with the OS name. If identification fails, returns an OS name of
UNKNOWN. Extra information depends on the OS.

Comments: On unix returns the same information as the uname() syscall in the same order as
the struct utsname. This information is:

OS Name/Kernel Name
Local Hostname
Kernel Version/Kernel Release
Kernel Specific Version information (This is usually the date that the
kernel was compiled on and the name of the host that performed the compiling.)
Architecture Name (Usually a string of i386 vs x86_64 vs ARM vs etc)

On windows returns the following in order:

Windows Platform (out of WinCE, Win9x, WinNT, Win32s, or Unknown Windows)
Name of Windows OS (Windows 3.1, Win95, WinXP, etc)
Platform Number
Build Number
Minor OS version number
Major OS version number

On UNKNOWN, returns an OS name of "UNKNOWN". No other information is
returned.

Returns a string of "" if an internal error has occured.

On unix M_UNAME is defined as a machine_func() and this is passed to the C
backend. If the M_UNAME call fails, the raw machine_func() returns -1. On non-unix

platforms, calling the machine_func() directly returns 0.

unsetenv

unsets an environment variable.
Signature:

unsetenv(sequence env)

public function
include os.e
namespace os

Arguments: ≡ name : name of environment variable to unset

See Also: setenv, getenv
Example 1:

? unsetenv("NAME")

pipeio

Notes
Accessor Constants

STDIN
STDOUT
STDERR
PID
PARENT
CHILD

Opening and Closing
process
close
kill

Read/Write Process
read
write
error_no
create
exec

Notes Due to a bug, Euphoria does not handle STDERR properly STDERR cannot captured for
Euphoria programs (other programs will work fully) The I/O functions currently work with file
handles, a future version might wrap them in streams so that they can be used directly alongside
other file/socket/other-streams with a stream_select() function.

pipeio API

CHILD

Set of pipes that are given to the child - should not be used by the parent
Signature:

CHILD

public enum
include pipeio.e
namespace pipeio

PARENT

Set of pipes that are for the use of the parent
Signature:

PARENT

public enum
include pipeio.e
namespace pipeio

PID

Process ID
Signature:

PID

public enum
include pipeio.e
namespace pipeio

STDERR

Child processes standard error
Signature:

STDERR

public enum
include pipeio.e
namespace pipeio

STDIN

Child processes standard input
Signature:

STDIN

public enum
include pipeio.e
namespace pipeio

STDOUT

Child processes standard output

Signature:

STDOUT

public enum
include pipeio.e
namespace pipeio

close

Close handle fd
Signature:

close(atom fd)

public function
include pipeio.e
namespace pipeio

Returns: An integer, 0 on success, -1 on failure
Example 1:

integer status = pipeio:close(p[STDIN])

create

creates pipes for inter-process communication.
Signature:

create()

public function
include pipeio.e
namespace pipeio

Returns: A handle, process handles { {parent side pipes},{child side pipes} }
Example 1:

object p = exec("dir", create())

error_no

gets the error no. from last call to a pipe function
Signature:

error_no()

public function
include pipeio.e
namespace pipeio

Comments: Value returned will be OS-specific, and is not always set on windows at least.
Example 1:

integer error = error_no()

exec

Open process with command line cmd
Signature:

exec(sequence cmd, sequence pipe)

public function
include pipeio.e
namespace pipeio

Returns: A handle, process handles { PID, STDIN, STDOUT, STDERR }
Example 1:

object p = exec("dir", create())

kill

close pipes and kills the process p with signal signal (default 15)
Signature:

kill(process p, atom signal = 15)

public procedure
include pipeio.e
namespace pipeio

Platform: unix
Comments: Signal is ignored on windows.
Example 1:

kill(p)

process

Process Type
Signature:

process(object o)

public type
include pipeio.e
namespace pipeio

read

reads bytes bytes from handle fd.
Signature:

read(atom fd, integer bytes)

public function
include pipeio.e
namespace pipeio

Returns: A sequence, containing data, an empty sequence on EOF or an error code. Similar
to get_bytes.

Example
1:

sequence data=read(p[STDOUT],256)

write

writes bytes to handle fd.
Signature:

write(atom fd, sequence str)

public function
include pipeio.e
namespace pipeio

Returns: An integer, number of bytes written, or -1 on error
Example 1:

integer bytes_written = write(p[STDIN],"Hello World!")

pretty

PRETTY_DEFAULT
DISPLAY_ASCII
INDENT
START_COLUMN
WRAP
INT_FORMAT
FP_FORMAT
MIN_ASCII
MAX_ASCII
MAX_LINES
LINE_BREAKS

Routines
pretty_print
pretty_sprint

pretty API

DISPLAY_ASCII

Signature:

DISPLAY_ASCII

public enum
include pretty.e
namespace pretty

FP_FORMAT

Signature:

FP_FORMAT

public enum
include pretty.e
namespace pretty

INDENT

Signature:

INDENT

public enum
include pretty.e
namespace pretty

INT_FORMAT

Signature:

INT_FORMAT

public enum
include pretty.e
namespace pretty

LINE_BREAKS

Signature:

LINE_BREAKS

public enum
include pretty.e
namespace pretty

MAX_ASCII

Signature:

MAX_ASCII

public enum
include pretty.e
namespace pretty

MAX_LINES

Signature:

MAX_LINES

public enum
include pretty.e
namespace pretty

MIN_ASCII

Signature:

MIN_ASCII

public enum
include pretty.e
namespace pretty

PRETTY_DEFAULT

Signature:

PRETTY_DEFAULT

public constant
include pretty.e
namespace pretty

START_COLUMN

Signature:

START_COLUMN

public enum
include pretty.e
namespace pretty

WRAP

Signature:

WRAP

public enum
include pretty.e
namespace pretty

pretty_print

prints an object to a file (or device) showing the object structure using: using braces
{ , , , }, indentation, and multiple lines.

Signature:

pretty_print(integer fn, object x, sequence options = PRETTY_DEFAULT)

public procedure
include pretty.e
namespace pretty

Arguments: ≡ fn : an integer, the file/device number to write to
≡ x : the object to display/convert to printable form

≡ x : the object to display/convert to printable form
≡ options : is an (up to) 10-element options sequence.

Comments: Pass {} in options to select the defaults, or set options as below:

display ASCII characters:

** 0 -- never ** 1 -- alongside any integers in printable ASCII range (default) ** 2 --
display as "string" when all integers of a sequence are in ASCII range ** 3 -- show
strings, and quoted characters (only) for any integers in ASCII range as well as the
characters: \t \r \n

amount to indent for each level of sequence nesting -- default: 2 # column we are
starting at -- default: 1 # approximate column to wrap at -- default: 78 # format to use
for integers -- default: "%d" # format to use for floating-point numbers -- default:
"%.10g" # minimum value for printable ASCII -- default 32 # maximum value for
printable ASCII -- default 127 # maximum number of lines to output # line breaks
between elements -- default 1 (0 = no line breaks, -1 = line breaks to wrap only)

If the length is less than 10, unspecified options at the end of the sequence will keep
the default values. e.g. {0, 5} will choose "never display ASCII", plus 5-character
indentation, with defaults for everything else.

The default options can be applied using the public constant PRETTY_DEFAULT, and
the elements may be accessed using the following public enum:

DISPLAY_ASCII
INDENT
START_COLUMN
WRAP
INT_FORMAT
FP_FORMAT
MIN_ASCII
MAX_ASCII
MAX_LINES

LINE_BREAKS

The display will start at the current cursor position. Normally you will want to call
pretty_print() when the cursor is in column 1 (after printing a <code>\n</code>
character). If you want to start in a different column, you should call position() and
specify a value for option [3]. This will ensure that the first and last braces in a
sequence line up vertically.

When specifying the format to use for integers and floating-point numbers, you can
add some decoration, e.g. "(%d)" or "$ %.2f"

See Also: print, sprint, printf, sprintf, pretty_sprint
Example 1:

pretty_print(1, "ABC", {})

{65'A',66'B',67'C'}

Example 2:

pretty_print(1, {{1,2,3}, {4,5,6}}, {})

{
 {1,2,3},
 {4,5,6}
}

Example 3:

pretty_print(1, {"Euphoria", "Programming", "Language"}, {2})

{
 "Euphoria",
 "Programming",

 "Language"
}

Example 4:

puts(1, "word_list = ") -- moves cursor to column 13
pretty_print(1,
 {{"Euphoria", 8, 5.3},
 {"Programming", 11, -2.9},
 {"Language", 8, 9.8}},
 {2, 4, 13, 78, "%03d", "%.3f"}) -- first 6 of 8 options

word_list = {
 {
 "Euphoria",
 008,
 5.300
 },
 {
 "Programming",
 011,
 -2.900
 },
 {
 "Language",
 008,
 9.800
 }
}

pretty_sprint

formats an object as a string with the structure shown using: using braces { , , , },
indentation, and multiple lines.

Signature:

pretty_sprint(object x, sequence options = PRETTY_DEFAULT)

public function
include pretty.e
namespace pretty

Arguments: ≡ x : the object to display
≡ options : is an (up to) 10-element options sequence: Pass {} to select the defaults,
or set options

Returns: A sequence, of printable characters, representing x in an human-readable form.

Comments: This function formats objects the same as pretty_print(), but returns the sequence
obtained instead of sending it to some file..

See Also: pretty_print, sprint

primes

Routines
calc_primes
next_prime
prime_list

primes API

calc_primes

returns a list of all prime numbers--up to the ceiling value (if it is prime), or up to the
next larger prime.

Signature:

calc_primes(integer approx_limit, atom time_limit_p = 10)

public function
include primes.e
namespace primes

Arguments: ≡ approx_limit : an integer, This is not the upper limit but the last prime returned is
the next prime after or on this value.
≡ time_out_p : an atom, the maximum number of seconds that this function can run
for. The default is 10 (ten) seconds.

Returns: A sequence, made of prime numbers in increasing order. The last value is the
prime number that falls on or just after the value of approx_limit.

Comments: The returned sequence contains all the prime numbers less than its last element.

The expected list of primes will contain approx_limit if it happens to be prime, or
will contain the next prime above this value.

If the largest prime value is less than approx_limit then the execution time limit was
reached before all calculations could finish; one or more of the largest prime values
will then be missing from the list.

If the list is incomplete you must increase the time cap limit, or disable the limit by
specifying a negative value.

Use the prime_list function if the largest prime found must not exceed the limit
value.

See Also: next_prime prime_list
Example 1:

? calc_primes(1000, 5)
-- Note that 1000 is an "approximate" limit.
-- On a very slow computer, you may only get all primes up to say 719.
-- On a faster computer, the last element printed out will be 1009.
-- This call will never take longer than 5 seconds.

next_prime

returns the test value (if it is prime) or the next larger prime.
Signature:

next_prime(integer n, object fail_signal_p = - 1, atom time_out_p = 1)

public function
include primes.e
namespace primes

Arguments: ≡ n : an integer, the starting point for the search
≡ fail_signal_p : an integer, used to signal error. Defaults to -1.

Returns: An integer, which is prime only if it took less than 1 second to determine the next
prime greater or equal to n.

Comments: The default value of -1 will alert you about an invalid returned value, since a prime
not less than n is expected. However, you can pass another value for this parameter.

See Also: calc_primes
Example 1:

? next_prime(997)
-- On a very slow computer, you might get -997, but 1009 is expected.

prime_list

returns a list of all prime numbers--up to the ceiling value (if it is prime), or up to the
largest prime below the ceiling.

Signature:

prime_list(integer top_prime_p = 0)

public function
include primes.e
namespace primes

Arguments: ≡ top_prime_p : The list will end with the prime less than or equal to this value. If
top_prime_p is zero, the current list of calculated primes is returned.

Returns: An sequence, a list of prime numbers from 2 to <= top_prime_p

See Also: calc_primes, next_prime
Example 1:

? prime_list(19)
--> {2,3,5,11,13,19}
-- the limit is included because it is also a prime

Example 2:

sequence pList = prime_list(1000)
--> {2,3,5,7,11, ... ,983,991,997}
-- this list contains 169 prime values
-- the largest prime up to or including 1000 is 997

rand

rand
rand_range
rnd
rnd_1
set_rand
get_rand
chance
roll
sample

rand API

chance

simulates the probability of a desired outcome.
Signature:

chance(atom my_limit, atom top_limit = 100)

public function
include rand.e
namespace random

Arguments: ≡ my_limit : an atom. The desired chance of something happening.
≡ top_limit: an atom. The maximum chance of something happening. The default
is 100.

Returns: an integer. 1 if the desired chance happened otherwise 0.

Comments: This simulates the chance of something happening. For example, if you wnat
something to happen with a probablity of 25 times out of 100 times then you code
chance(25) and if you want something to (most likely) occur 345 times out of 999
times, you code chance(345, 999).

See Also: rnd, roll
Example 1:

-- 65% of the days are sunny, so ...
 if chance(65) then
 puts(1, "Today will be a sunny day")
 elsif chance(40) then
 -- And 40% of non-sunny days it will rain.
 puts(1, "It will rain today")
 else
 puts(1, "Today will be a overcast day")
 end if

get_rand

retrieves the current values of the random generator's seeds.
Signature:

get_rand()

public function
include rand.e
namespace random

Returns: a sequence. A 2-element sequence containing the values of the two internal seeds.

Comments: You can use this to save the current seed values so that you can later reset them
back to a known state.

See Also: set_rand
Example 1:

sequence seeds
 seeds = get_rand()
 some_func() -- Which might set the seeds to anything.
 set_rand(seeds) -- reset them back to whatever they were
 -- before calling 'some_func()'.

rand

returns a random integral value.
Signature:

rand(object maximum)

<built-in> function

Arguments: ≡ maximum : an atom, a cap on the value to return.

Arguments: ≡ maximum : an atom, a cap on the value to return.

Returns: An atom, from 1 to maximum.

Comments:
• The minimum value of maximum is 1.
• The maximum value that can possibly be returned is #FFFFFFFF
(4_294_967_295)
• This function may be applied to an atom or to all elements of a sequence.
• In order to get reproducible results from this function, you should call set_rand()
with a reproducible value prior.

See Also: set_rand, ceil
Example 1:

s = rand({10, 20, 30})
-- s might be: {5, 17, 23} or {9, 3, 12} etc.

rand_range

returns a random integer from a specified inclusive integer range.
Signature:

rand_range(atom lo, atom hi)

public function
include rand.e
namespace random

Arguments: ≡ lo : an atom, the lower bound of the range
≡ hi : an atom, the upper bound of the range.

Returns: An atom, randomly drawn between lo and hi inclusive.

Comments: This function may be applied to an atom or to all elements of a sequence. In order to
get reproducible results from this function, you should call set_rand() with a
reproducible value prior.

See Also: rand, set_rand, rnd
Example 1:

s = rand_range(18, 24)
-- s could be any of: 18, 19, 20, 21, 22, 23 or 24

rnd

returns a random floating point number in the range 0 to 1.
Signature:

rnd()

public function
include rand.e
namespace random

Arguments: None.

Returns: An atom, randomly drawn between 0.0 and 1.0 inclusive.

Comments: In order to get reproducible results from this function, you should call set_rand() with
a reproducible value prior to calling this.

See Also: rand, set_rand, rand_range
Example 1:

set_rand(1001)
s = rnd()

 -- s is 0.6277338201

rnd_1

returns a random floating point number in the range 0 to less than 1.
Signature:

rnd_1()

public function
include rand.e
namespace random

Arguments: None.

Returns: An atom, randomly drawn between 0.0 and a number less than 1.0

Comments: In order to get reproducible results from this function, you should call set_rand() with
a reproducible value prior to calling this.

See Also: rand, set_rand, rand_range
Example 1:

set_rand(1001)
s = rnd_1()
 -- s is 0.6277338201

roll

simulates the probability of a dice throw.
Signature:

roll(object desired, integer sides = 6)

public function
include rand.e
namespace random

Arguments: ≡ desired : an object. One or more desired outcomes.
≡ sides: an integer. The number of sides on the dice. Default is 6.

Returns: an integer. 0 if none of the desired outcomes occured, otherwise the face number
that was rolled.

Comments: The minimum number of sides is 2 and there is no maximum.

See Also: rnd, chance
Example 1:

res = roll(1, 2)
 --> Simulate a coin toss.
res = roll({1,6})
 --> Try for a 1 or a 6 from a standard die toss.
res = roll({1,2,3,4}, 20)
 --> Looking for any number under 5 from a 20-sided die.

sample

returns a set of random samples selected from a population set.
Signature:

sample(sequence population, integer sample_size,
integer sampling_method = 0)

public function
include rand.e
namespace random

Arguments: ≡ population : a sequence. The set of items from which to take a sample.
≡ sample_size: an integer. The number of samples to take.
≡ sampling_method: an integer. When < 0, "with-replacement" method used.
When = 0, "without-replacement" method used and a single set of samples returned.
When > 0, "without-replacement" method used and a sequence containing the
set of samples (chosen items) and the set unchosen items, is returned.

Returns: A sequence. When sampling_method less than or equal to 0 then this is the set of
samples, otherwise it returns a two-element sequence; the first is the samples, and
the second is the remainder of the population (in the original order).

Comments: The random sample can be selected using either the "with-replacement" or "without-
replacement" methods. When using the "with-replacement" method, after each
sample is taken it is returned to the population set so that it could possible be taken
again. The "without-replacement" method does not return the sample so these items
can only ever be chosen once.

• If sample_size is less than 1, an empty set is returned.
• When using "without-replacement" method, if sample_size is greater than or equal
to the population count, the entire population set is returned, but in a random order.
• When using "with-replacement" method, if sample_size can be any positive
integer, thus it is possible to return more samples than there are items in the
population set as items can be chosen more than once.

Example 1:

set_rand("example")
printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", 1)})
 --> "t"
printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", 5)})
 --> "flukq"
printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", -1)})
 --> ""
printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", 26)})
 --> "kghrsxmjoeubaywlzftcpivqnd"
printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", 25)})
 --> "omntrqsbjguaikzywvxflpedc"

Example 2:

set_rand("example")
printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", 1, -1)})
 --> "t"
printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", 5, -1)})
 --> "fzycn"
printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", -1, -1)})
 --> ""
printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", 26, -1)})
 --> "keeamenuvvfyelqapucerghgfa"
printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", 45, -1)})
 --> "orwpsaxuwuyrbstqqwfkykujukuzkkuxvzvzniinnpnxm"

Example 3:

-- Deal 4 hands of 5 cards from a standard deck of cards.
sequence theDeck
sequence hands = {}
sequence rt
function new_deck(integer suits = 4, integer cards_per_suit = 13,
 integer wilds = 0)
 sequence nd = {}
 for i = 1 to suits do
 for j = 1 to cards_per_suit do
 nd = append(nd, {i,j})
 end for
 end for

 for i = 1 to wilds do
 nd = append(nd, {suits+1 , i})
 end for
 return nd
end function

theDeck = new_deck(4, 13, 2) -- Build the initial deck of cards
for i = 1 to 4 do
 -- Pick out 5 cards and also return the remaining cards.
 rt = sample(theDeck, 5, 1)
 theDeck = rt[2] -- replace the 'deck' with the remaining cards.
 hands = append(hands, rt[1])
end for

set_rand

resets the random number generator.
Signature:

set_rand(object seed)

public procedure
include rand.e
namespace random

Arguments: ≡ seed : an object. The generator uses this initialize itself for the next random
number generated. This can be a single integer or atom, or a sequence of two
integers, or an empty sequence or any other sort of sequence.

Comments:
• Starting from a seed, the values returned by rand() are reproducible. This is useful
for demos and stress tests based on random data. Normally the numbers returned
by the rand() function are totally unpredictable, and will be different each time you
run your program. Sometimes however you may wish to repeat the same series of
numbers, perhaps because you are trying to debug your program, or maybe you
want the ability to generate the same output (e.g. a random picture) for your user
upon request.
• Internally there are actually two seed values.
…… ♦ When set_rand() is called with a single integer or atom, the two internal
seeds are derived from the parameter.
…… ♦ When set_rand() is called with a sequence of exactly two integers/atoms the
internal seeds are set to the parameter values.
…… ♦ When set_rand() is called with an empty sequence, the internal seeds are
set to random values and are unpredictable. This is how to reset the generator.
…… ♦ When set_rand() is called with any other sequence, the internal seeds are
set based on the length of the sequence and the hashed value of the sequence.
• Aside from an empty seed parameter, this sets the generator to a known state and
the random numbers generated after come in a predicable order, though they still
appear to be random.

See Also: rand
Example 1:

sequence s, t
s = repeat(0, 3)
t = s

set_rand(12345)
s[1] = rand(10)
s[2] = rand(100)
s[3] = rand(1000)

set_rand(12345) -- same value for set_rand()
t[1] = rand(10) -- same arguments to rand() as before
t[2] = rand(100)
t[3] = rand(1000)

-- at this point s and t will be identical
set_rand("") -- Reset the generator to an unknown seed.
t[1] = rand(10) -- Could be anything now, no way to predict it.

regex

Introduction
General Use
Compile Time and Match Time
Compile Time Option Constants
Match Time Option Constants

Option Constants
ANCHORED
AUTO_CALLOUT
BSR_ANYCRLF
BSR_UNICODE
CASELESS
DEFAULT
DFA_SHORTEST
DFA_RESTART
DOLLAR_ENDONLY
DOTALL
DUPNAMES
EXTENDED
EXTRA
FIRSTLINE
MULTILINE
NEWLINE_CR
NEWLINE_LF
NEWLINE_CRLF
NEWLINE_ANY
NEWLINE_ANYCRLF
NOTBOL
NOTEOL
NO_AUTO_CAPTURE
NO_UTF8_CHECK
NOTEMPTY
PARTIAL
STRING_OFFSETS
UNGREEDY
UTF8

Error Constants
ERROR_NOMATCH
ERROR_NULL
ERROR_BADOPTION
ERROR_BADMAGIC
ERROR_UNKNOWN_OPCODE
ERROR_UNKNOWN_NODE
ERROR_NOMEMORY
ERROR_NOSUBSTRING
ERROR_MATCHLIMIT

ERROR_CALLOUT
ERROR_BADUTF8
ERROR_BADUTF8_OFFSET
ERROR_PARTIAL
ERROR_BADPARTIAL
ERROR_INTERNAL
ERROR_BADCOUNT
ERROR_DFA_UITEM
ERROR_DFA_UCOND
ERROR_DFA_UMLIMIT
ERROR_DFA_WSSIZE
ERROR_DFA_RECURSE
ERROR_RECURSIONLIMIT
ERROR_NULLWSLIMIT
ERROR_BADNEWLINE
error_names

Create/Destroy
regex
option_spec
option_spec_to_string
error_to_string
new
error_message

Utility Routines
escape
get_ovector_size

Match
find
find_all
has_match
is_match
matches
all_matches

Splitting
split
split_limit

Replacement
find_replace
find_replace_limit
find_replace_callback

Introduction

Regular expressions in Euphoria are based on the PCRE (Perl Compatible Regular
Expressions) library created by Philip Hazel.

This document will detail the Euphoria interface to Regular Expressions, not really regular
expression syntax. It is a very complex subject that many books have been written on. Here are a
few good resources online that can help while learning regular expressions.

EUForum Article
Perl Regular Expressions Man Page
Regular Expression Library (user supplied regular expressions for just about any task).
WikiPedia Regular Expression Article

http://openeuphoria.org/wiki/euwiki.cgi?EuGuide Regular Expressions
http://perldoc.perl.org/perlre.html
http://regexlib.com/
http://en.wikipedia.org/wiki/Regular_expression

Man page of PCRE in HTML

General Use

Many functions take an optional options parameter. This parameter can be either a single option
constant (see Option Constants), multiple option constants or'ed together into a single atom or a
sequence of options, in which the function will take care of ensuring the are or'ed together
correctly. Options are like their C equivalents with the 'PCRE_' prefix stripped off. Name spaces
disambiguate symbols so we don't need this prefix.

All strings passed into this library must be either 8-bit per character strings or UTF which uses
multiple bytes to encode UNICODE characters. You can use UTF8 encoded UNICODE strings
when you pass the UTF8 option.

Compile Time and Match Time

When a regular expression object is created via new we call also say it get's "compiled." The
options you may use for this are called "compile time" option constants. Once the regular
expression is created you can use the other functions that take this regular expression and a
string. These routines' options are called "match time" option constants. To not set any options at
all, do not supply the options argument or supply DEFAULT.

Compile Time Option Constants

The only options that may set at "compile time"; that is, to pass to new; are ANCHORED,
AUTO_CALLOUT, BSR_ANYCRLF, BSR_UNICODE, CASELESS, DEFAULT,
DOLLAR_ENDONLY, DOTALL, DUPNAMES, EXTENDED, EXTRA, FIRSTLINE, MULTILINE,
NEWLINE_CR, NEWLINE_LF, NEWLINE_CRLF, NEWLINE_ANY, NEWLINE_ANYCRLF,
NO_AUTO_CAPTURE, NO_UTF8_CHECK, UNGREEDY, and UTF8.

Match Time Option Constants

Options that may be set at "match time" are ANCHORED, NEWLINE_CR, NEWLINE_LF,
NEWLINE_CRLF, NEWLINE_ANY NEWLINE_ANYCRLF NOTBOL, NOTEOL, NOTEMPTY,
NO_UTF8_CHECK. Routines that take match time option constants match, split or replace a
regular expression against some string.

regex API

ANCHORED

Forces matches to be only from the first place it is asked to try to make a search.
Signature:

ANCHORED

public constant

Comments: In C, this is called PCRE_ANCHORED. This is passed to all routines including
new.

AUTO_CALLOUT

In C, this is called PCRE_AUTO_CALLOUT.
Signature:

AUTO_CALLOUT

http://www.slabihoud.de/software/archives/pcrecompat.html

public constant

BSR_ANYCRLF

With this option only ASCII new line sequences are recognized as newlines. Other
UNICODE

Signature:

BSR_ANYCRLF

public constant

BSR_UNICODE

With this option any UNICODE new line sequence is recognized as a newline.
Signature:

BSR_UNICODE

public constant

CASELESS

This will make your regular expression matches case insensitive. With this
Signature:

CASELESS

public constant

DEFAULT

This is a value used for not setting any flags at all. This can be passed to
Signature:

DEFAULT

public constant

DFA_RESTART

This is NOT used by any standard library routine.
Signature:

DFA_RESTART

public constant

DFA_SHORTEST

This is NOT used by any standard library routine.
Signature:

DFA_SHORTEST

public constant

DOLLAR_ENDONLY

If this bit is set, a dollar sign metacharacter in the pattern matches only
Signature:

DOLLAR_ENDONLY

public constant

DOTALL

With this option the '.' character also matches a newline sequence.
Signature:

DOTALL

public constant

DUPNAMES

Allow duplicate names for named subpatterns.
Signature:

DUPNAMES

public constant

ERROR_BADCOUNT

Signature:

ERROR_BADCOUNT

public constant
include regex.e
namespace regex

ERROR_BADMAGIC

Signature:

ERROR_BADMAGIC

public constant
include regex.e

namespace regex

ERROR_BADNEWLINE

Signature:

ERROR_BADNEWLINE

public constant
include regex.e
namespace regex

ERROR_BADOPTION

Signature:

ERROR_BADOPTION

public constant
include regex.e
namespace regex

ERROR_BADPARTIAL

Signature:

ERROR_BADPARTIAL

public constant
include regex.e
namespace regex

ERROR_BADUTF8

Signature:

ERROR_BADUTF8

public constant
include regex.e
namespace regex

ERROR_BADUTF8_OFFSET

Signature:

ERROR_BADUTF8_OFFSET

public constant
include regex.e
namespace regex

ERROR_CALLOUT

Signature:

ERROR_CALLOUT

public constant
include regex.e
namespace regex

ERROR_DFA_RECURSE

Signature:

ERROR_DFA_RECURSE

public constant
include regex.e
namespace regex

ERROR_DFA_UCOND

Signature:

ERROR_DFA_UCOND

public constant
include regex.e
namespace regex

ERROR_DFA_UITEM

Signature:

ERROR_DFA_UITEM

public constant
include regex.e
namespace regex

ERROR_DFA_UMLIMIT

Signature:

ERROR_DFA_UMLIMIT

public constant
include regex.e
namespace regex

ERROR_DFA_WSSIZE

Signature:

ERROR_DFA_WSSIZE

public constant
include regex.e
namespace regex

ERROR_INTERNAL

Signature:

ERROR_INTERNAL

public constant
include regex.e
namespace regex

ERROR_MATCHLIMIT

Signature:

ERROR_MATCHLIMIT

public constant
include regex.e
namespace regex

ERROR_NOMATCH

Signature:

ERROR_NOMATCH

public constant
include regex.e
namespace regex

ERROR_NOMEMORY

Signature:

ERROR_NOMEMORY

public constant
include regex.e
namespace regex

ERROR_NOSUBSTRING

Signature:

ERROR_NOSUBSTRING

public constant
include regex.e
namespace regex

ERROR_NULL

Signature:

ERROR_NULL

public constant
include regex.e
namespace regex

ERROR_NULLWSLIMIT

Signature:

ERROR_NULLWSLIMIT

public constant
include regex.e
namespace regex

ERROR_PARTIAL

Signature:

ERROR_PARTIAL

public constant
include regex.e
namespace regex

ERROR_RECURSIONLIMIT

Signature:

ERROR_RECURSIONLIMIT

public constant
include regex.e
namespace regex

ERROR_UNKNOWN_NODE

Signature:

ERROR_UNKNOWN_NODE

public constant
include regex.e
namespace regex

ERROR_UNKNOWN_OPCODE

Signature:

ERROR_UNKNOWN_OPCODE

public constant
include regex.e
namespace regex

EXTENDED

Whitespace and characters beginning with a hash mark to the end of the line
Signature:

EXTENDED

public constant

EXTRA

When an alphanumeric follows a backslash(\) has no special meaning an
Signature:

EXTRA

public constant

FIRSTLINE

If PCRE_FIRSTLINE is set, the match must happen before or at the first
Signature:

FIRSTLINE

public constant

MULTILINE

When MULTILINE it is set, the "start of line" and "end of line"
Signature:

MULTILINE

public constant

NEWLINE_ANY

Sets ANY newline sequence as the NEWLINE sequence including
Signature:

NEWLINE_ANY

public constant

NEWLINE_ANYCRLF

Sets ANY newline sequence from ASCII.
Signature:

NEWLINE_ANYCRLF

public constant

NEWLINE_CR

Sets CR as the NEWLINE sequence.
Signature:

NEWLINE_CR

public constant

NEWLINE_CRLF

Sets CRLF as the NEWLINE sequence
Signature:

NEWLINE_CRLF

public constant

NEWLINE_LF

Sets LF as the NEWLINE sequence.
Signature:

NEWLINE_LF

public constant

NOTBOL

This indicates that beginning of the passed string does NOT start
Signature:

NOTBOL

public constant

NOTEMPTY

Here matches of empty strings will not be allowed. In C, this is PCRE_NOTEMPTY.
Signature:

NOTEMPTY

public constant

NOTEOL

This indicates that end of the passed string does NOT end
Signature:

NOTEOL

public constant

NO_AUTO_CAPTURE

Disables capturing subpatterns except when the subpatterns are
Signature:

NO_AUTO_CAPTURE

public constant

NO_UTF8_CHECK

Turn off checking for the validity of your UTF string. Use this
Signature:

NO_UTF8_CHECK

public constant

PARTIAL

This option has no effect on whether a match will occur or not.
Signature:

PARTIAL

public constant

STRING_OFFSETS

This is used by matches and all_matches.
Signature:

STRING_OFFSETS

public constant

UNGREEDY

This modifier sets the pattern such that quantifiers are
Signature:

UNGREEDY

public constant

UTF8

Makes strings passed in to be interpreted as a UTF8 encoded string.
Signature:

UTF8

public constant

all_matches

gets the text of all matches.
Signature:

all_matches(regex re, string haystack, integer from = 1,
option_spec options = DEFAULT)

public function
include regex.e
namespace regex

Arguments: ≡ re : a regex for a subject to be matched against
≡ haystack : a string in which to searched
≡ from : an integer setting the starting position to begin searching from. Defaults to 1
≡ options : options, defaults to DEFAULT. See Match Time Option Constants.
options can be any match time option or a sequence of valid options or it can be a
value that comes from using or_bits on any two valid option values.

Returns: Returns ERROR_NOMATCH if there are no matches, or a sequence of
sequences of strings if there is at least one match. In each member sequence of
the returned sequence, the first string is the entire match and subsequent items
being each of the captured groups. The size of the sequence is the number of
groups in the expression plus one (for the entire match). In other words, each
member of the return value will be of the same structure of that is returned by
matches.

If options contains the bit STRING_OFFSETS, then the result is different. In each
member sequence, instead of each member being a string each member is itself a
sequence containing the matched text, the starting index in haystack and the ending
index in haystack.

See Also: matches
Example 1:

include std/regex.e as re
constant re_name = re:new("([A-Z][a-z]+) ([A-Z][a-z]+)")

object matches = re:all_matches(re_name, "John Doe and Jane Doe")
-- matches is:
-- {
-- { -- first match
-- "John Doe", -- full match data
-- "John", -- first group
-- "Doe" -- second group
-- },
-- { -- second match

-- "Jane Doe", -- full match data
-- "Jane", -- first group
-- "Doe" -- second group
-- }
-- }

matches = re:all_matches(re_name, "John Doe and Jane Doe", , re:STRING_OFFSETS)
-- matches is:
-- {
-- { -- first match
-- { "John Doe", 1, 8 }, -- full match data
-- { "John", 1, 4 }, -- first group
-- { "Doe", 6, 8 } -- second group
-- },
-- { -- second match
-- { "Jane Doe", 14, 21 }, -- full match data
-- { "Jane", 14, 17 }, -- first group
-- { "Doe", 19, 21 } -- second group
-- }
-- }

error_message

If new returns an atom, this function will return a text error message
Signature:

error_message(object re)

public function
include regex.e
namespace regex

Arguments: ≡ re: Regular expression to get the error message from

Returns: An atom (0) when no error message exists, otherwise a sequence describing the
error.

Example 1:

include std/regex.e
object r = regex:new("[A-Z[a-z]*")
if atom(r) then
 printf(1, "Regex failed to compile: %s\n", { regex:error_message(r) })
end if

error_names

Signature:

error_names

public constant
include regex.e
namespace regex

error_to_string

converts an regex error number to a string.
Signature:

error_to_string(integer i)

public function
include regex.e
namespace regex

See Also: error_message

escape

escapes special regular expression characters that may be entered into a
search

Signature:

escape(string s)

public function
include regex.e
namespace regex

Arguments: ≡ s: string sequence to escape

Returns: An escaped sequence representing s.

Notes: Special regex characters are: {{{ . \ + * ? [^] $ () { } = ! < > : - }}}
Example 1:

include std/regex.e as re
sequence search_s = re:escape("Payroll is $***15.00")
-- search_s = "Payroll is \\$***15\\.00"

find

returns the first match of re in haystack. You can optionally start at the position from.
Signature:

find(regex re, string haystack, integer from = 1,
option_spec options = DEFAULT, integer size = get_ovector_size(re, 30))

public function
include regex.e
namespace regex

Arguments: ≡ re : a regex for a subject to be matched against
≡ haystack : a string in which to searched
≡ from : an integer setting the starting position to begin searching from. Defaults to 1
≡ options : defaults to DEFAULT. See Match Time Option Constants. The only
options that may be set when calling find are ANCHORED, NEWLINE_CR,
NEWLINE_LF, NEWLINE_CRLF, NEWLINE_ANY NEWLINE_ANYCRLF
NOTBOL, NOTEOL, NOTEMPTY, and NO_UTF8_CHECK. options can be any
match time option or a sequence of valid options or it can be a value that comes
from using or_bits on any two valid option values.
≡ size : internal (how large an array the C backend should allocate). Defaults to 90,
in rare cases this number may need to be increased in order to accomodate
complex regex expressions.

Returns: An object, which is either an atom of 0, meaning nothing matched or a sequence of
index pairs. These index pairs may be fewer than the number of groups specified.
These index pairs may be the invalid index pair {0,0}.

The first pair is the starting and ending indeces of the sub-string that matches the
expression. This pair may be followed by indeces of the groups. The groups are
subexpressions in the regular expression surrounded by parenthesis ().

Now, it is possible to get a match without having all of the groups match. This can
happen when there is a quantifier after a group. For example: '([01])*' or '([01])?'. In
this case, the returned sequence of pairs will be missing the last group indeces for

which there is no match. However, if the missing group is followed by a group that
does match, {0,0} will be used as a place holder. You can ensure your groups
match when your expression matches by keeping quantifiers

Example 1:

include std/regex.e as re
r = re:new("([A-Za-z]+) ([0-9]+)") -- John 20 or Jane 45
object result = re:find(r, "John 20")

-- The return value will be:
-- {
-- { 1, 7 }, -- Total match
-- { 1, 4 }, -- First grouping "John" ([A-Za-z]+)
-- { 6, 7 } -- Second grouping "20" ([0-9]+)
-- }

find_all

returns all matches of re in haystack optionally starting at the sequence position
from.

Signature:

find_all(regex re, string haystack, integer from = 1,
option_spec options = DEFAULT, integer size = get_ovector_size(re, 30))

public function
include regex.e
namespace regex

Arguments: ≡ re : a regex for a subject to be matched against
≡ haystack : a string in which to searched
≡ from : an integer setting the starting position to begin searching from. Defaults to 1
≡ options : defaults to DEFAULT. See Match Time Option Constants.

Returns: A sequence of sequences that were returned by find and in the case of no matches
this returns an empty sequence. Please see find for a detailed description of each
member of the return sequence.

Example 1:

include std/regex.e as re
constant re_number = re:new("[0-9]+")
object matches = re:find_all(re_number, "10 20 30")

-- matches is:
-- {
-- {{1, 2}},
-- {{4, 5}},
-- {{7, 8}}
-- }

find_replace

replaces all matches of a regex with the replacement text.
Signature:

find_replace(regex ex, string text, sequence replacement, integer from = 1,
option_spec options = DEFAULT)

public function
include regex.e
namespace regex

Arguments: ≡ re : a regex which will be used for matching
≡ text : a string on which search and replace will apply

≡ replacement : a string, used to replace each of the full matches
≡ from : optional start position
≡ options : options, defaults to DEFAULT. See Match Time Option Constants.
options can be any match time option or a sequence of valid options or it can be a
value that comes from using or_bits on any two valid option values.

Returns: A sequence, the modified text. If there is no match with re the return value will be
the same as text when it was passed in.

Comments: Special replacement operators:

• \ -- Causes the next character to lose its special meaning.
• \n ~ Inserts a 0x0A (LF) character.
• \r ~ Inserts a 0x0D (CR) character.
• \t -- Inserts a 0x09 (TAB) character.
• \1 to \9 -- Recalls stored substrings from registers (\1, \2, \3, to \9).
• \0 -- Recalls entire matched pattern.
• \u -- Convert next character to uppercase
• \l -- Convert next character to lowercase
• \U -- Convert to uppercase till \E or \e
• \L -- Convert to lowercase till \E or \e
• \E or \e -- Terminate a \\U or \L conversion

Example 1:

include std/regex.e
regex r = new(`([A-Za-z]+)\.([A-Za-z]+)`)
sequence details = find_replace(r, "hello.txt",
 `Filename: \U\1\e Extension: \U\2\e`)
-- details = "Filename: HELLO Extension: TXT"

replaces up to limit matches of ex in text except when limit is 0. When limit is 0, this routine
replaces all of the matches.

find_replace_callback

When limit is positive,
Signature:

find_replace_callback(regex ex, string text, integer rid,
integer limit = 0, integer from = 1, option_spec options = DEFAULT)

public function
include regex.e
namespace regex

Arguments: ≡ re : a regex which will be used for matching
≡ text : a string on which search and replace will apply
≡ rid : routine id to execute for each match
≡ limit : the number of matches to process
≡ from : optional start position
≡ options : options, defaults to DEFAULT. See Match Time Option Constants.
options can be any match time option or a sequence of valid options or it can be a
value that comes from using or_bits on any two valid option values.

Returns: A sequence, the modified text.

Comments: The callback should take one sequence. The first member of this sequence will be a
a string representing the entire match and the subsequent members, if they exist,
will be a strings for the captured groups within the regular expression.

The function rid. Must take one sequence parameter. The function needs to accept a
sequence of strings and return a string. For each match, the function will be passed
a sequence of strings. The first string is the entire match the subsequent strings are

for the capturing groups. If a match succeeds with groups that don't exist, that place
will contain a 0. If the sub-group does exist, the palce will contain the matching
group string. for that group.

Example 1:

include std/text.e
function my_convert(sequence params)
 switch params[1] do
 case "1" then
 return "one "
 case "2" then
 return "two "
 case else
 return "unknown "
 end switch
end function

regex r = re:new(`\d`)
sequence result = re:find_replace_callback(r, "125",routine_id("my_convert"))
-- result = "one two unknown "

integer missing_data_flag = 0
regex r2 = re:new(`[A-Z][a-z]+ ([A-Z][a-z]+)?`)
function my_toupper(sequence params)
 -- here params[2] may be 0.
 return upper(params[1])
end function

result = find_replace_callback(r2, "John Doe", routine_id("my_toupper"))
-- params[2] is "Doe"
-- result = "JOHN DOE"
printf(1, "result=%s\n", {result})
result = find_replace_callback(r2, "Mary", routine_id("my_toupper"))
-- result = "MARY"

find_replace_limit

Signature:

find_replace_limit(regex ex, string text, sequence replacement,
integer limit, integer from = 1, option_spec options = DEFAULT)

public function
include regex.e
namespace regex

get_ovector_size

returns the number of capturing subpatterns (the ovector size) for a regex.
Signature:

get_ovector_size(regex ex, integer maxsize = 0)

public function
include regex.e
namespace regex

Arguments: ≡ ex : a regex
≡ maxsize : optional maximum number of named groups to get data from

Returns: An integer

has_match

tests if re matches any portion of haystack.
Signature:

has_match(regex re, string haystack, integer from = 1,
option_spec options = DEFAULT)

public function
include regex.e
namespace regex

Arguments: ≡ re : a regex for a subject to be matched against
≡ haystack : a string in which to searched
≡ from : an integer setting the starting position to begin searching from. Defaults to 1
≡ options : defaults to DEFAULT. See Match Time Option Constants. options can
be any match time option or a sequence of valid options or it can be a value that
comes from using or_bits on any two valid option values.

Returns: An atom, 1 if re matches any portion of haystack or 0 if not.

is_match

tests if the entire haystack matches re.
Signature:

is_match(regex re, string haystack, integer from = 1,
option_spec options = DEFAULT)

public function
include regex.e
namespace regex

Arguments: ≡ re : a regex for a subject to be matched against
≡ haystack : a string in which to searched
≡ from : an integer setting the starting position to begin searching from. Defaults to 1
≡ options : defaults to DEFAULT. See Match Time Option Constants. options can
be any match time option or a sequence of valid options or it can be a value that
comes from using or_bits on any two valid option values.

Returns: An atom, 1 if re matches the entire haystack or 0 if not.

matches

gets the matched text only.
Signature:

matches(regex re, string haystack, integer from = 1,
option_spec options = DEFAULT)

public function
include regex.e
namespace regex

Arguments: ≡ re : a regex for a subject to be matched against
≡ haystack : a string in which to searched
≡ from : an integer setting the starting position to begin searching from. Defaults to 1
≡ options : defaults to DEFAULT. See Match Time Option Constants. options can
be any match time option or STRING_OFFSETS or a sequence of valid options or it
can be a value that comes from using or_bits on any two valid option values.

Returns: Returns a sequence of strings, the first being the entire match and subsequent
items being each of the captured groups or ERROR_NOMATCH of there is no

match. The size of the sequence is the number of groups in the expression plus one
(for the entire match).

If options contains the bit STRING_OFFSETS, then the result is different. For each
item, a sequence is returned containing the matched text, the starting index in
haystack and the ending index in haystack.

See Also: all_matches
Example 1:

include std/regex.e as re
constant re_name = re:new("([A-Z][a-z]+) ([A-Z][a-z]+)")

object matches = re:matches(re_name, "John Doe and Jane Doe")
-- matches is:
-- {
-- "John Doe", -- full match data
-- "John", -- first group
-- "Doe" -- second group
-- }

matches = re:matches(re_name, "John Doe and Jane Doe", 1, re:STRING_OFFSETS)
-- matches is:
-- {
-- { "John Doe", 1, 8 }, -- full match data
-- { "John", 1, 4 }, -- first group
-- { "Doe", 6, 8 } -- second group
-- }

new

returns an allocated regular expression.
Signature:

new(string pattern, option_spec options = DEFAULT)

public function
include regex.e
namespace regex

Arguments: ≡ pattern : a sequence representing a human readable regular expression
≡ options : defaults to DEFAULT. See Compile Time Option Constants.

Returns: A regex, which other regular expression routines can work on or an atom to indicate
an error. If an error, you can call error_message to get a detailed error message.

Comments: This is the only routine that accepts a human readable regular expression. The
string is compiled and a regex is returned. Analyzing and compiling a regular
expression is a costly operation and should not be done more than necessary. For
instance, if your application looks for an email address among text frequently, you
should create the regular expression as a constant accessible to your source code
and any files that may use it, thus, the regular expression is analyzed and compiled
only once per run of your application.

See Also: error_message, find, find_all
Example 1:

-- Bad Example
include std/regex.e as re

while sequence(line) do
 re:regex proper_name = re:new("[A-Z][a-z]+ [A-Z][a-z]+")
 if re:find(proper_name, line) then
 -- code
 end if
end while

Example 2:

-- Good Example
include std/regex.e as re
constant re_proper_name = re:new("[A-Z][a-z]+ [A-Z][a-z]+")
while sequence(line) do
 if re:find(re_proper_name, line) then
 -- code
 end if
end while

Example 3:

include std/regex.e as re
re:regex number = re:new("[0-9]+")

option_spec

Regular expression option specification type
Signature:

option_spec(object o)

public type
include regex.e
namespace regex

option_spec_to_string

Converts an option spec to a string.
Signature:

option_spec_to_string(option_spec o)

public function
include regex.e
namespace regex

regex

Regular expression type
Signature:

regex(object o)

public type
include regex.e
namespace regex

split

splits a string based on a regex as a delimiter.
Signature:

split(regex re, string text, integer from = 1,
option_spec options = DEFAULT)

public function
include regex.e
namespace regex

Arguments: ≡ re : a regex which will be used for matching
≡ text : a string on which search and replace will apply
≡ from : optional start position
≡ options : options, defaults to DEFAULT. See Match Time Option Constants.
options can be any match time option or a sequence of valid options or it can be a
value that comes from using or_bits on any two valid option values.

Returns: A sequence of string values split at the delimiter and if no delimiters were matched
this sequence will be a one member sequence equal to {text}.

Example 1:

include std/regex.e as re
regex comma_space_re = re:new(`,\s`)
sequence data = re:split(comma_space_re,
 "euphoria programming, source code, reference data")
-- data is
-- {
-- "euphoria programming",
-- "source code",
-- "reference data"
-- }

split_limit

Signature:

split_limit(regex re, string text, integer limit = 0, integer from = 1,
option_spec options = DEFAULT)

public function
include regex.e
namespace regex

search

Equality
compare
equal

Finding
find
find_from
find_any
match_any
find_each
find_all
find_all_but
NESTED_ANY
NESTED_ALL
NESTED_INDEX
NESTED_BACKWARD
find_nested
rfind
find_replace
match_replace
binary_search

Matching
match
match_from
match_all
rmatch
begins
ends
is_in_range
is_in_list
lookup
vlookup

search API

NESTED_ALL

Signature:

NESTED_ALL

public constant
include search.e
namespace search

NESTED_ANY

Signature:

NESTED_ANY

public constant
include search.e
namespace search

NESTED_BACKWARD

Signature:

NESTED_BACKWARD

public constant
include search.e
namespace search

NESTED_INDEX

Signature:

NESTED_INDEX

public constant
include search.e
namespace search

begins

tests whether a sequence is at the head of another one.
Signature:

begins(object sub_text, sequence full_text)

public function
include search.e
namespace search

Arguments: ≡ sub_text : an object to be looked for
≡ full_text : a sequence, the head of which is being inspected.

Returns: An integer, 1 if sub_text begins full_text, else 0.

See Also: ends, head
Example 1:

s = begins("abc", "abcdef")
-- s is 1
s = begins("bcd", "abcdef")
-- s is 0

binary_search

locates a "needle" in an ordered "haystack". Starting and ending indices can be
specified.

Signature:

binary_search(object needle, sequence haystack, integer start_point = 1,
integer end_point = 0)

public function
include search.e
namespace search

Arguments: ≡ needle : an object to look for
≡ haystack : a sequence to search in
≡ start_point : an integer, the index at which to start searching. Defaults to 1.
≡ end_point : an integer, the end point of the search. Defaults to 0, ie search to end.

Returns: An integer, either: # a positive integer i, which means haystack[i] equals needle.
a negative integer, -i, with i between adjusted start and end points. This means
that needle is not in the searched slice of haystack, but would be at index i if it were
there. # a negative integer -i with i out of the searched range. This means than
needlemight be either below the start point if i is below the start point, or above the
end point if i is.

Comments:
• If end_point is not greater than zero, it is added to length(haystack) once only.
Then, the end point of the search is adjusted to length(haystack) if out of bounds.
• The start point is adjusted to 1 if below 1.
• The way this function returns is very similar to what db_find_key does. They use
variants of the same algorithm. The latter is all the more efficient as haystack is long.
• haystack is assumed to be in ascending order. Results are undefined if it is not.
• If duplicate copies of needle exist in the range searched on haystack, any of the
possible contiguous indexes may be returned.

See Also: find, db_find_key

compare

tests two objects and returns the status of first object as being less than, equal, or
greater than the first.

Signature:

compare(object compared, object reference)

<built-in> function

Arguments: ≡ compared : the compared object
≡ reference : the reference object

Returns: An integer,
• 0 -- if objects are identical
• 1 -- if compared is greater than reference
• -1 -- if compared is less than reference

Comments: Atoms are considered to be less than sequences; atoms are compared as ordinary
reals. Sequences are compared alphabetically starting with the first element until a
difference is found or one of the sequences is exhausted.

See Also: equal, relational operators, operations on sequences, sort
Example 1:

x = compare({1,2,{3,{4}},5}, {2-1,1+1,{3,{4}},6-1})
-- identical, x is 0

Example 2:

if compare("ABC", "ABCD") < 0 then -- -1
 -- will be true: ABC is "less" because it is shorter
end if

Example 3:

x = compare('a', "a")
-- x will be -1 because 'a' is an atom
-- while "a" is a sequence

ends

tests whether a sequence ends another one.
Signature:

ends(object sub_text, sequence full_text)

public function
include search.e
namespace search

Arguments: ≡ sub_text : an object to be looked for
≡ full_text : a sequence, the tail of which is being inspected.

Returns: An integer, 1 if sub_text ends full_text, else 0.

See Also: begins, tail
Example 1:

s = ends("def", "abcdef")
-- s is 1
s = begins("bcd", "abcdef")
-- s is 0

unresolved.html
unresolved.html

equal

tests two Euphoria objects to see if they are the same.
Signature:

equal(object left, object right)

<built-in> function

Arguments: ≡ left : one of the objects to test
≡ right : the other object

Returns: An integer, 1 if the two objects are identical, else 0.

Comments: This is equivalent to the expression: compare(left, right) = 0.

This routine, like most other built-in routines, is very fast. It does not have any
subroutine call overhead.

See Also: compare
Example 1:

if equal(PI, 3.14) then
 puts(1, "give me a better value for PI!\n")
end if

Example 2:

if equal(name, "George") or equal(name, "GEORGE") then
 puts(1, "name is George\n")
end if

find

locates the first occurrence of a "needle," as an element, of a "haystack" from the
"start" position.

Signature:

find(object needle, sequence haystack, integer start)

<built-in> function

Arguments: ≡ needle : an object whose presence is being queried
≡ haystack : a sequence, which is being looked up for needle
≡ start : an integer, the position at which to start searching. Defaults to 1.

Returns: An integer, 0 if needle is not on haystack, else the smallest index of an element of
haystack that equals needle.

See Also: find, match, compare
Example 1:

location = find(11, {5, 8, 11, 2, 3})
-- location is set to 3

Example 2:

names = {"fred", "rob", "george", "mary", ""}
location = find("mary", names)
-- location is set to 4

find_all

finds all occurrences of an element inside a sequence from a specfied starting

index.
Signature:

find_all(object needle, sequence haystack, integer start = 1)

public function
include search.e
namespace search

Arguments: ≡ needle : an object, what to look for
≡ haystack : a sequence to search in
≡ start : an integer, the starting index position (defaults to 1)

Returns: A sequence, the list of all indexes no less than start of elements of haystack that
equal needle. This sequence is empty if no match found.

See Also: find, match, match_all
Example 1:

s = find_all('A', "ABCABAB")
-- s is {1,4,6}

find_all_but

locates all non-occurrences of an element inside a sequence from a specified
starting index.

Signature:

find_all_but(object needle, sequence haystack, integer start = 1)

public function
include search.e
namespace search

Arguments: ≡ needle : an object, what to look for
≡ haystack : a sequence to search in
≡ start : an integer, the starting index position (defaults to 1)

Returns: A sequence, the list of all indexes no less than start of elements of haystack that
not equal to needle. This sequence is empty if haystack only consists of needle.

See Also: find_all, match, match_all
Example 1:

s = find_all_but('A', "ABCABAB")
-- s is {2,3,5,7}

find_any

locates any element (obtained from a list) inside a sequence; returns the first
location.

Signature:

find_any(object needles, sequence haystack, integer start = 1)

public function
include search.e
namespace search

Arguments: ≡ needles : a sequence, the list of items to look for
≡ haystack : a sequence, in which "needles" are looked for
≡ start : an integer, the starting point of the search. Defaults to 1.

Returns: An integer, the smallest index in haystack of an element of needles, or 0 if no
needle is found.

Comments: This function may be applied to a string sequence or a complex sequence.

See Also: find
Example 1:

location = find_any("aeiou", "John Smith", 3)
-- location is 8

Example 2:

location = find_any("aeiou", "John Doe")
-- location is 2

find_each

locates all instances of any element from the needle sequence that occur in the
haystack sequence; returns a list of indices.

Signature:

find_each(sequence needles, sequence haystack, integer start = 1)

public function
include search.e
namespace search

Arguments: ≡ needles : a sequence, the list of items to look for
≡ haystack : a sequence, in which "needles" are looked for
≡ start : an integer, the starting point of the search. Defaults to 1.

Returns: A sequence, the list of indexes into haystack that point to an element that is also in
needles.

Comments: This function may be applied to a string sequence or a complex sequence.

See Also: find, find_any
Example 1:

location = find_each("aeiou", "John Smith", 3)
-- location is {8}

Example 2:

location = find_each("aeiou", "John Doe")
-- location is {2,7,8}

find_from

is deprecated since 4.0.0
Signature:

find_from(object needle, object haystack, integer start)

<built-in> function

Comments: In Euphoria 4.0.0 we have the ability to default parameters to procedures and
functions. The built-in find therefore now has a start parameter that is defaulted to
the beginning of the sequence. Thus, find can perform the identical functionality
provided by find_from. In an undetermined future release of Euphoria, find_from
will be removed.

See Also: find

find_nested

finds any element (among a list) in a sequence of arbitrary shape and nesting level.
Signature:

find_nested(object needle, sequence haystack, integer flags = 0,
integer rtn_id = types :NO_ROUTINE_ID)

public function
include search.e
namespace search

Arguments: ≡ needle : an object, either what to look up, or a list of items to look up
≡ haystack : a sequence, where to look up
≡ flags : options to the function, see Comments section. Defaults to 0.
≡ routine : an integer, the routine_id of an user supplied equal/find function.
Defaults to types:NO_ROUTINE_ID.

Returns: A possibly empty sequence, of results, one for each hit.

Comments: Each item in the returned sequence is either a sequence of indexes, or a pair
{sequence of indexes, index in needle}.

See Also: find, rfind, find_any, fetch
Example 1:

sequence s = find_nested(3, {5, {4, {3, {2}}}})
-- s is {2 ,2 ,1}

Example 2:

sequence s = find_nested({3, 2}, {1, 3, {2,3}},
 NESTED_ANY + NESTED_BACKWARD + NESTED_ALL)
-- s is {{3,2}, {3,1}, {2}}

Example 3:

sequence s = find_nested({3, 2}, {1, 3, {2,3}},
 NESTED_ANY + NESTED_INDEXES + NESTED_ALL)
-- s is {{{2}, 1}, {{3, 1}, 2}, {{3, 2}, 1}}

find_replace

replaces occurances of needles, as elements, in the haystack with replacement;
every or just max number of needles is replaced.

Signature:

find_replace(object needle, sequence haystack, object replacement,
integer max = 0)

public function
include search.e
namespace search

Arguments: ≡ needle : an object to search and perhaps replace
≡ haystack : a sequence to be inspected
≡ replacement : an object to substitute for any (first) instance of needle
≡ max : an integer, 0 to replace all occurrences

Returns: A sequence, the modified haystack.

Comments: Replacements will not be made recursively on the part of haystack that was already
changed.

If max is 0 or less, any occurrence of needle in haystack will be replaced by
replacement. Otherwise, only the first max occurrences are.

See Also: find, replace, match_replace
Example 1:

s = find_replace('b',"The batty book was all but in Canada.", 'c', 0)
-- s is "The catty cook was all cut in Canada."

Example 2:

s = find_replace('/', "/euphoria/demo/unix", '\\', 2)
-- s is "\\euphoria\\demo/unix"

Example 3:

s = find_replace("theater", { "the", "theater", "theif" }, "theatre")
-- s is { "the", "theatre", "theif" }

is_in_list

tests if the item is in a list of values supplied by list.
Signature:

is_in_list(object item, sequence list)

public function
include search.e
namespace search

Arguments: ≡ item : The object to test for.
≡ list : A sequence of elements that item could be a member of.

Returns: An integer, 0 if item is not in the list, otherwise it returns 1.
Example 1:

if is_in_list(user_data, {100, 45, 2, 75, 121}) then
 procA(user_data)
end if

is_in_range

tests if the item is in a range of values supplied by range_limits.
Signature:

is_in_range(object item, sequence range_limits, sequence boundries = "[]")

public function
include search.e
namespace search

Arguments: ≡ item : The object to test for.
≡ range_limits : A sequence of two or more elements. The first is assumed to be
the smallest value and the last is assumed to be the highest value.
≡ boundries: a sequence. This determines if the range limits are inclusive or not.
Must be one of "[]" (the default), "[)", "(]", or "()".

Returns: An integer, 0 if item is not in the range_limits otherwise it returns 1.

Comments:
• In boundries, square brackets mean inclusive and round brackets mean exclusive.
Thus "[]" includes both limits in the range, while "()" excludes both limits. And, "[)"
includes the lower limit and excludes the upper limits while "(]" does the reverse.

Example 1:

if is_in_range(2, {2, 75}) then
 procA(user_data) -- Gets run (both limits included)
end if
if is_in_range(2, {2, 75}, "(]") then
 procA(user_data) -- Does not get run
end if

lookup

returns the corresponding element from the target list, if the supplied item is in the
source list.

Signature:

lookup(object find_item, sequence source_list, sequence target_list,
object def_value = 0)

public function
include search.e
namespace search

Arguments: ≡ find_item: an object that might exist in source_list.
≡ source_list: a sequence that might contain pITem.
≡ target_list: a sequence from which the corresponding item will be returned.
≡ def_value: an object (defaults to zero). This is returned when find_item is not in
source_list and target_list is not longer than source_list.

Returns: an object
• If find_item is found in source_list then this is the corresponding element from
target_list
• If find_item is not in source_list then if target_list is longer than source_list
then the last item in target_list is returned otherwise def_value is returned.

Example 1:

lookup('a', "cat", "dog") --> 'o'
lookup('d', "cat", "dogx") --> 'x'
lookup('d', "cat", "dog") --> 0
lookup('d', "cat", "dog", -1) --> -1
lookup("ant",{"ant","bear","cat"}, {"spider","seal","dog","unknown"})
 --> "spider"
lookup("dog",{"ant","bear","cat"}, {"spider","seal","dog","unknown"})
 --> "unknown"

match

locates a "needle," as a slice, of a "haystack" beginning from the "start" index.
Signature:

match(sequence needle, sequence haystack, integer start)

<built-in> function

Arguments: ≡ needle : a sequence whose presence as a "substring" is being queried
≡ haystack : a sequence, which is being looked up for needle as a sub-sequence
≡ start : an integer, the point from which matching is attempted. Defaults to 1.

Returns: An integer, 0 if no slice of haystack is needle, else the smallest index at which such
a slice starts.

See Also: find, compare, wildcard:is_match
Example 1:

location = match("pho", "Euphoria")

-- location is set to 3

match_all

locates needles, as slices, in a haystack.
Signature:

match_all(sequence needle, sequence haystack, integer start = 1)

public function
include search.e
namespace search

Arguments: ≡ needle : a sequence, what to look for
≡ haystack : a sequence to search in
≡ start : an integer, the starting index position (defaults to 1)

Returns: A sequence, of integers, the list of all lower indexes, not less than start, of all
slices in haystack that equal needle. The list may be empty.

See Also: match, regex:find_all find, find_all
Example 1:

s = match_all("the", "the dog chased the cat under the table.")
-- s is {1,16,30}

match_any

tests if any element from needles is in haystack.
Signature:

match_any(sequence needles, sequence haystack, integer start = 1)

public function
include search.e
namespace search

Arguments: ≡ needles : a sequence, the list of items to look for
≡ haystack : a sequence, in which "needles" are looked for
≡ start : an integer, the starting point of the search. Defaults to 1.

Returns: An integer, 0 if no matches, 1 if any matches.

Comments: This function may be applied to a string sequence or a complex sequence.

See Also: find_any
Example 1:

ok = match_any("aeiou", "John Smith")
-- okay is 1
ok = match_any("xyz", "John Smith")
-- okay is 0

match_from

is deprecated since 4.0.0
Signature:

match_from(sequence needle, sequence haystack, integer start)

<built-in> function

Comments: In Euphoria 4.0.0 we have the ability to default parameters to procedures and
functions. The built-in match therefore now has a start parameter that is defaulted
to the beginning of the sequence. Thus, match can perform the identical functionality
provided by match_from. In an undetermined future release of Euphoria, match_from
will be removed.

See Also: match

match_replace

locates a "needle," as a slice, in a "haystack", and replaces any or only the first few
occurrences with a replacement.

Signature:

match_replace(object needle, sequence haystack, object replacement,
integer max = 0)

public function
include search.e
namespace search

Arguments: ≡ needle : an object to search and perhaps replace
≡ haystack : a sequence to be inspected
≡ replacement : an object to substitute for any (first) instance of needle
≡ max : an integer, 0 to replace all occurrences

Returns: A sequence, the modified haystack.

Comments: Replacements will not be made recursively on the part of haystack that was already
changed.

If max is 0 or less, any occurrence of needle in haystack will be replaced by
replacement. Otherwise, only the first max occurrences are.

If either needle or replacement are atoms they will be treated as if you had passed in
a length-1 sequence containing the said atom.

See Also: find, replace, regex:find_replace, find_replace
Example 1:

s=match_replace("the","the cat ate the food under the table","THE",0)
-- s is "THE cat ate THE food under THE table"

Example 2:

s=match_replace("the","the cat ate the food under the table","THE",2)
-- s is "THE cat ate THE food under the table"

Example 3:

s = match_replace('/', "/euphoria/demo/unix", '\\', 2)
-- s is "\\euphoria\\demo/unix"

Example 4:

s = match_replace('a', "abracadabra", 'X')
-- s is now "XbrXcXdXbrX"
s = match_replace("ra", "abracadabra", 'X')
-- s is now "abXcadabX"
s = match_replace("a", "abracadabra", "aa")
-- s is now "aabraacaadaabraa"
s = match_replace("a", "abracadabra", "")
-- s is now "brcdbr"

rfind

locates a needle, as an element, in a haystack but in reverse order.
Signature:

rfind(object needle, sequence haystack, integer start = length(haystack))

public function
include search.e
namespace search

Arguments: ≡ needle : an object to search for
≡ haystack : a sequence to search in
≡ start : an integer, the starting index position (defaults to length(haystack))

Returns: An integer, 0 if no instance of needle can be found on haystack before index start,
or the highest such index otherwise.

Comments: If start is less than 1, it will be added once to length(haystack) to designate a
position counted backwards. Thus, if start is -1, the first element to be queried in
haystack will be haystack[$-1], then haystack[$-2] and so on.

See Also: find, rmatch
Example 1:

location = rfind(11, {5, 8, 11, 2, 11, 3})
-- location is set to 5

Example 2:

names = {"fred", "rob", "rob", "george", "mary"}
location = rfind("rob", names)
-- location is set to 3
location = rfind("rob", names, -4)
-- location is set to 2

rmatch

locates a needle, as a slice, in a haystack but in reverse order.
Signature:

rmatch(sequence needle, sequence haystack,
integer start = length(haystack))

public function
include search.e
namespace search

Arguments: ≡ needle : a sequence to search for
≡ haystack : a sequence to search in
≡ start : an integer, the starting index position (defaults to length(haystack))

Returns: An integer, either 0 if no slice of haystack starting before start equals needle, else
the highest lower index of such a slice.

Comments: If start is less than 1, it will be added once to length(haystack) to designate a
position counted backwards. Thus, if start is -1, the first element to be queried in
haystack will be haystack[$-1], then haystack[$-2] and so on.

See Also: rfind, match
Example 1:

location = rmatch("the", "the dog ate the steak from the table.")
-- location is set to 28 (3rd 'the')
location = rmatch("the","the dog ate the steak from the table.",-11)
-- location is set to 13 (2nd 'the')

vlookup

this returns the corresponding element from the target column, if the supplied item is
in a source grid column.

Signature:

vlookup(object find_item, sequence grid_data, integer source_col,
integer target_col, object def_value = 0)

public function
include search.e
namespace search

Arguments: ≡ find_item: an object that might exist in source_col.
≡ grid_data: a 2D grid sequence that might contain pITem.
≡ source_col: an integer. The column number to look for find_item.
≡ target_col: an integer. The column number from which the corresponding item
will be returned.
≡ def_value: an object (defaults to zero). This is returned when find_item is not
found in the source_col column, or if found but the target column does not exist.

Returns: an object
• If find_item is found in the source_col column then this is the corresponding
element from the target_col column.

Comments:
• If a row in the grid is actually a single atom, the row is ignored.
• If a row's length is less than the source_col, the row is ignored.

Example 1:

sequence grid
grid = {
 {"ant", "spider", "mortein"},
 {"bear", "seal", "gun"},
 {"cat", "dog", "ranger"},
 $
 }
vlookup("ant", grid, 1, 2, "?") --> "spider"
vlookup("ant", grid, 1, 3, "?") --> "mortein"
vlookup("seal", grid, 2, 3, "?") --> "gun"
vlookup("seal", grid, 2, 1, "?") --> "bear"
vlookup("mouse", grid, 2, 3, "?") --> "?"

sequence

Constants
ADD_PREPEND
ADD_APPEND
ADD_SORT_UP
ADD_SORT_DOWN
ROTATE_LEFT
ROTATE_RIGHT

Basic routines
binop_ok
fetch
store
valid_index
rotate

columnize
apply
mapping
length
reverse
shuffle

Building sequences
series
repeat_pattern
repeat

Adding to sequences
append
prepend
insert
splice
pad_head
pad_tail
add_item
remove_item

Extracting, removing, replacing from and into a sequence
head
tail
mid
slice
vslice
remove
patch
remove_all
retain_all
filter
STDFLTR_ALPHA
replace
extract
project

Changing the shape of a sequence
split
split_any
join
BK_LEN
BK_PIECES
breakup
flatten
pivot
build_list
transform
transmute
sim_index
SEQ_NOALT
remove_subseq
RD_INPLACE
RD_PRESORTED
RD_SORT

remove_dups
COMBINE_UNSORTED
COMBINE_SORTED
combine
minsize

sequence API

ADD_APPEND

Signature:

ADD_APPEND

public enum
include sequence.e
namespace stdseq

ADD_PREPEND

Signature:

ADD_PREPEND

public enum
include sequence.e
namespace stdseq

ADD_SORT_DOWN

Signature:

ADD_SORT_DOWN

public enum
include sequence.e
namespace stdseq

ADD_SORT_UP

Signature:

ADD_SORT_UP

public enum
include sequence.e
namespace stdseq

BK_LEN

Indicates that size parameter is maximum length of sub-sequence. See breakup
Signature:

BK_LEN

public enum
include sequence.e
namespace stdseq

BK_PIECES

Indicates that size parameter is maximum number of sub-sequence. See breakup
Signature:

BK_PIECES

public enum
include sequence.e
namespace stdseq

COMBINE_SORTED

Signature:

COMBINE_SORTED

public enum
include sequence.e
namespace stdseq

COMBINE_UNSORTED

Signature:

COMBINE_UNSORTED

public enum
include sequence.e
namespace stdseq

RD_INPLACE

removes items while preserving the original order of the unique items.
Signature:

RD_INPLACE

public enum
include sequence.e
namespace stdseq

See Also: remove_dups

RD_PRESORTED

Assumes that the elements in source_data are already sorted. If they
Signature:

RD_PRESORTED

public enum
include sequence.e
namespace stdseq

See Also: remove_dups

RD_SORT

returns the unique elements in ascending sorted order.
Signature:

RD_SORT

public enum
include sequence.e
namespace stdseq

See Also: remove_dups

ROTATE_LEFT

Signature:

ROTATE_LEFT

public constant
include sequence.e
namespace stdseq

ROTATE_RIGHT

Signature:

ROTATE_RIGHT

public constant
include sequence.e
namespace stdseq

SEQ_NOALT

Indicates that remove_subseq() must not replace removed sub-sequences
Signature:

SEQ_NOALT

public constant
include sequence.e
namespace stdseq

STDFLTR_ALPHA

this is a predefined routine_id for use with filter().

Signature:

STDFLTR_ALPHA

public constant

Comments: Used to filter out non-alphabetic characters from a string.
Example 1:

-- Collect only the alphabetic characters from 'text'
 result = filter(text, STDFLTR_ALPHA)

add_item

adds an item to the sequence if its not already there. If it already exists
Signature:

add_item(object needle, sequence haystack, integer pOrder = 1)

public function
include sequence.e
namespace stdseq

Arguments: ≡ needle : object to add.
≡ haystack : sequence to add it to.
≡ order : an integer; determines how the needle affects the haystack. It can be
added to the front (prepended), to the back (appended), or sorted after adding. The
default is to prepend it.

Returns: A sequence, which is haystack with needle added to it.

Comments: An error occurs if an invalid order argument is supplied.

The following enum is provided for specifying order:
• ADD_PREPEND -- prepend needle to haystack. This is the default option.
• ADD_APPEND -- append needle to haystack.
• ADD_SORT_UP -- sort haystack in ascending order after inserting needle
• ADD_SORT_DOWN -- sort haystack in descending order after inserting needle

Example 1:

s = add_item(1, {3,4,2}, ADD_PREPEND) -- prepend
-- s is {1,3,4,2}

Example 2:

s = add_item(1, {3,4,2}, ADD_APPEND) -- append
-- s is {3,4,2,1}

Example 3:

s = add_item(1, {3,4,2}, ADD_SORT_UP) -- ascending
-- s is {1,2,3,4}

Example 4:

s = add_item(1, {3,4,2}, ADD_SORT_DOWN) -- descending
-- s is {4,3,2,1}

Example 5:

s = add_item(1, {3,1,4,2})
-- s is {3,1,4,2} -- Item was already in list so no change.

append

adds an object as the last element of a sequence.
Signature:

append(sequence target, object x)

<built-in> function

Arguments: ≡ source : the sequence to add to
≡ x : the object to add

Returns: A sequence, whose first elements are those of target and whose last element is x.

Comments: The length of the resulting sequence will be length(target) + 1, no matter what x
is.

If x is an atom this is equivalent to result = target & x. If x is a sequence it is not
equivalent.

The extra storage is allocated automatically and very efficiently with Euphoria's
dynamic storage allocation. The case where the target is appended to itself is
highly optimized (as in Example 1 below).

See Also: prepend, &
Example 1:

sequence x

 x = {}
 for i = 1 to 10 do
 x = append(x, i)
 end for
 -- x is now {1,2,3,4,5,6,7,8,9,10}

Example 2:

sequence x, y, z

x = {"fred", "barney"}
y = append(x, "wilma")
-- y is now {"fred", "barney", "wilma"}

z = append(append(y, "betty"), {"bam", "bam"})
-- z is now {"fred", "barney", "wilma", "betty", {"bam", "bam"}}

apply

applies a function to every element of a sequence, returning a new sequence of
Signature:

apply(sequence source, integer rid, object userdata = {})

public function
include sequence.e
namespace stdseq

Arguments:
• source : the sequence to map
• rid : the routine_id of function to use as converter
• userdata : an object passed to each invocation of rid. If omitted, {} is used.

Returns: A sequence, the length of source. Each element there is the corresponding element
in source mapped using the routine referred to by rid.

unresolved.html

Comments: The supplied routine must take two arguments. The type of the first argment must be
compatible with all the elements in source. The second argument is an object
containing userdata.

See Also: filter
Example 1:

function greeter(object o, object d)
 return o[1] & ", " & o[2] & d
end function

s = apply({{"Hello", "John"}, {"Goodbye", "John"}},routine_id("greeter"),"!")
-- s is {"Hello, John!", "Goodbye, John!"}

binop_ok

checks whether a operation between two objects is possible.
Signature:

binop_ok(object a, object b)

public function
include sequence.e
namespace stdseq

Arguments: ≡ a : first object
≡ b : second object

Returns: An integer, 1 if an operation is possible between a and b, or else 0.

Comments: An operation between two objects is possible when the have compatible shapes.

See Also: series
Example 1:

i = binop_ok({1,2,3},{4,5})
--> i is 0
-- lengths are not compatible

i = binop_ok({1,2,3},4)
--> i is 1
-- atom to sequence operations are possible

i = binop_ok({1,2,3},{4,{5,6},7})
--> i is 1

breakup

breaks up a sequence into multiple sequences of a given length.
Signature:

breakup(sequence source, object size, integer style = BK_LEN)

public function
include sequence.e
namespace stdseq

Arguments: ≡ source : the sequence to be broken up into sub-sequences.
≡ size : an object, if an integer it is either the maximum length of each resulting sub-
sequence or the maximum number of sub-sequences to break source into.
If size is a sequence, it is a list of element counts for the sub-sequences it creates.
≡ style : an integer, Either BK_LEN if size integer represents the sub-sequences'
maximum length, or BK_PIECES if the size integer represents the maximum
number of sub-sequences (pieces) to break source into.

Returns: A sequence, of sequences.

Comments:
…… ♦ When size is an integer and style is BK_LEN then: ...
The sub-sequences have length size, except possibly the last one, which may
be shorter. For example if source has 11 items and size is 3, then the first three
sub-sequences will get 3 items each and the remaining 2 items will go into the
last sub-sequence. If size is less than 1 or greater than the length of the
source, the source is returned as the only sub-sequence.

When size is an integer and style is BK_PIECES...
There is exactly size sub-sequences created. If the source is not evenly
divisible into that many pieces, then the lefthand sub-sequences will contain
one more element than the right-hand sub-sequences. For example, if source
contains 10 items and we break it into 3 pieces, piece #1 gets 4 elements,
piece #2 gets 3 items and piece #3 gets 3 items - a total of 10. If source had 11
elements then the pieces will have 4,4, and 3 respectively.

When size is a sequence...**
The style parameter is ignored in this case. The source will be broken up according
to the counts contained in the size parameter. For example, if size was {3,4,0,1}
then piece #1 gets 3 items, #2 gets 4 items, #3 gets 0 items, and #4 gets 1 item.
Note that if not all items from source are placed into the sub-sequences defined by
size, and extra sub-sequence is appended that contains the remaining items from
source.

In all cases, when concatenated these sub-sequences will be identical to the
original source.

See Also: split flatten
Example 1:

s = breakup("5545112133234454", 4)
-- s is {"5545", "1121", "3323", "4454"}

Example 2:

s = breakup("12345", 2)
-- s is {"12", "34", "5"}

Example 3:

s = breakup({1,2,3,4,5,6}, 3)
-- s is {{1,2,3}, {4,5,6}}

Example 4:

s = breakup("ABCDEF", 0)
-- s is {"ABCDEF"}

build_list

implements "List Comprehension" or building a list based on the contents of another
list.

Signature:

build_list(sequence source, object transformer, integer singleton = 1,
object user_data = {})

public function
include sequence.e
namespace stdseq

Arguments: ≡ source : A sequence. The list of items to base the new list upon.

≡ transformer : One or more routine_ids. These are routine_id of functions that must
receive three parameters (object x, sequence i, object u) where 'x' is an item in the
source list, 'i' contains the position that 'x' is found in the source list and the length of
source, and 'u' is the user_data value. Each transformer must return a two-element
sequence. If the first element is zero, then build_list() continues on with the next
transformer function for the same 'x'. If the first element is not zero, the second
element is added to the new list being built (other elements are ignored) and
build_list skips the rest of the transformers and processes the next element in
source.
≡ singleton : An integer. If zero then the transformer functions return multiple list
elements. If not zero then the transformer functions return a single item (which might
be a sequence).
≡ user_data : Any object. This is passed unchanged to each transformer function.

Returns: A sequence, The new list of items.

Comments:
• If the transformer is -1, then the source item is just copied.

Example 1:

function remitem(object x, sequence i, object q)
 if (x < q) then
 return {0} -- no output
 else
 return {1,x} -- copy 'x'
 end if
end function

sequence s
-- Remove negative elements (x < 0)
s = build_list({-3, 0, 1.1, -2, 2, 3, -1.5}, routine_id("remitem"), , 0)
-- s is {0, 1.1, 2, 3}

columnize

converts a set of sub sequences into a set of "columns."
Signature:

columnize(sequence source, object cols = {}, object defval = 0)

public function
include sequence.e
namespace stdseq

Arguments: ≡ source : sequence containing the sub-sequences
≡ cols : either a specific column number or a set of column numbers. Default is 0,
which returns the maximum number of columns.
≡ defval : an object. Used when a column value is not available. Default is 0

Comments: Any atoms found in source are treated as if they are a one-element sequence.
Example 1:

s = columnize({{1, 2}, {3, 4}, {5, 6}})
-- s is { {1,3,5}, {2,4,6}}

Example 2:

s = columnize({{1, 2}, {3, 4}, {5, 6, 7}})
-- s is { {1,3,5}, {2,4,6}, {0,0,7} }
s = columnize({{1, 2}, {3, 4}, {5, 6, 7},,-999})
 --> Change the not-available value.
-- s is { {1,3,5}, {2,4,6}, {-999,-999,7} }

Example 3:

s = columnize({{1, 2}, {3, 4}, {5, 6, 7}}, 2)

-- s is { {2,4,6} } -- Column 2 only

Example 4:

s = columnize({{1, 2}, {3, 4}, {5, 6, 7}}, {2,1})
-- s is { {2,4,6}, {1,3,5} } -- Column 2 then column 1

Example 5:

s = columnize({"abc", "def", "ghi"})
-- s is {"adg", "beh", "cfi" }

combine

combines all the sub-sequences into a single (optionally sorted) list.
Signature:

combine(sequence source_data, integer proc_option = COMBINE_SORTED)

public function
include sequence.e
namespace stdseq

Arguments: ≡ source_data : A sequence that contains sub-sequences to be combined.
≡ proc_option : An integer; COMBINE_UNSORTED to return a non-sorted list and
COMBINE_SORTED (the default) to return a sorted list.

Returns: A sequence, that contains all the elements from all the first-level of sub-sequences
from source_data.

Comments: The elements in the sub-sequences do not have to be pre-sorted.

Only one level of sub-sequence is combined.
Example 1:

sequence s = { {4,7,9}, {7,2,5,9}, {0,4}, {5}, {6,5}}
combine(s, COMBINE_SORTED) --> {0,2,4,4,5,5,5,6,7,7,9,9}
combine(s, COMBINE_UNSORTED) --> {4,7,9,7,2,5,9,0,4,5,6,5}

Example 2:

sequence s = { {"cat", "dog"}, {"fish", "whale"}, {"wolf"}, {"snail", "worm"}}
combine(s) --> {"cat","dog","fish","snail","whale","wolf","worm"}
combine(s, COMBINE_UNSORTED) --> {"cat","dog","fish","whale","wolf","snail","worm"}

Example 3:

sequence s = { "cat", "dog","fish", "whale", "wolf", "snail", "worm"}
combine(s) --> "aaacdeffghhiilllmnooorsstwww"
combine(s, COMBINE_UNSORTED) --> "catdogfishwhalewolfsnailworm"

extract

Picks out from a sequence a set of elements according to the supplied set of
indexes.

Signature:

extract(sequence source, sequence indexes)

public function
include sequence.e
namespace stdseq

Arguments: ≡ source : the sequence from which to extract elements

≡ indexes : a sequence of atoms, the indexes of the elements to be fetched in
source.

Returns: A sequence, of the same length as indexes.

See Also: slice
Example 1:

s = extract({11,13,15,17},{3,1,2,1,4})
-- s is {15,11,13,11,17}

fetch

retrieves an element nested arbitrarily deeply within a sequence.
Signature:

fetch(sequence source, sequence indexes)

public function
include sequence.e
namespace stdseq

Arguments: ≡ source : the sequence from which to fetch
≡ indexes : a sequence of integers, the path to follow to reach the element to return.

Returns: An object, which is source[indexes[1]][indexes[2]]...[indexes[$]]

Comments: The last element of indexes may be a pair {lower,upper}, in which case a slice of the
innermost referenced sequence is returned.

See Also: store, Subscripting of Sequences
Example 1:

x = fetch({0,1,2,3,{"abc","def","ghi"},6},{5,2,3})
-- x is 'f', or 102.

filter

filters a sequence based on a user supplied comparator function.
Signature:

filter(sequence source, object rid, object userdata = {},
object rangetype = "")

public function
include sequence.e
namespace stdseq

Arguments:
• source : sequence to filter
• rid : Either a routine_id of function to use as comparator or one of the predefined
comparitors.
• userdata : an object passed to each invocation of rid. If omitted, {} is used.
• rangetype: A sequence. Only used when rid is "in" or "out". This is used to let the
function know how to interpret userdata. When rangetype is an empty string (which
is the default), then userdata is treated as a set of zero or more discrete items such
that "in" will only return items from source that are in the set of item in userdata and
"out" returns those not in userdata. The other values for rangetype mean that
userdata must be a set of exactly two items, that represent the lower and upper
limits of a range of values.

Returns: A sequence, made of the elements in source which passed the comparitor test.

Comments:

unresolved.html

• The only items from source that are returned are those that pass the test.
• When rid is a routine_id, that user defined routine must be a function. Each item in
source, along with the userdata is passed to the function. The function must return a
non-zero atom if the item is to be included in the result sequence, otherwise it
should return zero to exclude it from the result.
• The predefined comparitors are:

See Also: apply
Example 1:

function mask_nums(atom a, object t)
 if sequence(t) then
 return 0
 end if
 return and_bits(a, t) != 0
end function

function even_nums(atom a, atom t)
 return and_bits(a,1) = 0
end function

constant data = {5,8,20,19,3,2,10}
filter(data, routine_id("mask_nums"), 1) --> {5,19,3}
filter(data, routine_id("mask_nums"), 2) -->{19, 3, 2, 10}
filter(data, routine_id("even_nums")) -->{8, 20, 2, 10}

-- Using 'in' and 'out' with sets.
filter(data, "in", {3,4,5,6,7,8}) -->{5,8,3}
filter(data, "out", {3,4,5,6,7,8}) -->{20,19,2,10}

-- Using 'in' and 'out' with ranges.
filter(data, "in", {3,8}, "[]") --> {5,8,3}
filter(data, "in", {3,8}, "[)") --> {5,3}
filter(data, "in", {3,8}, "(]") --> {5,8}
filter(data, "in", {3,8}, "()") --> {5}
filter(data, "out", {3,8}, "[]") --> {20,19,2,10}
filter(data, "out", {3,8}, "[)") --> {8,20,19,2,10}
filter(data, "out", {3,8}, "(]") --> {20,19,3,2,10}
filter(data, "out", {3,8}, "()") --> {8,20,19,3,2,10}

Example 3:

function quiksort(sequence s)
 if length(s) < 2 then
 return s
 end if
 return quiksort(filter(s[2..$], "<=", s[1])) &
 s[1] &
 quiksort(filter(s[2..$], ">", s[1]))
end function
? quiksort({5,4,7,2,4,9,1,0,4,32,7,54,2,5,8,445,67})
--> {0,1,2,2,4,4,4,5,5,7,7,8,9,32,54,67,445}

flatten

removes all nesting from a sequence.
Signature:

flatten(sequence s, object delim = "")

public function
include sequence.e
namespace stdseq

Arguments: ≡ s : the sequence to flatten out.
≡ delim : An optional delimiter to place after each flattened sub-sequence (except
the last one).

Returns: A sequence, of atoms, all the atoms in s enumerated.

Comments:
• If you consider a sequence as a tree, then the enumeration is performed by left-
right reading of the tree. The elements are simply read left to right, without any care
for braces.
• Empty sub-sequences are stripped out entirely.

Example 1:

s = flatten({{18, 19}, 45, {18.4, 29.3}})
-- s is {18, 19, 45, 18.4, 29.3}

Example 2:

s = flatten({18,{ 19, {45}}, {18.4, {}, 29.3}})
-- s is {18, 19, 45, 18.4, 29.3}

Example 3:

Using the delimiter argument
s = flatten({"abc", "def", "ghi"}, ", ")
-- s is "abc, def, ghi"

head

Return the first size item(s) of a sequence.
Signature:

head(sequence source, atom size=1)

<built-in> function

Arguments: ≡ source : the sequence from which elements will be returned
≡ size : an integer; how many elements, at most, will be returned. Defaults to 1.

Returns: A sequence, source if its length is not greater than size, or the size first elements of
source otherwise.

See Also: tail, mid, slice
Example 1:

s2 = head("John Doe", 4)
-- s2 is John

Example 2:

s2 = head("John Doe", 50)
-- s2 is John Doe

Example 3:

s2 = head({1, 5.4, "John", 30}, 3)
-- s2 is {1, 5.4, "John"}

insert

inserts an object into a sequence as a new element at a given location.
Signature:

insert(sequence target, object what, integer index)

<built-in> function

Arguments: ≡ target : the sequence to insert into
≡ what : the object to insert

≡ index : an integer, the position in target where what should appear

Returns: A sequence, which is target with one more element at index, which is what.

Comments: target can be a sequence of any shape, and what any kind of object.

The length of the returned sequence is always length(target) + 1.

Inserting a sequence into a string returns a sequence which is no longer a string.

See Also: remove, splice, append, prepend
Example 1:

s = insert("John Doe", " Middle", 5)
-- s is {'J','o','h','n'," Middle",' ','D','o','e'}

Example 2:

s = insert({10,30,40}, 20, 2)
-- s is {10,20,30,40}

join

joins sequences together using a delimiter.
Signature:

join(sequence items, object delim = " ")

public function
include sequence.e
namespace stdseq

Arguments: ≡ items : the sequence of items to join.
≡ delim : an object, the delimiter to join by. Defaults to " ".

Comments: This function may be applied to a string sequence or a complex sequence

See Also: split, split_any, breakup
Example 1:

result = join({"John", "Middle", "Doe"})
-- result is "John Middle Doe"

Example 2:

result = join({"John", "Middle", "Doe"}, ",")
-- result is "John,Middle,Doe"

length

returns the length of an object.
Signature:

length(object target)

<built-in> function

Arguments: ≡ target : the object being queried

Returns: An integer, the number of elements involved with target.

Comments:
• An atom always has a length of one.
• The length of a sequence is the number of elements in the sequence; nested
sequences still count as a single element.

• The length of each sequence is stored internally by the interpreter for fast access.
In some other languages this operation requires a search through memory for an
end marker.

See Also: append, prepend, &
Example 1:

length({{1,2}, {3,4}, {5,6}}) -- 3
length("") -- 0
length({}) -- 0
length(7) -- 1
length(3.14) -- 1

mapping

changes each item from source_arg found in from_set into the
Signature:

mapping(object source_arg, sequence from_set, sequence to_set,
integer one_level = 0)

public function
include sequence.e
namespace stdseq

Arguments: ≡ source_arg : Any Euphoria object to be transformed.
≡ from_set : A sequence of objects representing the only items from source_arg that
are actually transformed.
≡ to_set : A sequence of objects representing the transformed equivalents of those
found in from_set.
≡ one_level : An integer. 0 (the default) means that mapping applies to every atom
in every level of sub-sequences. 1 means that mapping only applies to the items at
the first level in source_arg.

Returns: An object, The transformed version of source_arg.

Comments:
• When one_level is zero or omitted, for each item in source_arg,
…… ♦ if it is an atom then it may be transformed
…… ♦ if it is a sequence, then the mapping is performed recursively on the
sequence.
…… ♦ This option required from_set to only contain atoms and contain no sub-
sequences.
• When one_level is not zero, for each item in source_arg,
…… ♦ regardless of whether it is an atom or sequence, if it is found in from_set then
it is mapped to the corresponding object in to_set..
• Mapping occurs when an item in source_arg is found in from_set, then it is
replaced by the corresponding object in to_set.

Example 1:

res = mapping("The Cat in the Hat", "aeiou", "AEIOU")
-- res is now "ThE CAt In thE HAt"

mid

returns a slice of a sequence, given by a starting point and a length.
Signature:

mid(sequence source, atom start, atom len)

public function
include sequence.e
namespace stdseq

unresolved.html

Arguments: ≡ source : the sequence some elements of which will be returned
≡ start : an integer, the lower index of the slice to return
≡ len : an integer, the length of the slice to return

Returns: A sequence, made of at most len elements of source. These elements are at
contiguous positions in source starting at start.

Comments: len may be negative, in which case it is added length(source) once.

See Also: head, tail, slice
Example 1:

s2 = mid("John Middle Doe", 6, 6)
-- s2 is Middle

Example 2:

s2 = mid("John Middle Doe", 6, 50)
-- s2 is Middle Doe

Example 3:

s2 = mid({1, 5.4, "John", 30}, 2, 2)
-- s2 is {5.4, "John"}

Example 4:

s2 = mid({1, 5.4, "John", 30}, 2, -1)
-- s2 is {5.4, "John", 30}

minsize

ensures that the returned sequence is at least the minimum specified length.
Signature:

minsize(object source_data,
integer min_size = floor(length(source_data)* 1.5), object new_data = 0)

public function
include sequence.e
namespace stdseq

Arguments: ≡ source_data : An object that might need extending.
≡ min_size: An integer. The minimum length that source_data must be. The default
is to increase the length of source_data# by 50%.
≡ new_data: An object. This used to when source_data needs to be
extended, in which case it is appended as many times as required to make

the length equal to min_size##. The default is 0.

Returns: A sequence. The padded sequence, unchanged if its size was not less than
min_size on input.

Example 1:

sequence s
s = minsize({4,3,6,2,7,1,2}, 10, -1) --> {4,3,6,2,7,1,2,-1,-1,-1}
s = minsize({4,3,6,2,7,1,2}, 5, -1) --> {4,3,6,2,7,1,2}

pad_head

pads the beginning of a sequence with an object so as to meet a minimum
Signature:

pad_head(object target, integer size, object ch = ' ')

public function
include sequence.e
namespace stdseq

Arguments: ≡ target : the sequence to pad.
≡ size : an integer, the target minimum size for target
≡ padding : an object, usually the character to pad to (defaults to ' ').

Returns: A sequence, either target if it was long enough, or a sequence of length size
whose last elements are those of target and whose first few head elements all
equal padding.

Comments: pad_head() will not remove characters. If length(target) is greater than size, this
function simply returns target. See head() if you wish to truncate long sequences.

See Also: trim_head, pad_tail, head
Example 1:

s = pad_head("ABC", 6)
-- s is " ABC"

s = pad_head("ABC", 6, '-')
-- s is "---ABC"

pad_tail

pads the end of a sequence with an object so as to meet a minimum length
condition.

Signature:

pad_tail(object target, integer size, object ch = ' ')

public function
include sequence.e
namespace stdseq

Arguments: ≡ target : the sequence to pad.
≡ size : an integer, the target minimum size for target
≡ padding : an object, usually the character to pad to (defaults to ' ').

Returns: A sequence, either target if it was long enough, or a sequence of length size
whose first elements are those of target and whose last few head elements all
equal padding.

Comments: pad_tail() will not remove characters. If length(target) is greater than size, this
function simply returns target. See tail() if you wish to truncate long sequences.

See Also: trim_tail, pad_head, tail
Example 1:

s = pad_tail("ABC", 6)
-- s is "ABC "

s = pad_tail("ABC", 6, '-')
-- s is "ABC---"

patch

changes a sequence slice, possibly with padding
Signature:

patch(sequence target, sequence source, integer start,
object filler = ' ')

public function
include sequence.e
namespace stdseq

Arguments: ≡ target : a sequence, a modified copy of which will be returned
≡ source : a sequence, to be patched inside or outside target
≡ start : an integer, the position at which to patch
≡ filler : an object, used for filling gaps. Defaults to ' '

Returns: A sequence, which looks like target, but a slice starting at start equals source.

Comments: In some cases, this call will result in the same result as replace().

If source doesn't fit into target because of the lengths and the supplied start value,
gaps will be created, and filler is used to fill them in.

Notionally, target has an infinite amount of filler on both sides, and start counts
position relative to where target actually starts. Then, notionally, a replace()
operation is performed.

See Also: mid, replace
Example 1:

sequence source = "abc", target = "John Doe"
sequence s = patch(target, source, 11,'0')
-- s is now "John Doe00abc"

Example 2:

sequence source = "abc", target = "John Doe"
sequence s = patch(target, source, -1)
-- s is now "abcohn Doe"
Note that there was no gap to fill
Since -1 = 1 - 2, the patching started 2 positions before the initial 'J'

Example 3:

sequence source = "abc", target = "John Doe"
sequence s = patch(target, source, 6)
-- s is now "John Dabc"

pivot

returns a sequence of three sub-sequences. The sub-sequences contain
Signature:

pivot(object data_p, object pivot_p = 0)

public function
include sequence.e
namespace stdseq

Arguments: ≡ data_p : Either an atom or a list. An atom is treated as if it is one-element
sequence.
≡ pivot_p : An object. Default is zero.

Returns: A sequence, { {less than pivot}, {equal to pivot}, {greater than pivot} }

Comments: pivot() is used as a split up a sequence relative to a specific value.
Example 1:

pivot({7, 2, 8.5, 6, 6, -4.8, 6, 6, 3.341, -8, "text"}, 6)
-- Ans: {{2, -4.8, 3.341, -8}, {6, 6, 6, 6}, {7, 8.5, "text"}}
pivot({4, 1, -4, 6, -1, -7, 9, 10})
-- Ans: {{-4, -1, -7}, {}, {4, 1, 6, 9, 10}}
pivot(5)
-- Ans: {{}, {}, {5}}

Example 2:

function quiksort(sequence s)
 if length(s) < 2 then
 return s
 end if

 sequence k = pivot(s, s[rand(length(s))])

 return quiksort(k[1]) & k[2] & quiksort(k[3])
end function

sequence t2 = {5,4,7,2,4,9,1,0,4,32,7,54,2,5,8,445,67}
? quiksort(t2) --> {0,1,2,2,4,4,4,5,5,7,7,8,9,32,54,67,445}

prepend

adds an object as the first element of a sequence.
Signature:

prepend(sequence target, object x)

<built-in> function

Arguments: ≡ source : the sequence to add to
≡ x : the object to add

Returns: A sequence, whose last elements are those of target and whose first element is x.

Comments: The length of the returned sequence will be length(target) + 1 always.

If x is an atom this is the same as result = x & target. If x is a sequence it is not
the same.

The case where target is prepended to itself is handled very efficiently.

See Also: append, &
Example 1:

prepend({1,2,3}, {0,0}) -- {{0,0}, 1, 2, 3}
-- Compare with concatenation:
{0,0} & {1,2,3} -- {0, 0, 1, 2, 3}

Example 2:

s = {}
for i = 1 to 10 do
 s = prepend(s, i)
end for
-- s is {10,9,8,7,6,5,4,3,2,1}

project

creates a list of sequences based on selected elements from sequences in the
source.

Signature:

project(sequence source, sequence coords)

public function
include sequence.e
namespace stdseq

Arguments: ≡ source : a list of sequences.

unresolved.html

≡ coords : a list of index lists.

Returns: A sequence, with the same length as source. Each of its elements is a sequence,
the length of coords. Each innermost sequence is made of the elements from the
corresponding source sub-sequence.

Comments: For each sequence in source, a set of sub-sequences is created; one for each index
list in coords. An index list is just a sequence containing indexes for items in a
sequence.

See Also: vslice, extract
Example 1:

s = project({ "ABCD", "789"}, {{1,2}, {3,1}, {2}})
-- s is {{"AB","CA","B"},{"78","97","8"}}

remove

removes an item, or a range of items from a sequence.
Signature:

remove(sequence target, atom start, atom stop=start)

<built-in> function

Arguments: ≡ target : the sequence to remove from.
≡ start : an atom, the (starting) index at which to remove
≡ stop : an atom, the index at which to stop removing (defaults to start)

Returns: A sequence, obtained from target by carving the start..stop slice out of it.

Comments: A new sequence is created. target can be a string or complex sequence.

See Also: replace, insert, splice, remove_all
Example 1:

s = remove("Johnn Doe", 4)
-- s is "John Doe"

Example 2:

s = remove({1,2,3,3,4}, 4)
-- s is {1,2,3,4}

Example 3:

s = remove("John Middle Doe", 6, 12)
-- s is "John Doe"

Example 4:

s = remove({1,2,3,3,4,4}, 4, 5)
-- s is {1,2,3,4}

remove_all

removes all occurrences of some object from a sequence.
Signature:

remove_all(object needle, sequence haystack)

public function
include sequence.e
namespace stdseq

Arguments: ≡ needle : the object to remove.
≡ haystack : the sequence to remove from.

Returns: A sequence, of length at most length(haystack), and which has the same
elements, without any copy of needle left

Comments: This function weeds elements out, not sub-sequences.

See Also: remove, replace
Example 1:

s = remove_all(1, {1,2,4,1,3,2,4,1,2,3})
-- s is {2,4,3,2,4,2,3}

Example 2:

s = remove_all('x', "I'm toox secxksy for my shixrt.")
-- s is "I'm too secksy for my shirt."

remove_dups

removes duplicate elements.
Signature:

remove_dups(sequence source_data, integer proc_option = RD_PRESORTED)

public function
include sequence.e
namespace stdseq

Arguments: ≡ source_data : A sequence that may contain duplicated elements
≡ proc_option : One of RD_INPLACE, RD_PRESORTED, or RD_SORT.
…… ♦ RD_INPLACE removes items while preserving the original order of the
unique items.
…… ♦ RD_PRESORTED assumes that the elements in source_data are already
sorted. If they are not already sorted, this option merely removed adjacent duplicate
elements.
…… ♦ RD_SORT will return the unique elements in ascending sorted order.

Returns: A sequence, that contains only the unique elements from source_data.
Example 1:

sequence s = { 4,7,9,7,2,5,5,9,0,4,4,5,6,5}
? remove_dups(s, RD_INPLACE) --> {4,7,9,2,5,0,6}
? remove_dups(s, RD_SORT) --> {0,2,4,5,6,7,9}
? remove_dups(s, RD_PRESORTED) --> {4,7,9,7,2,5,9,0,4,5,6,5}
? remove_dups(sort(s), RD_PRESORTED) --> {0,2,4,5,6,7,9}

remove_item

removes an item from the sequence.
Signature:

remove_item(object needle, sequence haystack)

public function
include sequence.e
namespace stdseq

Arguments: ≡ needle : object to remove.
≡ haystack : sequence to remove it from.

Returns: A sequence, which is haystack with needle removed from it.

Comments: If needle is not in haystack then haystack is returned unchanged.

Example 1:

s = remove_item(1, {3,4,2,1}) --> {3,4,2}
s = remove_item(5, {3,4,2,1}) --> {3,4,2,1}

remove_subseq

removes all sub-sequences from the supplied sequence, optionally
Signature:

remove_subseq(sequence source_list, object alt_value = SEQ_NOALT)

public function
include sequence.e
namespace stdseq

Arguments: ≡ source_list : A sequence from which sub-sequences are removed.
≡ alt_value : An object. The default is SEQ_NOALT, which causes sub-sequences
to be physically removed, otherwise any other value will be used to replace the sub-
sequence.

Returns: A sequence, which contains only the atoms from source_list and optionally the
alt_value where sub-sequences used to be.

Example 1:

sequence s = remove_subseq({4,6,"Apple",0.1, {1,2,3}, 4})
-- 's' is now {4, 6, 0.1, 4} -- length now 4
s = remove_subseq({4,6,"Apple",0.1, {1,2,3}, 4}, -1)
-- 's' is now {4, 6, -1, 0.1, -1, 4} -- length unchanged.

repeat

creates a sequence whose all elements are identical, with given length.
Signature:

repeat(object item, atom count)

<built-in> function

Arguments: ≡ item : an object, to which all elements of the result will be equal
≡ count : an atom, the requested length of the result sequence. This must be a value
from zero to 0x3FFFFFFF. Any floating point values are first floored.

Returns: A sequence, of length count each element of which is item.

Comments: When you repeat() a sequence or a floating-point number the interpreter does not
actually make multiple copies in memory. Rather, a single copy is "pointed to" a
number of times.

See Also: repeat_pattern, series
Example 1:

repeat(0, 10) -- {0,0,0,0,0,0,0,0,0,0}

repeat("JOHN", 4) -- {"JOHN", "JOHN", "JOHN", "JOHN"}
-- The interpreter will create only one copy of "JOHN"
-- in memory and create a sequence containing four references to it.

repeat_pattern

returns a periodic sequence for a given a pattern and a count.
Signature:

repeat_pattern(object pattern, integer count)

public function
include sequence.e
namespace stdseq

Arguments: ≡ pattern : the sequence whose elements are to be repeated
≡ count : an integer, the number of times the pattern is to be repeated.

Returns: A sequence, empty on failure, and of length count*length(pattern) otherwise. The
first elements of the returned sequence are those of pattern. So are those that
follow, on to the end.

See Also: repeat, series
Example 1:

s = repeat_pattern({1,2,5},3)
-- s is {1,2,5,1,2,5,1,2,5}

replace

replaces a slice in a sequence by an object.
Signature:

replace(sequence target, object replacement, integer start,
integer stop=start)

<built-in> function

Arguments: ≡ target : the sequence in which replacement will be done.
≡ replacement : an object, the item to replace with.
≡ start : an integer, the starting index of the slice to replace.
≡ stop : an integer, the stopping index of the slice to replace.

Returns: A sequence, which is made of target with the start..stop slice removed and
replaced by replacement, which is splice()d in.

Comments:
• A new sequence is created. target can be a string or complex sequence of any
shape.

• To replace by just one element, enclose replacement in curly braces, which will be
removed at replace time.

See Also: splice, remove, remove_all
Example 1:

s = replace("John Middle Doe", "Smith", 6, 11)
-- s is "John Smith Doe"

s = replace({45.3, "John", 5, {10, 20}}, 25, 2, 3)
-- s is {45.3, 25, {10, 20}}

retain_all

keeps all occurrences of a set of objects from a sequence and removes all others.
Signature:

retain_all(object needles, sequence haystack)

public function
include sequence.e

namespace stdseq

Arguments: ≡ needles : the set of objects to retain.
≡ haystack : the sequence to remove items not in needles.

Returns: A sequence containing only those objects from haystack that are also in needles.

See Also: remove, replace, remove_all
Example 1:

s = retain_all({1,3,5}, {1,2,4,1,3,2,4,1,2,3}) --> {1,1,3,1,3}
s = retain_all("0123456789", "+34 (04) 555-44392") -> "340455544392"

reverse

reverses the order of elements in a sequence.
Signature:

reverse(object target, integer pFrom = 1, integer pTo = 0)

public function
include sequence.e
namespace stdseq

Arguments: ≡ target : the sequence to reverse.
≡ pFrom : an integer, the starting point. Defaults to 1.
≡ pTo : an integer, the end point. Defaults to 0.

Returns: A sequence, if target is a sequence, the same length as target and the same
elements, but those with index between pFrom and pTo appear in reverse order.

Comments: In the result sequence, some or all top-level elements appear in reverse order
compared to the original sequence. This does not reverse any sub-sequences found
in the original sequence.

The pTo parameter can be negative, which indicates an offset from the last element.
Thus -1 means the second-last element and 0 means the last element.

Example 1:

reverse({1,3,5,7}) -- {7,5,3,1}
reverse({1,3,5,7,9}, 2, -1) -- {1,7,5,3,9}
reverse({1,3,5,7,9}, 2) -- {1,9,7,5,3}
reverse({{1,2,3}, {4,5,6}}) -- {{4,5,6}, {1,2,3}}
reverse({99}) -- {99}
reverse({}) -- {}
reverse(42) -- 42

rotate

rotates a slice of a sequence.
Signature:

rotate(sequence source, integer shift, integer start = 1,
integer stop = length(source))

public function
include sequence.e
namespace stdseq

Arguments: ≡ source : sequence to be rotated
≡ shift : direction and count to be shifted (ROTATE_LEFT or ROTATE_RIGHT)
≡ start : starting position for shift, defaults o 1
≡ stop : stopping position for shift, defaults to length(source)

Comments: Use amount * direction to specify the shift. direction is either ROTATE_LEFT or
ROTATE_RIGHT. This enables to shift multiple places in a single call. For instance, use
ROTATE_LEFT * 5 to rotate left, 5 positions.

A null shift does nothing and returns source unchanged.

See Also: slice, head, tail
Example 1:

s = rotate({1, 2, 3, 4, 5}, ROTATE_LEFT)
-- s is {2, 3, 4, 5, 1}

Example 2:

s = rotate({1, 2, 3, 4, 5}, ROTATE_RIGHT * 2)
-- s is {4, 5, 1, 2, 3}

Example 3:

s = rotate({11,13,15,17,19,23}, ROTATE_LEFT, 2, 5)
-- s is {11,15,17,19,13,23}

Example 4:

s = rotate({11,13,15,17,19,23}, ROTATE_RIGHT, 2, 5)
-- s is {11,19,13,15,17,23}

series

returns a new sequence built as a series from a given object.
Signature:

series(object start, object increment, integer count = 2,
integer op = '+')

public function
include sequence.e
namespace stdseq

Arguments: ≡ start : the initial value from which to start
≡ increment : the value to recursively add to start to get new elements
≡ count : an integer, the number of items in the returned sequence. The default is 2.
≡ operation : an integer, the type of operation used to build the series. Can be either
'+' for a linear series or '*' for a geometric series. The default is '+'.

Returns: An object, either 0 on failure or a sequence containing the series.

Comments:
• The first item in the returned series is always start.
• A linear series is formed by adding increment to start.
• A geometric series is formed by multiplying increment by start.
• If count is negative, or if start op increment is invalid, then 0 is returned.
Otherwise, a sequence, of length count+1, staring with start and whose adjacent
elements differ by increment, is returned.

See Also: repeat_pattern
Example 1:

s = series(1, 4, 5)
-- s is {1, 5, 9, 13, 17}
s = series(1, 2, 6, '*')
-- s is {1, 2, 4, 8, 16, 32}
s = series({1,2,3}, 4, 2)
-- s is {{1,2,3}, {5,6,7}}
s = series({1,2,3}, {4,-1,10}, 2)
-- s is {{1,2,3}, {5,1,13}}

shuffle

shuffles the elements of a sequence.
Signature:

shuffle(object seq)

public function
include sequence.e
namespace stdseq

Arguments: ≡ seq: the sequence to shuffle.

Returns: A sequence
Comments: The input sequence does not have to be in any specific order and can contain

duplicates. The output will be in an unpredictable order, which might even be the
same as the input order.

Example 1:

shuffle({1,2,3,3}) -- {3,1,3,2}
shuffle({1,2,3,3}) -- {2,3,1,3}
shuffle({1,2,3,3}) -- {1,2,3,3}

sim_index

calculates the similarity between two sequences.
Signature:

sim_index(sequence A, sequence B)

public function
include sequence.e
namespace stdseq

Arguments: ≡ A : A sequence.
≡ B : A sequence.

Returns: An atom, the closer to zero, the more the two sequences are alike.

Comments: The calculation is weighted to give mismatched elements towards the front of the
sequences larger scores. This means that sequences that differ near the begining
are considered more un-alike than mismatches towards the end of the sequences.
Also, unmatched elements from the first sequence are weighted more than
unmatched elements from the second sequence.

Two identical sequences return zero. A non-zero means that they are not the same
and larger values indicate a larger differences.

Example 1:

? sim_index("sit", "sin") --> 0.08784
? sim_index("sit", "sat") --> 0.32394
? sim_index("sit", "skit") --> 0.34324
? sim_index("sit", "its") --> 0.68293
? sim_index("sit", "kit") --> 0.86603

? sim_index("knitting", "knitting") --> 0.00000
? sim_index("kitting", "kitten") --> 0.09068
? sim_index("knitting", "knotting") --> 0.27717
? sim_index("knitting", "kitten") --> 0.35332
? sim_index("abacus","zoological") --> 0.76304

slice

returns a portion of the supplied sequence.
Signature:

slice(sequence source, atom start = 1, atom stop = 0)

public function
include sequence.e
namespace stdseq

Arguments: ≡ source : the sequence from which to get a portion
≡ start : an integer, the starting point of the portion. Default is 1.
≡ stop : an integer, the ending point of the portion. Default is length(source).

Returns: A sequence.

Comments:
• If the supplied start is less than 1 then it set to 1.
• If the supplied stop is less than 1 then length(source) is added to it. In this way, 0
represents the end of source, -1 represents one element in from the end of source
and so on.
• If the supplied stop is greater than length(source) then it is set to the end.
• After these adjustments, and if source[start..stop] makes sense, it is returned,
otherwise, {} is returned.

See Also: head, mid, tail
Example 1:

s2 = slice("John Doe", 6, 8)--> "Doe"
s2 = slice("John Doe", 6, 50) --> "Doe"
s2 = slice({1, 5.4, "John", 30}, 2, 3) --> {5.4, "John"}
s2 = slice({1,2,3,4,5}, 2, -1) --> {2,3,4}
s2 = slice({1,2,3,4,5}, 2) --> {2,3,4,5}
s2 = slice({1,2,3,4,5}, , 4) --> {1,2,3,4}

splice

inserts an object as a new slice in a sequence at a given position.
Signature:

splice(sequence target, object what, integer index)

<built-in> function

Arguments: ≡ target : the sequence to insert into
≡ what : the object to insert
≡ index : an integer, the position in target where what should appear

Returns: A sequence, which is target with one or more elements, those of what, inserted at
locations starting at index.

Comments: target can be a sequence of any shape, and what any kind of object.

The length of this new sequence is the sum of the lengths of target and what.
splice() is equivalent to insert() when what is an atom, but not when it is a
sequence.

Splicing a string into a string results into a new string.

See Also: insert, remove, replace, &
Example 1:

s = splice("John Doe", " Middle", 5)
-- s is "John Middle Doe"

unresolved.html

Example 2:

s = splice({10,30,40}, 20, 2)
-- s is {10,20,30,40}

split

splits a sequence on separator delimiters into a number of sub-sequences.
Signature:

split(sequence st, object delim = ' ', integer no_empty = 0,
integer limit = 0)

public function
include sequence.e
namespace stdseq

Arguments: ≡ source : the sequence to split.
≡ delim : an object (default is ' '). The delimiter that separates items in source.
≡ no_empty : an integer (default is 0). If not zero then all zero-length sub-sequences
are removed from the returned sequence. Use this when leading, trailing and
duplicated delimiters are not significant.
≡ limit : an integer (default is 0). The maximum number of sub-sequences to create.
If zero, there is no limit.

Returns: A sequence, of sub-sequences of source. Delimiters are removed.

Comments: This function may be applied to a string sequence or a complex sequence.

If limit is > 0, this is the maximum number of sub-sequences that will created,
otherwise there is no limit.

See Also: split_any, breakup, join
Example 1:

result = split("John Middle Doe")
-- result is {"John", "Middle", "Doe"}

Example 2:

result = split("John,Middle,Doe", ",",, 2) -- Only want 2 sub-sequences.
-- result is {"John", "Middle,Doe"}

Example 3:

result = split("John||Middle||Doe|", '|') -- Each '|' is significant by default
-- result is {"John","","Middle","","Doe",""}
result = split("John||Middle||Doe|", '|', 1) -- Adjacent '|' are just a single delim,
 -- and leading/trailing '|' ignored.
-- result is {"John","Middle","Doe"}

split_any

splits a sequence by any of the separators in the list of delimiters;
Signature:

split_any(sequence source, object delim = ", \t|", integer limit = 0,
integer no_empty = 0)

public function
include sequence.e
namespace stdseq

Arguments: ≡ source : the sequence to split.

≡ delim : a list of delimiters to split by. The default set is comma, space, tab and bar.
≡ limit : an integer (default is 0). The maximum number of sub-sequences to create.
If zero, there is no limit.
≡ no_empty : an integer (default is 0). If not zero then all zero-length sub-sequences
removed from the returned sequence. Use this when leading, trailing and duplicated
delimiters are not significant.

Comments:
• This function may be applied to a string sequence or a complex sequence.
• It works like split(), but in this case delim is a set of potential delimiters rather
than a single delimiter.
• If delim is an empty set, the source is returned in a sequence.

See Also: split, breakup, join
Example 1:

result = split_any("One,Two|Three Four") -- Default delims
-- result is {"One", "Two", "Three", "Four"}
result = split_any("192.168.1.103:8080", ".:") -- Using dot and colon
-- result is {"192","168","1","103","8080"}
result = split_any("One,Two|Three Four",, 2) -- limited to two splits
-- result is {"One", "Two", "Three Four"}
result = split_any(",One,,Two| Three|| Four,") -- Allow Empty option
-- result is {"","One","","Two","","Three","","","Four",""}
result = split_any(",One,,Two| Three|| Four,",,,1) -- No Empty option
-- result is {"One", "Two", "Three", "Four"}
result = split_any(",One,,Two| Three|| Four,", "") -- Empty delimiters
-- result is {",One,,Two| Three|| Four,"}

store

stores an object at a location nested arbitrarily deeply within a sequence.
Signature:

store(sequence target, sequence indexes, object x)

public function
include sequence.e
namespace stdseq

Arguments: ≡ target : the sequence in which to store something
≡ indexes : a sequence of integers, the path to follow to reach the place where to
store
≡ x : the object to store.

Returns: A sequence, a copy of target with the specified place indexes modified by storing
x into it.

Comments: If the last element of indexes is a pair of integers, x will be stored as a slice three,
the bounding indexes being given in the pair as {lower,upper}..

An object passed as an argument to a routine is always a copy of the original;
changes to this copy never alter the original object. To modify the original object you
always have to explicitly assign the output of a function back to the original.

Arguments in Euphoria behave as if they follow the conventional "pass by value"
paradigm, but use references for efficiency. Actual copying is performed only when
necessary.

See Also: fetch, Subscripting of Sequences
Example 1:

s = store({0,1,2,3,{"abc","def","ghi"},6},{5,2,3},108)
-- s is {0,1,2,3,{"abc","del","ghi"},6}

tail

unresolved.html

return the last size item or items of a sequence.
Signature:

tail(sequence source, atom size=length(source) - 1)

<built-in> function

Arguments: ≡ source : the sequence to get the tail of.
≡ size : an integer, the number of items to return. (defaults to length(source) - 1)

Returns: A sequence, of length at most size. If the length is less than size, then source was
returned. Otherwise, the size last elements of source were returned.

Comments: source can be any type of sequence, including nested sequences.

See Also: head, mid, slice
Example 1:

s2 = tail("John Doe", 3)
-- s2 is "Doe"

Example 2:

s2 = tail("John Doe", 50)
-- s2 is "John Doe"

Example 3:

s2 = tail({1, 5.4, "John", 30}, 3)
-- s2 is {5.4, "John", 30}

transform

transforms the input sequence by using one or more user-supplied transformers.
Signature:

transform(sequence source_data, object transformer_rids)

public function
include sequence.e
namespace stdseq

Arguments: ≡ source_data : A sequence to be transformed.
≡ transformer_rids : An object. One or more routine_ids used to transform the
input.

Returns: The source sequence, that has been transformed.

Comments:
• This works by calling each transformer in order, passing to it the result of the
previous transformation. Of course, the first transformer gets the original sequence
as passed to this routine.
• Each transformer routine takes one or more parameters. The first is a source
sequence to be transformed and others are any user data that may have been
supplied to the transform routine.
• Each transformer routine returns a transformed sequence.
• The transformer_rids parameters is either a single routine_id or a sequence of
routine_ids. In this second case, the routine_id may actually be a multi-element
sequence containing the real routine_id and some user data to pass to the
transformer routine. If there is no user data then the transformer is called with only
one parameter.

Example 1:

res = transform(" hello ", {
 { routine_id("trim"), " ", 0 },
 routine_id("upper")
})
--> "HELLO"

transmute

replaces all instances of any element from the current_items sequence that occur in
the

Signature:

transmute(sequence source_data, sequence current_items, sequence new_items,
integer start = 1, integer limit = length(source_data))

public function
include sequence.e
namespace stdseq

Arguments: ≡ source_data : a sequence, the data that might contain elements from
current_items
≡ current_items : a sequence, the set of items to look for in source_data. Matching
data is replaced with the corresponding data from new_items.
≡ new_items : a sequence, the set of replacement data for any matches found.
≡ start : an integer, the starting point of the search. Defaults to 1.
≡ limit : an integer, the maximum number of replacements to be made. Defaults to
length(source_data).

Returns: A sequence, an updated version of source_data.

Comments: By default, this routine operates on single elements from each of the arguments. That
is to say, it scans source_data for elements that match any single element in
current_items and when matched, replaces that with a single element from
new_items.

See Also: find, match, replace, mapping
Example 1:

transmute(SomeString, "hts", "123")

Example 2:

For example, to find all occurrances of "sh","th", and "sch" you have the
current_items as {{}, "sh", "th", "sch"}. Note that for the purposes of
determine the corresponding replacement data, the leading empty sequence is not
counted, so in this example "th" is the second item.

res = transmute("the school shoes", {{}, "sh", "th", "sch"}, "123")
 -- res becomes "2e 3ool 1oes"

Example 3:

res = transmute("the school shoes", {{}, "sh", "th", "sch"}, {{}, "SH", "TH", "SCH"})
 -- res becomes "THe SCHool SHoes"

Example 4:

res = transmute("the school shoes", {{}, "sh", "th", "sch"}, {{}, "", "", ""})
 -- res becomes "e ool oes"

Example 5:

res = transmute("the school shoes", {{}, "sh", 't', "sch"}, {{}, 'x', "TH", "SCH"})
 -- res becomes "THhe SCHool xoes"

Example 6:

res = transmute("John Smith enjoys uncooked apples.", "aeiouy", "YUOIEA")
-- res is "JIhn SmOth UnjIAs EncIIkUd YpplUs."

valid_index

checks whether a valid index exists in a sequence.
Signature:

valid_index(sequence st, object x)

public function
include sequence.e
namespace stdseq

Arguments: ≡ s : the sequence for which to check
≡ x : an object, the index to check.

Returns: An integer, 1 if s[x] is valid, or else 0.

See Also: Subscripting of Sequences
Example 1:

i = valid_index({51,27,33,14},2)
--> i is 1

vslice

performs a vertical slice on a nested sequence
Signature:

vslice(sequence source, atom colno, object error_control = 0)

public function
include sequence.e
namespace stdseq

Arguments: ≡ source : the sequence to take a vertical slice from
≡ colno : an atom, the column number to extract (rounded down)
≡ error_control : an object which says what to do if some element does not exist.
Defaults to 0 (crash in such a circumstance).

Returns: A sequence, usually of the same length as source, made of all the
source[x][colno].

Comments: If it is not possible to return the sequence of all source[x][colno]] for all available
x, the outcome is decided by error_control:
• If 0 (the default), program is aborted.
• If a nonzero atom, the short vertical slice is returned.
• Otherwise, elements of error_control will be taken to make for any missing
element. The elements are selected from the first to the last, as needed and this
cycles again from the first.

See Also: slice, project
Example 1:

s = vslice({{5,1}, {5,2}, {5,3}}, 2)
-- s is {1,2,3}

s = vslice({{5,1}, {5,2}, {5,3}}, 1)
-- s is {5,5,5}

unresolved.html

serialize

Routines
deserialize
serialize
dump
load

serialize API

deserialize

convert a serialized object into a standard Euphoria object.
Signature:

deserialize(object sdata, integer pos = 1)

public function
include serialize.e
namespace serialize

Arguments: ≡ sdata : either a sequence containing one or more concatenated serialized objects
or an open file handle. If this is a file handle, the current position in the file is
assumed to be at a serialized object in the file.
≡ pos : optional index into sdata. If omitted 1 is assumed. The index must point to the
start of a serialized object.

Returns: The return value, depends on the input type.
• If sdata is a file handle then this function returns a Euphoria object that had been
stored in the file, and moves the current file to the first byte after the stored object.
• If sdata is a sequence then this returns a two-element sequence. The first element
is the Euphoria object that corresponds to the serialized object that begins at index
pos, and the second element is the index position in the input parameter just after
the serialized object.

Comments: A serialized object is one that has been returned from the serialize function.
Example 1:

sequence objcache
 objcache = serialize(FirstName) &
 serialize(LastName) &
 serialize(PhoneNumber) &
 serialize(Address)

 sequence res
 integer pos = 1
 res = deserialize(objcache , pos)
 FirstName = res[1] pos = res[2]
 res = deserialize(objcache , pos)
 LastName = res[1] pos = res[2]
 res = deserialize(objcache , pos)
 PhoneNumber = res[1] pos = res[2]
 res = deserialize(objcache , pos)
 Address = res[1] pos = res[2]

Example 2:

sequence objcache
 objcache = serialize({FirstName,
 LastName,
 PhoneNumber,

 Address})

 sequence res
 res = deserialize(objcache)
 FirstName = res[1][1]
 LastName = res[1][2]
 PhoneNumber = res[1][3]
 Address = res[1][4]

Example 3:

integer fh
 fh = open("cust.dat", "wb")
 puts(fh, serialize(FirstName))
 puts(fh, serialize(LastName))
 puts(fh, serialize(PhoneNumber))
 puts(fh, serialize(Address))
 close(fh)

 fh = open("cust.dat", "rb")
 FirstName = deserialize(fh)
 LastName = deserialize(fh)
 PhoneNumber = deserialize(fh)
 Address = deserialize(fh)
 close(fh)

Example 4:

integer fh
 fh = open("cust.dat", "wb")
 puts(fh, serialize({FirstName,
 LastName,
 PhoneNumber,
 Address}))
 close(fh)

 sequence res
 fh = open("cust.dat", "rb")
 res = deserialize(fh)
 close(fh)
 FirstName = res[1]
 LastName = res[2]
 PhoneNumber = res[3]
 Address = res[4]

dump

saves a Euphoria object to disk in a binary format.
Signature:

dump(sequence data, sequence filename)

public function
include serialize.e
namespace serialize

Arguments: ≡ data : any Euphoria object.
≡ filename : the name of the file to save it to.

Returns: An integer, 0 if the function fails, otherwise the number of bytes in the created file.

Comments: If the named file does not exist it is created, otherwise it is overwritten.

You can use the load function to recover the data from the file.
Example 1:

include std/serialize.e
integer size = dump(myData, theFileName)
if size = 0 then
 puts(1, "Failed to save data to file\n")

else
 printf(1, "Saved file is %d bytes long\n", size)
end if

load

restores a Euphoria object that has been saved to disk by dump.
Signature:

load(sequence filename)

public function
include serialize.e
namespace serialize

Arguments: ≡ filename : the name of the file to restore it from.

Returns: A sequence, the first element is the result code. If the result code is 0 then it means
that the function failed, otherwise the restored data is in the second element.

Comments: This is used to load back data from a file created by the dump function.
Example 1:

include std/serialize.e
sequence mydata = load(theFileName)
if mydata[1] = 0 then
 puts(1, "Failed to load data from file\n")
else
 mydata = mydata[2] -- Restored data is in second element.
end if

serialize

converts a standard Euphoria object into a serialized version of it.
Signature:

serialize(object x)

public function
include serialize.e
namespace serialize

Arguments: ≡ euobj : any Euphoria object.

Returns: A sequence, this is the serialized version of the input object.

Comments: A serialized object is one that has been converted to a set of byte values. This can
then by written directly out to a file for storage.

You can use the deserialize function to convert it back into a standard Euphoria
object.

Example 1:

integer fh
 fh = open("cust.dat", "wb")
 puts(fh, serialize(FirstName))
 puts(fh, serialize(LastName))
 puts(fh, serialize(PhoneNumber))
 puts(fh, serialize(Address))
 close(fh)

 fh = open("cust.dat", "rb")
 FirstName = deserialize(fh)
 LastName = deserialize(fh)
 PhoneNumber = deserialize(fh)
 Address = deserialize(fh)

 close(fh)

Example 2:

integer fh
 fh = open("cust.dat", "wb")
 puts(fh, serialize({FirstName,
 LastName,
 PhoneNumber,
 Address}))
 close(fh)

 sequence res
 fh = open("cust.dat", "rb")
 res = deserialize(fh)
 close(fh)
 FirstName = res[1]
 LastName = res[2]
 PhoneNumber = res[3]
 Address = res[4]

socket

Error Information
error_code
OK
ERR_ACCESS
ERR_ADDRINUSE
ERR_ADDRNOTAVAIL
ERR_AFNOSUPPORT
ERR_AGAIN
ERR_ALREADY
ERR_CONNABORTED
ERR_CONNREFUSED
ERR_CONNRESET
ERR_DESTADDRREQ
ERR_FAULT
ERR_HOSTUNREACH
ERR_INPROGRESS
ERR_INTR
ERR_INVAL
ERR_IO
ERR_ISCONN
ERR_ISDIR
ERR_LOOP
ERR_MFILE
ERR_MSGSIZE
ERR_NAMETOOLONG
ERR_NETDOWN
ERR_NETRESET
ERR_NETUNREACH
ERR_NFILE
ERR_NOBUFS
ERR_NOENT
ERR_NOTCONN
ERR_NOTDIR

ERR_NOTINITIALISED
ERR_NOTSOCK
ERR_OPNOTSUPP
ERR_PROTONOSUPPORT
ERR_PROTOTYPE
ERR_ROFS
ERR_SHUTDOWN
ERR_SOCKTNOSUPPORT
ERR_TIMEDOUT
ERR_WOULDBLOCK

Socket Backend Constants
ESOCK_UNDEFINED_VALUE
ESOCK_UNKNOWN_FLAG
ESOCK_TYPE_AF
ESOCK_TYPE_TYPE
ESOCK_TYPE_OPTION

Socket Type Euphoria Constants
EAF_UNSPEC
EAF_UNIX
EAF_INET
EAF_INET6
EAF_APPLETALK
EAF_BTH
ESOCK_STREAM
ESOCK_DGRAM
ESOCK_RAW
ESOCK_RDM
ESOCK_SEQPACKET

Socket Type Constants
AF_UNSPEC
AF_UNIX
AF_INET
AF_INET6
AF_APPLETALK
AF_BTH
SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_RDM
SOCK_SEQPACKET

Select Accessor Constants
SELECT_SOCKET
SELECT_IS_READABLE
SELECT_IS_WRITABLE
SELECT_IS_ERROR

Shutdown Options
SD_SEND
SD_RECEIVE
SD_BOTH

Socket Options
Socket Options In Common
SOL_SOCKET

SO_DEBUG
SO_ACCEPTCONN
SO_REUSEADDR
SO_KEEPALIVE
SO_DONTROUTE
SO_BROADCAST
SO_LINGER
SO_SNDBUF
SO_RCVBUF
SO_SNDLOWAT
SO_RCVLOWAT
SO_SNDTIMEO
SO_RCVTIMEO
SO_ERROR
SO_TYPE
SO_OOBINLINE
Windows Socket Options
SO_USELOOPBACK
SO_DONTLINGER
SO_REUSEPORT
SO_CONNDATA
SO_CONNOPT
SO_DISCDATA
SO_DISCOPT
SO_CONNDATALEN
SO_CONNOPTLEN
SO_DISCDATALEN
SO_DISCOPTLEN
SO_OPENTYPE
SO_MAXDG
SO_MAXPATHDG
SO_SYNCHRONOUS_ALTERT
SO_SYNCHRONOUS_NONALERT
LINUX Socket Options
SO_SNDBUFFORCE
SO_RCVBUFFORCE
SO_NO_CHECK
SO_PRIORITY
SO_BSDCOMPAT
SO_PASSCRED
SO_PEERCRED
SO_SECURITY_AUTHENTICATION
SO_SECURITY_ENCRYPTION_TRANSPORT
SO_SECURITY_ENCRYPTION_NETWORK
SO_BINDTODEVICE
LINUX Socket Filtering Options
SO_ATTACH_FILTER
SO_DETACH_FILTER
SO_PEERNAME
SO_TIMESTAMP
SCM_TIMESTAMP
SO_PEERSEC

unresolved.html
unresolved.html
unresolved.html

SO_PASSSEC
SO_TIMESTAMPNS
SCM_TIMESTAMPNS
SO_MARK
SO_TIMESTAMPING
SCM_TIMESTAMPING
SO_PROTOCOL
SO_DOMAIN
SO_RXQ_OVFL

Send Flags
MSG_OOB
MSG_PEEK
MSG_DONTROUTE
MSG_TRYHARD
MSG_CTRUNC
MSG_PROXY
MSG_TRUNC
MSG_DONTWAIT
MSG_EOR
MSG_WAITALL
MSG_FIN
MSG_SYN
MSG_CONFIRM
MSG_RST
MSG_ERRQUEUE
MSG_NOSIGNAL
MSG_MORE

Server and Client sides
SOCKET_SOCKET
SOCKET_SOCKADDR_IN
socket
create
close
shutdown
select
send
receive
get_option
set_option

Client side only
connect

Server side only
bind
listen
accept

UDP only
send_to
receive_from

Information
service_by_name
service_by_port
info

Socket Backend Constants

These values are used by the Euphoria backend to pass information to this library. The TYPE
constants are used to identify to the info function which family of constants are being retrieved
(AF protocols, socket types, and socket options, respectively).

Socket Type Euphoria Constants

These values are used to retrieve the known values for family and sock_type parameters of the
create function from the Euphoria backend. (The reason for doing it this way is to retrieve the
values defined in C, instead of duplicating them here.) These constants are guarranteed to never
change, and to be the same value across platforms.

Socket Type Constants

These values are passed as the family and sock_type parameters of the create function. They
are OS-dependent.

Select Accessor Constants

Use with the result of select.

Shutdown Options

Pass one of the following to the method parameter of shutdown.

Socket Options

Pass to the optname parameter of the functions get_option and set_option.

These options are highly OS specific and are normally not needed for most socket
communication. They are provided here for your convenience. If you should need to set socket
options, please refer to your OS reference material.

There may be other values that your OS defines and some defined here are not supported on all
operating systems.

Socket Options In Common

Send Flags

Pass to the flags parameter of send and receive

socket API

AF_APPLETALK

Appletalk
Signature:

AF_APPLETALK

public constant
include socket.e
namespace sockets

AF_BTH

Bluetooth (currently Windows-only)

Signature:

AF_BTH

public constant
include socket.e
namespace sockets

AF_INET

IPv4 Internet protocols
Signature:

AF_INET

public constant
include socket.e
namespace sockets

AF_INET6

IPv6 Internet protocols
Signature:

AF_INET6

public constant
include socket.e
namespace sockets

AF_UNIX

Local communications
Signature:

AF_UNIX

public constant
include socket.e
namespace sockets

AF_UNSPEC

Address family is unspecified
Signature:

AF_UNSPEC

public constant
include socket.e
namespace sockets

EAF_APPLETALK

Appletalk
Signature:

EAF_APPLETALK

public constant
include socket.e
namespace sockets

EAF_BTH

Bluetooth (currently Windows-only)
Signature:

EAF_BTH

public constant
include socket.e
namespace sockets

EAF_INET

IPv4 Internet protocols
Signature:

EAF_INET

public constant
include socket.e
namespace sockets

EAF_INET6

IPv6 Internet protocols
Signature:

EAF_INET6

public constant
include socket.e
namespace sockets

EAF_UNIX

Local communications
Signature:

EAF_UNIX

public constant
include socket.e
namespace sockets

EAF_UNSPEC

Address family is unspecified
Signature:

EAF_UNSPEC

public constant
include socket.e
namespace sockets

ERR_ACCESS

Permission has been denied. This can happen when using a send_to call on a
broadcast

Signature:

ERR_ACCESS

public constant
include socket.e
namespace sockets

ERR_ADDRINUSE

Address is already in use.
Signature:

ERR_ADDRINUSE

public constant
include socket.e
namespace sockets

ERR_ADDRNOTAVAIL

The specified address is not a valid local IP address on this computer.
Signature:

ERR_ADDRNOTAVAIL

public constant
include socket.e
namespace sockets

ERR_AFNOSUPPORT

Address family not supported by the protocol family.
Signature:

ERR_AFNOSUPPORT

public constant
include socket.e
namespace sockets

ERR_AGAIN

Kernel resources to complete the request are temporarly unavailable.
Signature:

ERR_AGAIN

public constant
include socket.e
namespace sockets

ERR_ALREADY

Operation is already in progress.
Signature:

ERR_ALREADY

public constant
include socket.e
namespace sockets

ERR_CONNABORTED

Software has caused a connection to be aborted.
Signature:

ERR_CONNABORTED

public constant
include socket.e
namespace sockets

ERR_CONNREFUSED

Connection was refused.
Signature:

ERR_CONNREFUSED

public constant
include socket.e
namespace sockets

ERR_CONNRESET

An incomming connection was supplied however it was terminated by the remote
peer.

Signature:

ERR_CONNRESET

public constant
include socket.e
namespace sockets

namespace sockets

ERR_DESTADDRREQ

Destination address required.
Signature:

ERR_DESTADDRREQ

public constant
include socket.e
namespace sockets

ERR_FAULT

Address creation has failed internally.
Signature:

ERR_FAULT

public constant
include socket.e
namespace sockets

ERR_HOSTUNREACH

No route to the host specified could be found.
Signature:

ERR_HOSTUNREACH

public constant
include socket.e
namespace sockets

ERR_INPROGRESS

A blocking call is inprogress.
Signature:

ERR_INPROGRESS

public constant
include socket.e
namespace sockets

ERR_INTR

A blocking call was cancelled or interrupted.
Signature:

ERR_INTR

public constant
include socket.e

include socket.e
namespace sockets

ERR_INVAL

An invalid sequence of command calls were made, for instance trying to accept
Signature:

ERR_INVAL

public constant
include socket.e
namespace sockets

ERR_IO

An I/O error occurred while making the directory entry or allocating the
Signature:

ERR_IO

public constant
include socket.e
namespace sockets

ERR_ISCONN

Socket is already connected.
Signature:

ERR_ISCONN

public constant
include socket.e
namespace sockets

ERR_ISDIR

An empty pathname was specified. (Unix Domain Socket).
Signature:

ERR_ISDIR

public constant
include socket.e
namespace sockets

ERR_LOOP

Too many symbolic links were encountered. (Unix Domain Socket).
Signature:

ERR_LOOP

public constant
include socket.e
namespace sockets

ERR_MFILE

The queue is not empty upon routine call.
Signature:

ERR_MFILE

public constant
include socket.e
namespace sockets

ERR_MSGSIZE

Message is too long for buffer size. This would indicate an internal error to
Signature:

ERR_MSGSIZE

public constant
include socket.e
namespace sockets

ERR_NAMETOOLONG

Component of the path name exceeded 255 characters or the entire path
Signature:

ERR_NAMETOOLONG

public constant
include socket.e
namespace sockets

ERR_NETDOWN

The network subsystem is down or has failed
Signature:

ERR_NETDOWN

public constant
include socket.e
namespace sockets

ERR_NETRESET

Network has dropped it's connection on reset.
Signature:

ERR_NETRESET

public constant
include socket.e
namespace sockets

ERR_NETUNREACH

Network is unreachable.
Signature:

ERR_NETUNREACH

public constant
include socket.e
namespace sockets

ERR_NFILE

Not a file. (Unix Domain Sockets).
Signature:

ERR_NFILE

public constant
include socket.e
namespace sockets

ERR_NOBUFS

No buffer space is available.
Signature:

ERR_NOBUFS

public constant
include socket.e
namespace sockets

ERR_NOENT

Named socket does not exist. (Unix Domain Socket).
Signature:

ERR_NOENT

public constant
include socket.e
namespace sockets

ERR_NOTCONN

Socket is not connected.
Signature:

ERR_NOTCONN

public constant
include socket.e
namespace sockets

ERR_NOTDIR

Component of the path prefix is not a directory. (Unix Domain Socket).
Signature:

ERR_NOTDIR

public constant
include socket.e
namespace sockets

ERR_NOTINITIALISED

Socket system is not initialized (Windows only)
Signature:

ERR_NOTINITIALISED

public constant
include socket.e
namespace sockets

ERR_NOTSOCK

The descriptor is not a socket.
Signature:

ERR_NOTSOCK

public constant
include socket.e
namespace sockets

ERR_OPNOTSUPP

Operation is not supported on this type of socket.
Signature:

ERR_OPNOTSUPP

public constant
include socket.e
namespace sockets

ERR_PROTONOSUPPORT

Protocol not supported.
Signature:

ERR_PROTONOSUPPORT

public constant
include socket.e
namespace sockets

ERR_PROTOTYPE

Protocol is the wrong type for the socket.
Signature:

ERR_PROTOTYPE

public constant
include socket.e
namespace sockets

ERR_ROFS

The name would reside on a read-only file system. (Unix Domain Socket).
Signature:

ERR_ROFS

public constant
include socket.e
namespace sockets

ERR_SHUTDOWN

The socket has been shutdown. Possibly a send/receive call after a shutdown took
Signature:

ERR_SHUTDOWN

public constant
include socket.e
namespace sockets

ERR_SOCKTNOSUPPORT

Socket type is not supported.
Signature:

ERR_SOCKTNOSUPPORT

public constant
include socket.e
namespace sockets

ERR_TIMEDOUT

Connection has timed out.
Signature:

ERR_TIMEDOUT

public constant
include socket.e
namespace sockets

ERR_WOULDBLOCK

The operation would block on a socket marked as non-blocking.
Signature:

ERR_WOULDBLOCK

public constant
include socket.e
namespace sockets

ESOCK_DGRAM

Supports datagrams (connectionless, unreliable messages of a
Signature:

ESOCK_DGRAM

public constant
include socket.e
namespace sockets

ESOCK_RAW

Provides raw network protocol access.
Signature:

ESOCK_RAW

public constant
include socket.e
namespace sockets

ESOCK_RDM

Provides a reliable datagram layer that does not guarantee ordering.
Signature:

ESOCK_RDM

public constant
include socket.e
namespace sockets

ESOCK_SEQPACKET

Obsolete and should not be used in new programs

Signature:

ESOCK_SEQPACKET

public constant
include socket.e
namespace sockets

ESOCK_STREAM

Provides sequenced, reliable, two-way, connection-based byte streams.
Signature:

ESOCK_STREAM

public constant
include socket.e
namespace sockets

ESOCK_TYPE_AF

Signature:

ESOCK_TYPE_AF

public constant
include socket.e
namespace sockets

ESOCK_TYPE_OPTION

These values are used to retrieve the known values for family and
Signature:

ESOCK_TYPE_OPTION

public constant
include socket.e
namespace sockets

ESOCK_TYPE_TYPE

Signature:

ESOCK_TYPE_TYPE

public constant
include socket.e
namespace sockets

ESOCK_UNDEFINED_VALUE

when a particular constant was not defined by C,the backend returns this value
Signature:

ESOCK_UNDEFINED_VALUE

public constant
include socket.e
namespace sockets

ESOCK_UNKNOWN_FLAG

if the backend doesn't recognize the flag in question
Signature:

ESOCK_UNKNOWN_FLAG

public constant
include socket.e
namespace sockets

MSG_CONFIRM

Tell the link layer that forward progress happened: you got a
Signature:

MSG_CONFIRM

public constant
include socket.e
namespace sockets

MSG_CTRUNC

indicates that some control data were discarded due to lack of space in
Signature:

MSG_CTRUNC

public constant
include socket.e
namespace sockets

MSG_DONTROUTE

Do not use a gateway to send out the packet, only send to hosts on
Signature:

MSG_DONTROUTE

public constant
include socket.e
namespace sockets

MSG_DONTWAIT

Enables non-blocking operation; if the operation would block, EAGAIN

Signature:

MSG_DONTWAIT

public constant
include socket.e
namespace sockets

MSG_EOR

Terminates a record (when this notion is supported, as for sockets of
Signature:

MSG_EOR

public constant
include socket.e
namespace sockets

MSG_ERRQUEUE

indicates that no data was received but an extended error from the
Signature:

MSG_ERRQUEUE

public constant
include socket.e
namespace sockets

MSG_FIN

Signature:

MSG_FIN

public constant
include socket.e
namespace sockets

MSG_MORE

The caller has more data to send. This flag is used with TCP sockets
Signature:

MSG_MORE

public constant
include socket.e
namespace sockets

MSG_NOSIGNAL

Requests not to send SIGPIPE on errors on stream oriented sockets when

Signature:

MSG_NOSIGNAL

public constant
include socket.e
namespace sockets

MSG_OOB

Sends out-of-band data on sockets that support this notion (e.g., of
Signature:

MSG_OOB

public constant
include socket.e
namespace sockets

MSG_PEEK

This flag causes the receive operation to return data from the
Signature:

MSG_PEEK

public constant
include socket.e
namespace sockets

MSG_PROXY

Signature:

MSG_PROXY

public constant
include socket.e
namespace sockets

MSG_RST

Signature:

MSG_RST

public constant
include socket.e
namespace sockets

MSG_SYN

Signature:

MSG_SYN

MSG_SYN

public constant
include socket.e
namespace sockets

MSG_TRUNC

indicates that the trailing portion of a datagram was discarded because
Signature:

MSG_TRUNC

public constant
include socket.e
namespace sockets

MSG_TRYHARD

Signature:

MSG_TRYHARD

public constant
include socket.e
namespace sockets

MSG_WAITALL

This flag requests that the operation block until the full request is
Signature:

MSG_WAITALL

public constant
include socket.e
namespace sockets

OK

No error occurred.
Signature:

OK

public constant
include socket.e
namespace sockets

SCM_TIMESTAMP

Signature:

SCM_TIMESTAMP

public constant
include socket.e
namespace sockets

SCM_TIMESTAMPING

Signature:

SCM_TIMESTAMPING

public constant
include socket.e
namespace sockets

SCM_TIMESTAMPNS

Signature:

SCM_TIMESTAMPNS

public constant
include socket.e
namespace sockets

SD_BOTH

Shutdown both send and receive operations.
Signature:

SD_BOTH

public constant
include socket.e
namespace sockets

SD_RECEIVE

Shutdown the receive operations.
Signature:

SD_RECEIVE

public constant
include socket.e
namespace sockets

SD_SEND

Shutdown the send operations.
Signature:

SD_SEND

public constant

include socket.e
namespace sockets

SELECT_IS_ERROR

Boolean (1/0) value indicating the error state.
Signature:

SELECT_IS_ERROR

public enum
include socket.e
namespace sockets

SELECT_IS_READABLE

Boolean (1/0) value indicating the readability.
Signature:

SELECT_IS_READABLE

public enum
include socket.e
namespace sockets

SELECT_IS_WRITABLE

Boolean (1/0) value indicating the writeability.
Signature:

SELECT_IS_WRITABLE

public enum
include socket.e
namespace sockets

SELECT_SOCKET

The socket
Signature:

SELECT_SOCKET

public enum
include socket.e
namespace sockets

SOCKET_SOCKADDR_IN

Accessor index for the sockaddr_in pointer of a socket type
Signature:

SOCKET_SOCKADDR_IN

export enum
include socket.e
namespace sockets

SOCKET_SOCKET

Accessor index for socket handle of a socket type
Signature:

SOCKET_SOCKET

export enum
include socket.e
namespace sockets

SOCK_DGRAM

Supports datagrams (connectionless, unreliable messages of a
Signature:

SOCK_DGRAM

public constant
include socket.e
namespace sockets

SOCK_RAW

Provides raw network protocol access.
Signature:

SOCK_RAW

public constant
include socket.e
namespace sockets

SOCK_RDM

Provides a reliable datagram layer that does not guarantee ordering.
Signature:

SOCK_RDM

public constant
include socket.e
namespace sockets

SOCK_SEQPACKET

Obsolete and should not be used in new programs
Signature:

SOCK_SEQPACKET

public constant
include socket.e
namespace sockets

SOCK_STREAM

Provides sequenced, reliable, two-way, connection-based byte streams.
Signature:

SOCK_STREAM

public constant
include socket.e
namespace sockets

SOL_SOCKET

Signature:

SOL_SOCKET

public constant
include socket.e
namespace sockets

SO_ACCEPTCONN

Signature:

SO_ACCEPTCONN

public constant
include socket.e
namespace sockets

SO_ATTACH_FILTER

Signature:

SO_ATTACH_FILTER

public constant
include socket.e
namespace sockets

SO_BINDTODEVICE

=== LINUX Socket Filtering Options
Signature:

SO_BINDTODEVICE

public constant
include socket.e

namespace sockets

SO_BROADCAST

Signature:

SO_BROADCAST

public constant
include socket.e
namespace sockets

SO_BSDCOMPAT

Signature:

SO_BSDCOMPAT

public constant
include socket.e
namespace sockets

SO_CONNDATA

Signature:

SO_CONNDATA

public constant
include socket.e
namespace sockets

SO_CONNDATALEN

Signature:

SO_CONNDATALEN

public constant
include socket.e
namespace sockets

SO_CONNOPT

Signature:

SO_CONNOPT

public constant
include socket.e
namespace sockets

SO_CONNOPTLEN

Signature:

SO_CONNOPTLEN

public constant
include socket.e
namespace sockets

SO_DEBUG

Signature:

SO_DEBUG

public constant
include socket.e
namespace sockets

SO_DETACH_FILTER

Signature:

SO_DETACH_FILTER

public constant
include socket.e
namespace sockets

SO_DISCDATA

Signature:

SO_DISCDATA

public constant
include socket.e
namespace sockets

SO_DISCDATALEN

Signature:

SO_DISCDATALEN

public constant
include socket.e
namespace sockets

SO_DISCOPT

Signature:

SO_DISCOPT

public constant
include socket.e
namespace sockets

SO_DISCOPTLEN

Signature:

SO_DISCOPTLEN

public constant
include socket.e
namespace sockets

SO_DOMAIN

Signature:

SO_DOMAIN

public constant
include socket.e
namespace sockets

SO_DONTLINGER

Signature:

SO_DONTLINGER

public constant
include socket.e
namespace sockets

SO_DONTROUTE

Signature:

SO_DONTROUTE

public constant
include socket.e
namespace sockets

SO_ERROR

Signature:

SO_ERROR

public constant
include socket.e
namespace sockets

SO_KEEPALIVE

Signature:

SO_KEEPALIVE

public constant
include socket.e
namespace sockets

SO_LINGER

Signature:

SO_LINGER

public constant
include socket.e
namespace sockets

SO_MARK

Signature:

SO_MARK

public constant
include socket.e
namespace sockets

SO_MAXDG

Signature:

SO_MAXDG

public constant
include socket.e
namespace sockets

SO_MAXPATHDG

Signature:

SO_MAXPATHDG

public constant
include socket.e
namespace sockets

SO_NO_CHECK

Signature:

SO_NO_CHECK

public constant
include socket.e
namespace sockets

SO_OOBINLINE

=== Windows Socket Options
Signature:

SO_OOBINLINE

public constant
include socket.e
namespace sockets

SO_OPENTYPE

Signature:

SO_OPENTYPE

public constant
include socket.e
namespace sockets

SO_PASSCRED

Signature:

SO_PASSCRED

public constant
include socket.e
namespace sockets

SO_PASSSEC

Signature:

SO_PASSSEC

public constant
include socket.e
namespace sockets

SO_PEERCRED

Signature:

SO_PEERCRED

public constant
include socket.e

namespace sockets

SO_PEERNAME

Signature:

SO_PEERNAME

public constant
include socket.e
namespace sockets

SO_PEERSEC

Signature:

SO_PEERSEC

public constant
include socket.e
namespace sockets

SO_PRIORITY

Signature:

SO_PRIORITY

public constant
include socket.e
namespace sockets

SO_PROTOCOL

Signature:

SO_PROTOCOL

public constant
include socket.e
namespace sockets

SO_RCVBUF

Signature:

SO_RCVBUF

public constant
include socket.e
namespace sockets

SO_RCVBUFFORCE

Signature:

SO_RCVBUFFORCE

public constant
include socket.e
namespace sockets

SO_RCVLOWAT

Signature:

SO_RCVLOWAT

public constant
include socket.e
namespace sockets

SO_RCVTIMEO

Signature:

SO_RCVTIMEO

public constant
include socket.e
namespace sockets

SO_REUSEADDR

Signature:

SO_REUSEADDR

public constant
include socket.e
namespace sockets

SO_REUSEPORT

Signature:

SO_REUSEPORT

public constant
include socket.e
namespace sockets

SO_RXQ_OVFL

Pass to the flags parameter of send and receive
Signature:

SO_RXQ_OVFL

public constant
include socket.e
namespace sockets

SO_SECURITY_AUTHENTICATION

Signature:

SO_SECURITY_AUTHENTICATION

public constant
include socket.e
namespace sockets

SO_SECURITY_ENCRYPTION_NETWORK

Signature:

SO_SECURITY_ENCRYPTION_NETWORK

public constant
include socket.e
namespace sockets

SO_SECURITY_ENCRYPTION_TRANSPORT

Signature:

SO_SECURITY_ENCRYPTION_TRANSPORT

public constant
include socket.e
namespace sockets

SO_SNDBUF

Signature:

SO_SNDBUF

public constant
include socket.e
namespace sockets

SO_SNDBUFFORCE

Signature:

SO_SNDBUFFORCE

public constant
include socket.e
namespace sockets

SO_SNDLOWAT

Signature:

SO_SNDLOWAT

public constant
include socket.e
namespace sockets

SO_SNDTIMEO

Signature:

SO_SNDTIMEO

public constant
include socket.e
namespace sockets

SO_SYNCHRONOUS_ALTERT

Signature:

SO_SYNCHRONOUS_ALTERT

public constant
include socket.e
namespace sockets

SO_SYNCHRONOUS_NONALERT

=== LINUX Socket Options
Signature:

SO_SYNCHRONOUS_NONALERT

public constant
include socket.e
namespace sockets

SO_TIMESTAMP

Signature:

SO_TIMESTAMP

public constant
include socket.e
namespace sockets

SO_TIMESTAMPING

Signature:

SO_TIMESTAMPING

public constant
include socket.e
namespace sockets

SO_TIMESTAMPNS

Signature:

SO_TIMESTAMPNS

public constant
include socket.e
namespace sockets

SO_TYPE

Signature:

SO_TYPE

public constant
include socket.e
namespace sockets

SO_USELOOPBACK

Signature:

SO_USELOOPBACK

public constant
include socket.e
namespace sockets

accept

Produces a new socket for an incoming connection.
Signature:

accept(socket sock)

public function
include socket.e
namespace sockets

Arguments: ≡ sock: the server socket

Returns: An atom, on error
A sequence, {socket client, sequence client_ip_address} on success.

Comments: Using this function allows communication to occur on a "side channel" while the
main server socket remains available for new connections.

accept() must be called after bind() and listen().

bind

Joins a socket to a specific local internet address and port so
Signature:

bind(socket sock, sequence address, integer port = - 1)

public function
include socket.e
namespace sockets

Arguments: ≡ sock : the socket
≡ address : the address to bind the socket to
≡ port : optional, if not specified you must include :PORT in the address parameter.

Returns: An integer, 0 on success and -1 on failure.
Example 1:

-- Bind to all interfaces on the default port 80.
success = bind(socket, "0.0.0.0")
-- Bind to all interfaces on port 8080.
success = bind(socket, "0.0.0.0:8080")
-- Bind only to the 243.17.33.19 interface on port 345.
success = bind(socket, "243.17.33.19", 345)

close

Closes a socket.
Signature:

close(socket sock)

public function
include socket.e
namespace sockets

Arguments: ≡ sock: the socket to close

Returns: An integer, 0 on success and -1 on error.

Comments: It may take several minutes for the OS to declare the socket as closed.

connect

Establish an outgoing connection to a remote computer. Only works with TCP
sockets.

Signature:

connect(socket sock, sequence address, integer port = - 1)

public function
include socket.e
namespace sockets

Arguments: ≡ sock : the socket
≡ address : ip address to connect, optionally with :PORT at the end
≡ port : port number

Returns: An integer, 0 for success and non-zero on failure. See the ERR_* constants for
supported values.

Comments: address can contain a port number. If it does not, it has to be supplied to the port

parameter.
Example 1:

success = connect(sock, "11.1.1.1") -- uses default port 80
success = connect(sock, "11.1.1.1:110") -- uses port 110
success = connect(sock, "11.1.1.1", 345) -- uses port 345

create

Create a new socket
Signature:

create(integer family, integer sock_type, integer protocol)

public function
include socket.e
namespace sockets

Arguments: ≡ family: an integer
≡ sock_type: an integer, the type of socket to create
≡ protocol: an integer, the communication protocol being used

family options:
• AF_UNIX
• AF_INET
• AF_INET6
• AF_APPLETALK
• AF_BTH

sock_type options:
• SOCK_STREAM
• SOCK_DGRAM
• SOCK_RAW
• SOCK_RDM
• SOCK_SEQPACKET

Returns: An object, an atom, representing an integer code on failure, else a sequence
representing a valid socket id.

Example 1:

socket = create(AF_INET, SOCK_STREAM, 0)

error_code

Get the error code.
Signature:

error_code()

public function
include socket.e
namespace sockets

Returns: Integer OK on no error, otherwise any one of the ERR_ constants to follow.

get_option

Get options for a socket.
Signature:

get_option(socket sock, integer level, integer optname)

public function
include socket.e
namespace sockets

Arguments: ≡ sock : the socket
≡ level : an integer, the option level
≡ optname : requested option (See Socket Options)

Returns: An object, either:
• On error, {"ERROR",error_code}.
• On success, either an atom or a sequence containing the option value, depending
on the option.

Comments: Primarily for use in multicast or more advanced socket applications. Level is the
option level, and option_name is the option for which values are being sought. Level
is usually SOL_SOCKET.

info

Get constant definitions from the backend.
Signature:

info(integer Type)

public function
include socket.e
namespace sockets

Arguments: ≡ type : The type of information requested.

Returns: A sequence, containing the list of definitions from the backend. The resulting list
can be indexed into using the Euphoria constants. Or an atom indicating an error.

See Also: Socket Options, Socket Backend Constants, Socket Type Euphoria Constants
Example 1:

object result = info(ESOCK_TYPE_AF)
-- result = { AF_UNIX, AF_INET, AF_INET6, AF_APPLETALK, AF_BTH, AF_UNSPEC }

listen

Start monitoring a connection. Only works with TCP sockets.
Signature:

listen(socket sock, integer backlog)

public function
include socket.e
namespace sockets

Arguments: ≡ sock : the socket
≡ backlog : the number of connection requests that can be kept waiting before the
OS refuses to hear any more.

Returns: An integer, 0 on success and an error code on failure.

Comments: Once the socket is created and bound, this will indicate to the operating system that
you are ready to being listening for connections.

The value of backlog is strongly dependent on both the hardware and the amount of
time it takes the program to process each connection request.

unresolved.html
unresolved.html

This function must be executed after bind().

receive

Receive data from a bound socket.
Signature:

receive(socket sock, atom flags = 0)

public function
include socket.e
namespace sockets

Arguments: ≡ sock : the socket to get data from
≡ flags : flags (see Send Flags)

Returns: A sequence, either a full string of data on success, or an atom indicating the error
code.

Comments: This function will not return until data is actually received on the socket, unless the
flags parameter contains MSG_DONTWAIT.

MSG_DONTWAIT only works on Linux kernels 2.4 and above. To be cross-platform
you should use select to determine if a socket is readable, i.e. has data waiting.

receive_from

Receive a UDP packet from a given socket
Signature:

receive_from(socket sock, atom flags = 0)

public function
include socket.e
namespace sockets

Arguments: ≡ sock: the server socket
≡ flags : flags (see Send Flags)

Returns: A sequence containing { client_ip, client_port, data } or an atom error code.

See Also: send_to

select

Determine the read, write and error status of one or more sockets.
Signature:

select(object sockets_read, object sockets_write, object sockets_err,
integer timeout = 0, integer timeout_micro = 0)

public function
include socket.e
namespace sockets

Arguments: ≡ sockets_read : either one socket or a sequence of sockets to check for reading.
≡ sockets_write : either one socket or a sequence of sockets to check for writing.
≡ sockets_err : either one socket or a sequence of sockets to check for errors.
≡ timeout : maximum time to wait to determine a sockets status, seconds part
≡ timeout_micro : maximum time to wait to determine a sockets status, microsecond

unresolved.html
unresolved.html

part

Returns: A sequence, of the same size of all unique sockets containing { socket,
read_status, write_status, error_status } for each socket passed 2 to the function.
Note that the sockets returned are not guaranteed to be in any particular order.

send

Send TCP data to a socket connected remotely.
Signature:

send(socket sock, sequence data, atom flags = 0)

public function
include socket.e
namespace sockets

Arguments: ≡ sock : the socket to send data to
≡ data : a sequence of atoms, what to send
≡ flags : flags (see Send Flags)

Returns: An integer, the number of characters sent, or -1 for an error.

send_to

Send a UDP packet to a given socket
Signature:

send_to(socket sock, sequence data, sequence address, integer port = - 1,
atom flags = 0)

public function
include socket.e
namespace sockets

Arguments: ≡ sock: the server socket
≡ data: the data to be sent
≡ ip: the ip where the data is to be sent to (ip:port) is acceptable
≡ port: the port where the data is to be sent on (if not supplied with the ip)
≡ flags : flags (see Send Flags)

Returns: An integer status code.

See Also: receive_from

service_by_name

Get service information by name.
Signature:

service_by_name(sequence name, object protocol = 0)

public function
include socket.e
namespace sockets

Arguments: ≡ name : service name.
≡ protocol : protocol. Default is not to search by protocol.

Returns: A sequence, containing { official protocol name, protocol, port number } or an atom
indicating the error code.

unresolved.html
unresolved.html

See Also: service_by_port
Example 1:

object result = getservbyname("http")
-- result = { "http", "tcp", 80 }

service_by_port

Get service information by port number.
Signature:

service_by_port(integer port, object protocol = 0)

public function
include socket.e
namespace sockets

Arguments: ≡ port : port number.
≡ protocol : protocol. Default is not to search by protocol.

Returns: A sequence, containing { official protocol name, protocol, port number } or an atom
indicating the error code.

See Also: service_by_name
Example 1:

object result = getservbyport(80)
-- result = { "http", "tcp", 80 }

set_option

Set options for a socket.
Signature:

set_option(socket sock, integer level, integer optname, object val)

public function
include socket.e
namespace sockets

Arguments: ≡ sock : an atom, the socket id
≡ level : an integer, the option level
≡ optname : requested option (See Socket Options)
≡ val : an object, the new value for the option

Returns: An integer, 0 on success, -1 on error.

Comments: Primarily for use in multicast or more advanced socket applications. Level is the
option level, and option_name is the option for which values are being set. Level is
usually SOL_SOCKET.

See Also: get_option

shutdown

Partially or fully close a socket.
Signature:

shutdown(socket sock, atom method = SD_BOTH)

public function
include socket.e

namespace sockets

Arguments: ≡ sock : the socket to shutdown
≡ method : the method used to close the socket

Returns: An integer, 0 on success and -1 on error.

Comments: Three constants are defined that can be sent to method:
• SD_SEND - shutdown the send operations.
• SD_RECEIVE - shutdown the receive operations.
• SD_BOTH - shutdown both send and receive operations.

It may take several minutes for the OS to declare the socket as closed.

socket

Socket type
Signature:

socket(object o)

public type
include socket.e
namespace sockets

sort

Constants
ASCENDING
NORMAL_ORDER
DESCENDING
REVERSE_ORDER

Routines
sort
custom_sort
sort_columns
merge
insertion_sort

sort API

ASCENDING

ascending sort order, always the default.
Signature:

ASCENDING

public constant
include sort.e
namespace stdsort

DESCENDING

descending sort order, which is the reverse of ASCENDING.
Signature:

DESCENDING

public constant
include sort.e
namespace stdsort

NORMAL_ORDER

The normal sort order used by the custom comparison routine.
Signature:

NORMAL_ORDER

public constant
include sort.e
namespace stdsort

REVERSE_ORDER

Reverses the sense of the order returned by a custom comparison routine.
Signature:

REVERSE_ORDER

public constant
include sort.e
namespace stdsort

custom_sort

sorts the elements of a sequence according to a user-defined order.
Signature:

custom_sort(integer custom_compare, sequence x, object data = {},
integer order = NORMAL_ORDER)

public function
include sort.e
namespace stdsort

Arguments: ≡ custom_compare : an integer, the routine-id of the user defined routine that
compares two items which appear in the sequence to sort.
≡ x : the sequence of items to be sorted.
≡ data : an object, either {} (no custom data, the default), an atom or a non-empty
sequence.
≡ order : an integer, either NORMAL_ORDER (the default) or REVERSE_ORDER.

Returns: A sequence, a copy of the original sequence in sorted order

Comments:
• If some user data is being provided, that data must be either an atom or a
sequence with at least one element. NOTE only the first element is passed to the
user defined comparison routine, any other elements are just ignored. The user data

user defined comparison routine, any other elements are just ignored. The user data
is not used or inspected it in any way other than passing it to the user defined
routine.

• The user defined routine must return an integer comparison result
…… ♦ a negative value if object A must appear before object B
…… ♦ a positive value if object B must appear before object A
…… ♦ 0 if the order does not matter > NOTE: The meaning of the value returned by
the user-defined routine is reversed when order = REVERSE_ORDER. The default is
order = NORMAL_ORDER, which sorts in order returned by the custom comparison
routine. <

• When no user data is provided, the user defined routine must accept two objects
(A, B) and return just the comparison result.

• When some user data is provided, the user defined routine must take three objects
(A, B , data). It must return either...
…… ♦ an integer, which is a comparison result
…… ♦ a two-element sequence, in which the first element is a comparison result
and the second element is the updated user data that is to be used for the next call
to the user defined routine.

• The elements of x can be atoms or sequences. Each time that the sort needs to
compare two items in the sequence, it calls the user-defined function to determine
the order.

• This function uses the shell sort algorithm. This sort is not stable; elements that are
considered equal might change position relative to each other.

See Also: compare, sort
Example 1:

constant students = {{"Anne",18}, {"Bob",21},
 {"Chris",16}, {"Diane",23},
 {"Eddy",17}, {"Freya",16},
 {"George",20}, {"Heidi",20},
 {"Ian",19}}
sequence sorted_byage
function byage(object a, object b)
 ----- If the ages are the same,
 -- compare the names otherwise just compare ages.
 if equal(a[2], b[2]) then
 return compare(upper(a[1]), upper(b[1]))
 end if
 return compare(a[2], b[2])
end function

sorted_byage = custom_sort(routine_id("byage"), students)
-- result is {{"Chris",16}, {"Freya",16},
-- {"Eddy",17}, {"Anne",18},
-- {"Ian",19}, {"George",20},
-- {"Heidi",20}, {"Bob",21},
-- {"Diane",23}}

sorted_byage =
 custom_sort(routine_id("byage"), students,, REVERSE_ORDER)
-- result is {{"Diane",23}, {"Bob",21},
-- {"Heidi",20}, {"George",20},
-- {"Ian",19}, {"Anne",18},
-- {"Eddy",17}, {"Freya",16},
-- {"Chris",16}}
--

Example 2:

constant students = {{"Anne","Baxter",18}, {"Bob","Palmer",21},
 {"Chris","du Pont",16},{"Diane","Fry",23},
 {"Eddy","Ammon",17},{"Freya","Brash",16},
 {"George","Gungle",20},{"Heidi","Smith",20},
 {"Ian","Sidebottom",19}}
sequence sorted
function colsort(object a, object b, sequence cols)
 integer sign
 for i = 1 to length(cols) do
 if cols[i] < 0 then
 sign = -1
 cols[i] = -cols[i]
 else
 sign = 1
 end if
 if not equal(a[cols[i]], b[cols[i]]) then
 return sign * compare(upper(a[cols[i]]), upper(b[cols[i]]))
 end if
 end for

 return 0
end function

-- Order is age:descending, Surname, Given Name
sequence column_order = {-3,2,1}
sorted = custom_sort(routine_id("colsort"), students, {column_order})
-- result is
{
 {"Diane","Fry",23},
 {"Bob","Palmer",21},
 {"George","Gungle",20},
 {"Heidi","Smith",20},
 {"Ian","Sidebottom",19},
 {"Anne", "Baxter", 18 },
 {"Eddy","Ammon",17},
 {"Freya","Brash",16},
 {"Chris","du Pont",16}
}

sorted =
 custom_sort(routine_id("colsort"), students,
 {column_order}, REVERSE_ORDER)
-- result is
{
 {"Chris","du Pont",16},
 {"Freya","Brash",16},
 {"Eddy","Ammon",17},
 {"Anne", "Baxter", 18 },
 {"Ian","Sidebottom",19},
 {"Heidi","Smith",20},
 {"George","Gungle",20},
 {"Bob","Palmer",21},
 {"Diane","Fry",23}
}

insertion_sort

sorts a sequence, and optionally another object together.
Signature:

insertion_sort(sequence s, object e = "", integer compfunc = - 1,
object userdata = "")

public function
include sort.e
namespace stdsort

Arguments: ≡ s : a sequence, holding data to be sorted.
≡ e : an object. If this is an atom, it is sorted in with s. If this is a non-empty sequence
then s and e are both sorted independantly using this insertion_sort function and
then the results are merged and returned.

≡ compfunc : an integer, either -1 or the routine id of a user-defined comparision
function.

Returns: A sequence, consisting of s and e sorted together.

Comments:
• This routine is usually a lot faster than the standard sort when s and e are partially
sorted before calling the function. For example, you can use this routine to quickly
add to a sorted list.
• The input sequences do not have to be the same size.
• The user-defined comparision function must accept two objects and return an
integer. It returns -1 if the first object must appear before the second one, and 1 if the
first object must after before the second one, and 0 if the order does not matter.

See Also: compare, sort, merge
Example 1:

sequence X = {}
while true do
 newdata = get_data()
 if compare(-1, newdata) then
 exit
 end if
 X = insertion_sort(X, newdata)
 process(new_data)
end while

merge

Merge two pre-sorted sequences into a single sequence.
Signature:

merge(sequence a, sequence b, integer compfunc = - 1,
object userdata = "")

public function
include sort.e
namespace stdsort

Arguments: ≡ a : a sequence, holding pre-sorted data.
≡ b : a sequence, holding pre-sorted data.
≡ compfunc : an integer, either -1 or the routine id of a user-defined comparision
function.

Returns: A sequence, consisting of a and b merged together.

Comments:
• If a or b is not already sorted, the resulting sequence might not be sorted either.
• The input sequences do not have to be the same size.
• The user-defined comparision function must accept two objects and return an
integer. It returns -1 if the first object must appear before the second one, and 1 if the
first object must after before the second one, and 0 if the order does not matter.

See Also: compare, sort
Example 1:

sequence X,Y
X = sort({5,3,7,1,9,0}) --> {0,1,3,5,7,9}
Y = sort({6,8,10,2}) --> {2,6,8,10}
? merge(X,Y) --> {0,1,2,3,5,6,7,8,9,10}

sort

sorts the elements of a sequence into ascending order.
Signature:

sort(sequence x, integer order = ASCENDING)

public function
include sort.e
namespace stdsort

Arguments: ≡ x : The sequence to be sorted.
≡ order : the sort order. Default is ASCENDING.

Returns: A sequence, a copy of the original sequence in ascending order

Comments: The elements can be atoms or sequences.

The standard compare() routine is used to compare elements. This means that "y is
greater than x" is defined by compare(y, x)=1.

This function uses the shell sort algorithm. This sort is not stable; elements that are
considered equal might change position relative to each other.

See Also: compare, custom_sort
Example 1:

constant student_ages = {18,21,16,23,17,16,20,20,19}
sequence sorted_ages
sorted_ages = sort(student_ages)
-- result is {16,16,17,18,19,20,20,21,23}

sort_columns

sorts the rows in a sequence according to a user-defined
Signature:

sort_columns(sequence x, sequence column_list)

public function
include sort.e
namespace stdsort

Arguments: ≡ x : a sequence, holding the sequences to be sorted.
≡ column_list : a list of columns indexes x is to be sorted by.

Returns: A sequence, a copy of the original sequence in sorted order.

Comments: x must be a sequence of sequences.

A non-existent column is treated as coming before an existing column. This allows
sorting of records that are shorter than the columns in the column list.

By default, columns are sorted in ascending order. To sort in descending order,
make the column number negative.

This function uses the shell sort algorithm. This sort is not stable; elements that are
considered equal might change position relative to each other.

See Also: compare, sort
Example 1:

sequence dirlist
dirlist = dir("c:\\temp")
sequence sorted
-- Order is Size:descending, Name
sorted = sort_columns(dirlist, {-D_SIZE, D_NAME})

stack

Constants
Stack types

FIFO
FILO

Types
stack

Routines
new
is_empty
size
at
push
top
last
pop
peek_top
peek_end
swap
dup
set
clear

stack API

FIFO

FIFO : first item in is first item out (like people standing in line).
Signature:

FIFO

public constant
include stack.e
namespace stack

FILO

FILO: first item in is last item out (like a stack of plates).
Signature:

FILO

public constant
include stack.e
namespace stack

at

fetches a value from the stack without removing it from the stack.
Signature:

at(stack sk, integer idx = 1)

public function
include stack.e
namespace stack

Arguments: ≡ sk : the stack being queried
≡ idx : an integer, the place to inspect. The default is 1 (top item).

Returns: An object, the idx-th item of the stack.

Comments:
• For FIFO stacks (queues), the top item is the oldest item in the stack.
• For FILO stacks, the top item is the newest item in the stack.

idx can be less than 1, in which case it refers relative to the end item. Thus, 0
stands for the end element.

See Also: size, top, peek_top, peek_end
Example 1:

stack sk = new(FILO)

push(sk, 5)
push(sk, "abc")
push(sk, 2.3)

at(sk, 0) --> 5
at(sk, -1) --> "abc"
at(sk, 1) --> 2.3
at(sk, 2) --> "abc"

Example 2:

stack sk = new(FIFO)

push(sk, 5)
push(sk, "abc")
push(sk, 2.3)
at(sk, 0) --> 2.3
at(sk, -1) --> "abc"
at(sk, 1) --> 5
at(sk, 2) --> "abc"

clear

wipes out a stack.
Signature:

clear(stack sk)

public procedure
include stack.e
namespace stack

Arguments: ≡ sk : the stack to clear.

See Also: new, is_empty

dup

repeats the top element of a stack.
Signature:

dup(stack sk)

public procedure
include stack.e
namespace stack

Arguments: ≡ sk : the stack.

Comments:
• For FIFO stacks (queues), the top item is the oldest item in the stack.
• For FILO stacks, the top item is the newest item in the stack.

Example 1:

stack sk = new(FILO)

push(sk,5)
push(sk,"abc")
push(sk, "")

dup(sk)

peek_top(sk,1) --> ""
peek_top(sk,2) --> "abc"
size(sk) --> 3

dup(sk)

peek_top(sk,1) --> ""
peek_top(sk,2) --> ""
peek_top(sk,3) --> "abc"
size(sk) --> 4

Example 1:

stack sk = new(FIFO)

push(sk, 5)
push(sk, "abc")
push(sk, "")

dup(sk)

peek_top(sk, 1) --> 5
peek_top(sk, 2) --> "abc"
size(sk) --> 3

dup(sk)

peek_top(sk, 1) --> 5
peek_top(sk, 2) --> 5
peek_top(sk, 3) --> "abc"
size(sk) --> 4

is_empty

tests if a stack is empty.
Signature:

is_empty(stack sk)

public function
include stack.e
namespace stack

Arguments: ≡ sk : the stack being queried.

Returns: An integer, 1 if the stack is empty, else 0.

See Also: size

last

retrieves the end element on a stack.
Signature:

last(stack sk)

public function
include stack.e
namespace stack

Arguments: ≡ sk : the stack to inspect.

Returns: An object, the end element on a stack.

Comments: This call is equivalent to at(sk,0).

See Also: at, pop, peek_end, top
Example 1:

stack sk = new(FILO)

push(sk,5)
push(sk,"abc")
push(sk, 2.3)

last(sk) --> 5

Example 2:

stack sk = new(FIFO)

push(sk,5)
push(sk,"abc")
push(sk, 2.3)

last(sk) --> 2.3

new

creates a new stack.
Signature:

new(integer typ = FILO)

public function
include stack.e
namespace stack

Arguments: ≡ stack_type : an integer, defining the semantics of the stack. The default is FILO.

Returns: An empty stack, note that the variable storing the stack must not be an integer. The
resources allocated for the stack will be automatically cleaned up if the reference
count of the returned value drops to zero, or if passed in a call to delete.

Comments: There are two sorts of stacks, designated by the types FIFO and FILO:
• A FIFO stack is one where the first item to be pushed is popped first. People
standing in queue form a FIFO stack.
• A FILO stack is one where the item pushed last is popped first. A column of coins is
of the FILO kind.

See Also: is_empty

peek_end

gets an element, relative to the end, from a stack.
Signature:

peek_end(stack sk, integer idx = 1)

public function
include stack.e
namespace stack

Arguments: ≡ sk : the stack to get from.
≡ idx : integer. The n-th item from the end to get from the stack. The default is 1.

Returns: An item, from the stack, which is not removed from the stack.

Comments:
• For FIFO stacks (queues), the end item is the newest item in the stack.
• For FILO stacks, the end item is the oldest item in the stack.

When idx is omitted the 'end' of the stack is returned. When idx is supplied, it
represents the N-th item from the end to be returned. Thus an idx of 2 returns the
2nd item from the end, a value of 3 returns the 3rd item from the end, etc ...

See Also: pop, top, is_empty, size, peek_top
Example 1:

stack sk = new(FIFO)
push(sk, 1)
push(sk, 2)
push(sk, 3)
? peek_end(sk) -- 3
? peek_end(sk,2) -- 2
? peek_end(sk,3) -- 1
? peek_end(sk,4) -- *error*
? peek_end(sk, size(sk)) -- 3 (top item)

Example 2:

stack sk = new(FILO)
push(sk, 1)
push(sk, 2)
push(sk, 3)
? peek_end(sk) -- 1
? peek_end(sk,2) -- 2
? peek_end(sk,3) -- 3
? peek_end(sk,4) -- *error*
? peek_end(sk, size(sk)) -- 3 (top item)

peek_top

gets an element, relative to the top, from a stack.
Signature:

peek_top(stack sk, integer idx = 1)

public function
include stack.e
namespace stack

Arguments: ≡ sk : the stack to get from.
≡ idx : integer. The n-th item to get from the stack. The default is 1.

Returns: An item, from the stack, which is not removed from the stack.

Comments: This is identical to pop except that it does not remove the item.

• For FIFO stacks (queues), the top item is the oldest item in the stack.
• For FILO stacks, the top item is the newest item in the stack.

When idx is omitted the 'top' of the stack is returned. When idx is supplied, it
represents the N-th item from the top to be returned. Thus an idx of 2 returns the 2nd
item from the top, a value of 3 returns the 3rd item from the top, etc ...

See Also: pop, top, is_empty, size, peek_end
Example 1:

stack sk = new(FIFO)
push(sk, 1)
push(sk, 2)
push(sk, 3)
? peek_top(sk) -- 1
? peek_top(sk,2) -- 2
? peek_top(sk,3) -- 3
? peek_top(sk,4) -- *error*
? peek_top(sk, size(sk)) -- 3 (end item)

Example 2:

stack sk = new(FILO)
push(sk, 1)
push(sk, 2)
push(sk, 3)
? peek_top(sk) -- 3
? peek_top(sk,2) -- 2
? peek_top(sk,3) -- 1
? peek_top(sk,4) -- *error*
? peek_top(sk, size(sk)) -- 1 (end item)

pop

removes an element from a stack.
Signature:

pop(stack sk, integer idx = 1)

public function
include stack.e
namespace stack

Arguments: ≡ sk : the stack to pop
≡ idx : integer. The n-th item to pick from the stack. The default is 1.

Returns: An item, from the stack, which is also removed from the stack.

Comments:
• For FIFO stacks (queues), the top item is the oldest item in the stack.
• For FILO stacks, the top item is the newest item in the stack.

When idx is omitted the 'top' of the stack is removed and returned. When idx is
supplied, it represents the N-th item from the top to be removed and returned. Thus
an idx of 2 returns the 2nd item from the top, a value of 3 returns the 3rd item from
the top, etc ...

See Also: push, top, is_empty
Example 1:

stack sk = new(FIFO)
push(sk, 1)
push(sk, 2)
push(sk, 3)
? size(sk) -- 3
? pop(sk) -- 1
? size(sk) -- 2
? pop(sk) -- 2

? size(sk) -- 1
? pop(sk) -- 3
? size(sk) -- 0
? pop(sk) -- *error*

Example 2:

stack sk = new(FILO)
push(sk, 1)
push(sk, 2)
push(sk, 3)
? size(sk) -- 3
? pop(sk) -- 3
? size(sk) -- 2
? pop(sk) -- 2
? size(sk) -- 1
? pop(sk) -- 1
? size(sk) -- 0
? pop(sk) -- *error*

Example 3:

stack sk = new(FILO)
push(sk, 1)
push(sk, 2)
push(sk, 3)
push(sk, 4)
-- stack contains {1,2,3,4} (oldest to newest)
? size(sk) -- 4
? pop(sk, 2) -- Pluck out the 2nd newest item .. 3
? size(sk) -- 3
-- stack now contains {1,2,4}

Example 4:

stack sk = new(FIFO)
push(sk, 1)
push(sk, 2)
push(sk, 3)
push(sk, 4)
-- stack contains {1,2,3,4} (oldest to newest)
? size(sk) -- 4
? pop(sk, 2) -- Pluck out the 2nd oldest item .. 2
? size(sk) -- 3
-- stack now contains {1,3,4}

push

adds an element to a stack.
Signature:

push(stack sk, object value)

public procedure
include stack.e
namespace stack

Arguments: ≡ sk : the stack to augment
≡ value : an object, the value to push.

Comments: value appears at the end of FIFO stacks and the top of FILO stacks. The size of the
stack increases by one.

See Also: pop, top
Example 1:

stack sk = new(FIFO)

push(sk,5)
push(sk,"abc")

push(sk,"abc")
push(sk, 2.3)
top(sk) --> 5
last(sk) --> 2.3

Example 2:

stack sk = new(FILO)

push(sk,5)
push(sk,"abc")
push(sk, 2.3)
top(sk) --> 2.3
last(sk) --> 5

set

updates a value on the stack.
Signature:

set(stack sk, object val, integer idx = 1)

public procedure
include stack.e
namespace stack

Arguments: ≡ sk : the stack being queried
≡ val : an object, the value to place on the stack
≡ idx : an integer, the place to inspect. The default is 1 (the top item)

Comments:
• For FIFO stacks (queues), the top item is the oldest item in the stack.
• For FILO stacks, the top item is the newest item in the stack.

idx can be less than 1, in which case it refers to an element relative to the end of the
stack. Thus, 0 stands for the end element.

See Also: size, top

size

returns the number elements in a stack.
Signature:

size(stack sk)

public function
include stack.e
namespace stack

Arguments: ≡ sk : the stack being queried.

Returns: An integer, the number of elements in sk.

stack

A stack is a sequence of objects with some internal data.
Signature:

stack(object obj_p)

public type
include stack.e

namespace stack

swap

swaps the top two elements of a stack.
Signature:

swap(stack sk)

public procedure
include stack.e
namespace stack

Arguments: ≡ sk : the stack to swap.

Returns: A copy, of the original stack, with the top two elements swapped.

Comments:
• For FIFO stacks (queues), the top item is the oldest item in the stack.
• For FILO stacks, the top item is the newest item in the stack.

Example 1:

stack sk = new(FILO)

push(sk, 5)
push(sk, "abc")
push(sk, 2.3)
push(sk, "")

? peek_top(sk, 1) --> ""
? peek_top(sk, 2) --> 2.3

swap(sk)

? peek_top(sk, 1) --> 2.3
? peek_top(sk, 2) --> ""

Example 2:

stack sk = new(FIFO)

push(sk, 5)
push(sk, "abc")
push(sk, 2.3)
push(sk, "")

peek_top(sk, 1) --> 5
peek_top(sk, 2) --> "abc"

swap(sk)

peek_top(sk, 1) --> "abc"
peek_top(sk, 2) --> 5

top

retrieves the top element on a stack.
Signature:

top(stack sk)

public function
include stack.e
namespace stack

Arguments: ≡ sk : the stack to inspect.

Arguments: ≡ sk : the stack to inspect.

Returns: An object, the top element on a stack.

Comments: This call is equivalent to at(sk,1).

See Also: at, pop, peek_top, last
Example 1:

stack sk = new(FILO)

push(sk, 5)
push(sk, "abc")
push(sk, 2.3)

top(sk) --> 2.3

Example 1:

stack sk = new(FIFO)

push(sk, 5)
push(sk, "abc")
push(sk, 2.3)

top(sk) --> 5

stats

Routines
small
largest
smallest
range
ST_FULLPOP
ST_SAMPLE
ST_ALLNUM
ST_IGNSTR
ST_ZEROSTR
stdev
avedev
sum
count
average
geomean
harmean
movavg
emovavg
median
raw_frequency
mode
central_moment
sum_central_moments
skewness
kurtosis

stats API

ST_ALLNUM

The supplied data consists of only atoms.
Signature:

ST_ALLNUM

public enum
include stats.e
namespace stats

ST_FULLPOP

The supplied data is the entire population.
Signature:

ST_FULLPOP

public enum
include stats.e
namespace stats

ST_IGNSTR

Any sub-sequences (eg. strings) in the supplied data are ignored.
Signature:

ST_IGNSTR

public enum
include stats.e
namespace stats

ST_SAMPLE

The supplied data is only a random sample of the population.
Signature:

ST_SAMPLE

public enum
include stats.e
namespace stats

ST_ZEROSTR

Any sub-sequences (eg. strings) in the supplied data are assumed to
Signature:

ST_ZEROSTR

public enum
include stats.e
namespace stats

avedev

returns the average of the absolute deviations of data points from their mean.
Signature:

avedev(sequence data_set, object subseq_opt = ST_ALLNUM,
integer population_type = ST_SAMPLE)

public function
include stats.e
namespace stats

Arguments: ≡ data_set : a list of 1 or more numbers for which you want the mean of the absolute
deviations.
≡ subseq_opt : an object. When this is ST_ALLNUM (the default) it means that
data_set is assumed to contain no sub-sequences otherwise this gives instructions
about how to treat sub-sequences. See comments for details.
≡ population_type : an integer. ST_SAMPLE (the default) assumes that data_set is
a random sample of the total population. ST_FULLPOP means that data_set is the
entire population.

Returns: An atom , the deviation from the mean.
An empty sequence, means that there is no meaningful data to calculate from.

Comments: avedev() is a measure of the variability in a data set. Its statistical properties are less
well behaved than those of the standard deviation, which is why it is used less.

The numbers in data_set can either be the entire population of values or just a
random subset. You indicate which in the population_type parameter. By default
data_set represents a sample and not the entire population. When using this
function with sample data, the result is an estimated deviation.

If the data can contain sub-sequences, such as strings, you need to let the the
function know about this otherwise it assumes every value in data_set is an
number. If that is not the case then the function will crash. So it is important that if it
can possibly contain sub-sequences that you tell this function what to do with them.
Your choices are to ignore them or assume they have the value zero. To ignore
them, use ST_IGNSTR as the subseq_opt parameter value otherwise use
ST_ZEROSTR. However, if you know that data_set only contains numbers use the
default subseq_opt value, ST_ALLNUM. Note It is faster if the data only contains
numbers.

The equation for absolute average deviation is: avedev(X) ==> SUM(ABS(X{1..N} -
MEAN(X))) / N

Example 1:

? avedev({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,7})
 --> Ans: 1.966666667
? avedev({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,7},, ST_FULLPOP)
 --> Ans: 1.84375
? avedev({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,"text"}, ST_IGNSTR)
 --> Ans: 1.99047619
? avedev({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,"text"}, ST_IGNSTR,ST_FULLPOP)
 --> Ans: 1.857777778
? avedev({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,"text"}, 0)
 --> Ans: 2.225
? avedev({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,"text"}, 0, ST_FULLPOP)
 --> Ans: 2.0859375

average

returns the average (mean) of the data points.

Signature:

average(object data_set, object subseq_opt = ST_ALLNUM)

public function
include stats.e
namespace stats

Arguments: ≡ data_set : A list of 1 or more numbers for which you want the mean.
≡ subseq_opt : an object. When this is ST_ALLNUM (the default) it means that
data_set is assumed to contain no sub-sequences otherwise this gives instructions
about how to treat sub-sequences. See comments for details.

Returns: An object,
• {} (the empty sequence) if there are no atoms in the set.
• an atom (the mean) if there are one or more atoms in the set.

Comments: average() is the theoretical probable value of a randomly selected item from the set.
Example 1:

? average({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,"text"}, ST_IGNSTR)
 Ans: 5.13333333

central_moment

returns the distance between a supplied value and the mean, to some supplied
Signature:

central_moment(sequence data_set, object datum, integer order_mag = 1,
object subseq_opt = ST_ALLNUM)

public function
include stats.e
namespace stats

Arguments: ≡ data_set : a list of 1 or more numbers whose mean is used.
≡ datum: either a single value or a list of values for which you require the central
moments.
≡ order_mag: An integer. This is the order of magnitude required. Usually a number
from 1 to 4, but can be anything.
≡ subseq_opt : an object. When this is ST_ALLNUM (the default) it means that
data_set is assumed to contain no sub-sequences otherwise this gives instructions
about how to treat sub-sequences. See comments for details.

Returns: An object. The same data type as datum. This is the set of calculated central
moments.

Comments: For each of the items in datum, its central moment is calculated as ... CM = power(
ITEM - AVG, MAGNITUDE)

If the data can contain sub-sequences, such as strings, you need to let the the
function know about this otherwise it assumes every value in data_set is an
number. If that is not the case then the function will crash. So it is important that if it
can possibly contain sub-sequences that you tell this function what to do with them.
Your choices are to ignore them or assume they have the value zero. To ignore
them, use ST_IGNSTR as the subseq_opt parameter value otherwise use
ST_ZEROSTR. However, if you know that data_set only contains numbers use the
default subseq_opt value, ST_ALLNUM. Note It is faster if the data only contains
numbers.

Example 1:

central_moment("the cat is the hatter", "the",1)
 --> {23.14285714, 11.14285714, 8.142857143}

central_moment("the cat is the hatter", 't',2)
 --> 535.5918367
central_moment("the cat is the hatter", 't',3)
 --> 12395.12536

count

returns the count of all the atoms in an object.
Signature:

count(object data_set, object subseq_opt = ST_ALLNUM)

public function
include stats.e
namespace stats

Arguments: ≡ data_set : either an atom or a list.
≡ subseq_opt : an object. When this is ST_ALLNUM (the default) it means that
data_set is assumed to contain no sub-sequences otherwise this gives instructions
about how to treat sub-sequences. See comments for details.

Returns: An integer, the number of atoms in the set. When data_set is an atom, 1 is returned.

Comments: This returns the number of numbers in data_set

If the data can contain sub-sequences, such as strings, you need to let the the
function know about this otherwise it assumes every value in data_set is an
number. If that is not the case then the function will crash. So it is important that if it
can possibly contain sub-sequences that you tell this function what to do with them.
Your choices are to ignore them or assume they have the value zero. To ignore
them, use ST_IGNSTR as the subseq_opt parameter value otherwise use
ST_ZEROSTR. However, if you know that data_set only contains numbers use the
default subseq_opt value, ST_ALLNUM. Note It is faster if the data only contains
numbers.

Example 1:

? count({7,2,8.5,6,6,-4.8,6,6,3.341,-8,"text"}) -- Ans: 10
? count({"cat", "dog", "lamb", "cow", "rabbit"}) -- Ans: 0 (no atoms)
? count(5) -- Ans: 1

emovavg

returns the exponential moving average of a set of data points.
Signature:

emovavg(object data_set, atom smoothing_factor)

public function
include stats.e
namespace stats

Arguments: ≡ data_set : a list of 1 or more numbers for which you want a moving average.
≡ smoothing_factor : an atom, the smoothing factor, typically between 0 and 1.

Returns: A sequence, made of the requested averages, or {} if data_set is empty or the
supplied period is less than one.

Comments: A moving average is used to smooth out a set of data points over a period.

The formula used is:
: Yi = Yi-1 + F * (Xi - Yi-1)

Note that only atom elements are included and any sub-sequences elements are

ignored.

The smoothing factor controls how data is smoothed. 0 smooths everything to 0, and
1 means no smoothing at all.

Any value for smoothing_factor outside the 0.0..1.0 range causes
smoothing_factor to be set to the periodic factor (2/(N+1)).

Example 1:

? emovavg({7,2,8,5,6}, 0.75)
 -- Ans: {6.65,3.1625,6.790625,5.44765625,5.861914063}
? emovavg({7,2,8,5,6}, 0.25)
 -- Ans: {5.95,4.9625,5.721875,5.54140625,5.656054687}
? emovavg({7,2,8,5,6}, -1)
 -- Ans: {6.066666667,4.711111111,5.807407407,5.538271605,5.69218107}

geomean

returns the geometric mean of the atoms in a sequence.
Signature:

geomean(object data_set, object subseq_opt = ST_ALLNUM)

public function
include stats.e
namespace stats

Arguments: ≡ data_set : the values to take the geometric mean of.
≡ subseq_opt : an object. When this is ST_ALLNUM (the default) it means that
data_set is assumed to contain no sub-sequences otherwise this gives instructions
about how to treat sub-sequences. See comments for details.

Returns: An atom, the geometric mean of the atoms in data_set. If there is no atom to take
the mean of, 1 is returned.

Comments: The geometric mean of N atoms is the N-th root of their product. Signs are ignored.

This is useful to compute average growth rates.

If the data can contain sub-sequences, such as strings, you need to let the the
function know about this otherwise it assumes every value in data_set is an
number. If that is not the case then the function will crash. So it is important that if it
can possibly contain sub-sequences that you tell this function what to do with them.
Your choices are to ignore them or assume they have the value zero. To ignore
them, use ST_IGNSTR as the subseq_opt parameter value otherwise use
ST_ZEROSTR. However, if you know that data_set only contains numbers use the
default subseq_opt value, ST_ALLNUM. Note It is faster if the data only contains
numbers.

See Also: average
Example 1:

? geomean({3, "abc", -2, 6}, ST_IGNSTR)
 --> prints out power(36,1/3) = 3,30192724889462669
? geomean({1,2,3,4,5,6,7,8,9,10})
 --> = 4.528728688

harmean

returns the harmonic mean of the atoms in a sequence.
Signature:

harmean(sequence data_set, object subseq_opt = ST_ALLNUM)

public function
include stats.e
namespace stats

Arguments: ≡ data_set : the values to take the harmonic mean of.
≡ subseq_opt : an object. When this is ST_ALLNUM (the default) it means that
data_set is assumed to contain no sub-sequences otherwise this gives instructions
about how to treat sub-sequences. See comments for details.

Returns: An atom, the harmonic mean of the atoms in data_set.

Comments: The harmonic mean is the inverse of the average of their inverses.

This is useful in engineering to compute equivalent capacities and resistances.

If the data can contain sub-sequences, such as strings, you need to let the the
function know about this otherwise it assumes every value in data_set is an
number. If that is not the case then the function will crash. So it is important that if it
can possibly contain sub-sequences that you tell this function what to do with them.
Your choices are to ignore them or assume they have the value zero. To ignore
them, use ST_IGNSTR as the subseq_opt parameter value otherwise use
ST_ZEROSTR. However, if you know that data_set only contains numbers use the
default subseq_opt value, ST_ALLNUM. Note It is faster if the data only contains
numbers.

See Also: average
Example 1:

? harmean({3, "abc", -2, 6}, ST_IGNSTR) -- = 0.
? harmean({{2, 3, 4}) -- 3 / (1/2 + 1/3 + 1/4) = 2.769230769

kurtosis

returns a measure of the spread of values in a dataset when compared to a
Signature:

kurtosis(object data_set, object subseq_opt = ST_ALLNUM)

public function
include stats.e
namespace stats

Arguments: ≡ data_set : a list of 1 or more numbers whose kurtosis is required.
≡ subseq_opt : an object. When this is ST_ALLNUM (the default) it means that
data_set is assumed to contain no sub-sequences otherwise this gives instructions
about how to treat sub-sequences. See comments for details.

Returns: An object. If this is an atom it is the kurtosis measure of the data set. Othewise it is a
sequence containing an error integer. The return value {0} indicates that an empty
dataset was passed, {1} indicates that the standard deviation is zero (all values are
the same).

Comments: Generally speaking, a negative return indicates that most of the values are further
from the mean, while positive values indicate that most values are nearer to the
mean.

The larger the magnitude of the returned value, the more the data is 'peaked' or
'flatter' in that direction.

If the data can contain sub-sequences, such as strings, you need to let the the
function know about this otherwise it assumes every value in data_set is an
number. If that is not the case then the function will crash. So it is important that if it
can possibly contain sub-sequences that you tell this function what to do with them.
Your choices are to ignore them or assume they have the value zero. To ignore

them, use ST_IGNSTR as the subseq_opt parameter value otherwise use
ST_ZEROSTR. However, if you know that data_set only contains numbers use the
default subseq_opt value, ST_ALLNUM. Note It is faster if the data only contains
numbers.

Example 1:

kurtosis("thecatisthehatter") --> -1.737889192

largest

returns the largest of the data points that are atoms.
Signature:

largest(object data_set)

public function
include stats.e
namespace stats

Arguments: ≡ data_set : a list of 1 or more numbers among which you want the largest.

Returns: An object, either of:
• an atom (the largest value) if there is at least one atom item in the set

• {} if there is no largest value.

Comments: Any data_set element which is not an atom is ignored.
Example 1:

largest({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,"text"}) -- Ans: 8
largest({"just","text"}) -- Ans: {}

median

returns the mid point of the data points.
Signature:

median(object data_set, object subseq_opt = ST_ALLNUM)

public function
include stats.e
namespace stats

Arguments: ≡ data_set : a list of 1 or more numbers for which you want the mean.
≡ subseq_opt : an object. When this is ST_ALLNUM (the default) it means that
data_set is assumed to contain no sub-sequences otherwise this gives instructions
about how to treat sub-sequences. See comments for details.

Returns: An object, either {} if there are no items in the set, or an atom (the median)
otherwise.

Comments: median() is the item for which half the items are below it and half are above it.

All elements are included; any sequence elements are assumed to have the value
zero.

Example 1:

? median({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,4}) -- Ans: 5

mode

returns the most frequent point or points of the data set.

Signature:

mode(sequence data_set, object subseq_opt = ST_ALLNUM)

public function
include stats.e
namespace stats

Arguments: ≡ data_set : a list of 1 or more numbers for which you want the mode.
≡ subseq_opt : an object. When this is ST_ALLNUM (the default) it means that
data_set is assumed to contain no sub-sequences otherwise this gives instructions
about how to treat sub-sequences. See comments for details.

Returns: A sequence. The list of modal items in the data set.

Comments: It is possible for the mode() to return more than one item when more than one item in
the set has the same highest frequency count.

If the data can contain sub-sequences, such as strings, you need to let the the
function know about this otherwise it assumes every value in data_set is an
number. If that is not the case then the function will crash. So it is important that if it
can possibly contain sub-sequences that you tell this function what to do with them.
Your choices are to ignore them or assume they have the value zero. To ignore
them, use ST_IGNSTR as the subseq_opt parameter value otherwise use
ST_ZEROSTR. However, if you know that data_set only contains numbers use the
default subseq_opt value, ST_ALLNUM. Note It is faster if the data only contains
numbers.

Example 1:

mode({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,4}) -- Ans: {6}
mode({8,2,8,5,6,6,4,8,6,6,3,3,4,1,8,4}) -- Ans: {8,6}

movavg

returns the average (mean) of the data points for overlaping periods. This
Signature:

movavg(object data_set, object period_delta)

public function
include stats.e
namespace stats

Arguments: ≡ data_set : a list of 1 or more numbers for which you want a moving average.
≡ period_delta : an object, either
• an integer representing the size of the period, or
• a list of weightings to apply to the respective period positions.

Returns: A sequence, either the requested averages or {} if the Data sequence is empty or
the supplied period is less than one.

If a list of weights was supplied, the result is a weighted average; otherwise, it is a
simple average.

Comments: A moving average is used to smooth out a set of data points over a period.
For example, given a period of 5: # the first returned element is the average of the
first five data points [1..5], # the second returned element is the average of the
second five data points [2..6],
and so on
until the last returned value is the average of the last 5 data points [$-4 .. $].

When period_delta is an atom, it is rounded down to the width of the average.
When it is a sequence, the width is its length. If there are not enough data points,

zeroes are inserted.

Note that only atom elements are included and any sub-sequence elements are
ignored.

Example 1:

? movavg({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8}, 10)
 -- Ans: {5.8, 5.4, 5.5, 5.1, 4.7, 4.9}
? movavg({7,2,8,5,6}, 2)
 -- Ans: {4.5, 5, 6.5, 5.5}
? movavg({7,2,8,5,6}, {0.5, 1.5})
 -- Ans: {3.25, 6.5, 5.75, 5.75}

range

determines a number of range statistics for the data set.
Signature:

range(object data_set)

public function
include stats.e
namespace stats

Arguments: ≡ data_set : a list of 1 or more numbers for which you want the range data.

Returns: A sequence, empty if no atoms were found, else like {Lowest, Highest, Range, Mid-
range}

Comments: Any sequence element in data_set is ignored.
Example 1:

? range({7,2,8,5,6,6,4,8,6,16,3,3,4,1,8,"text"}) -- Ans: {1, 16, 15, 8.5}

raw_frequency

returns the frequency of each unique item in the data set.
Signature:

raw_frequency(object data_set, object subseq_opt = ST_ALLNUM)

public function
include stats.e
namespace stats

Arguments: ≡ data_set : a list of 1 or more numbers for which you want the frequencies.
≡ subseq_opt : an object. When this is ST_ALLNUM (the default) it means that
data_set is assumed to contain no sub-sequences otherwise this gives instructions
about how to treat sub-sequences. See comments for details.

Returns: A sequence. This will contain zero or more 2-element sub-sequences. The first
element is the frequency count and the second element is the data item that was
counted. The returned values are in descending order, meaning that the highest
frequencies are at the beginning of the returned list.

Comments: If the data can contain sub-sequences, such as strings, you need to let the the
function know about this otherwise it assumes every value in data_set is an
number. If that is not the case then the function will crash. So it is important that if it
can possibly contain sub-sequences that you tell this function what to do with them.
Your choices are to ignore them or assume they have the value zero. To ignore
them, use ST_IGNSTR as the subseq_opt parameter value otherwise use
ST_ZEROSTR. However, if you know that data_set only contains numbers use the
default subseq_opt value, ST_ALLNUM. Note It is faster if the data only contains

numbers.
Example 1:

? raw_frequency("the cat is the hatter")

This returns

{
{5,116},
{4,32},
{3,104},
{3,101},
{2,97},
{1,115},
{1,114},
{1,105},
{1,99}
}

skewness

returns a measure of the asymmetry of a data set.
Signature:

skewness(object data_set, object subseq_opt = ST_ALLNUM)

public function
include stats.e
namespace stats

Arguments: ≡ data_set : a list of 1 or more numbers whose mean is used.
≡ subseq_opt : an object. When this is ST_ALLNUM (the default) it means that
data_set is assumed to contain no sub-sequences otherwise this gives instructions
about how to treat sub-sequences. See comments for details.

Returns: An atom. The skewness measure of the data set.

Comments: Usually the data_set is a probablity distribution but it can be anything. This value is
used to assess how suitable the data set is in representing the required analysis. It
can help detect if there are too many extreme values in the data set.

Generally speaking, a negative return indicates that most of the values are lower
than the mean, while positive values indicate that most values are greater than the
mean. However this might not be the case when there are a few extreme values on
one side of the mean.

The larger the magnitude of the returned value, the more the data is skewed in that
direction.

A returned value of zero indicates that the mean and median values are identical
and that the data is symmetrical.

If the data can contain sub-sequences, such as strings, you need to let the the
function know about this otherwise it assumes every value in data_set is an
number. If that is not the case then the function will crash. So it is important that if it
can possibly contain sub-sequences that you tell this function what to do with them.
Your choices are to ignore them or assume they have the value zero. To ignore
them, use ST_IGNSTR as the subseq_opt parameter value otherwise use
ST_ZEROSTR. However, if you know that data_set only contains numbers use the
default subseq_opt value, ST_ALLNUM. Note It is faster if the data only contains
numbers.

Example 1:

skewness("the cat is the hatter") --> -1.36166186
skewness("thecatisthehatter") --> 0.1093730315

small

returns the index for the k-th smallest value from the supplied set of numbers.
Signature:

small(sequence data_set, integer ordinal_idx)

public function
include stats.e
namespace stats

Arguments: ≡ data_set : The list of values from which the smallest value is chosen.
≡ ordinal_idx : The relative index of the desired smallest value.

Returns: A sequence, {The k-th smallest value, its index in the set}

Comments: small() is used to return a value based on its size relative to all the other elements in
the sequence. When index is 1, the smallest index is returned. Use index =
length(data_set) to return the highest.

If ordinal_idx is less than one, or greater then length of data_set, an empty
sequence is returned.

The set of values does not have to be in any particular order. The values may be
any Euphoria object.

Example 1:

small({4,5,6,8,5,4,3,"text"}, 3)
--> Ans: {4,1} (The 3rd smallest value)
small({4,5,6,8,5,4,3,"text"}, 1)
--> Ans: {3,7} (The 1st smallest value)
small({4,5,6,8,5,4,3,"text"}, 7)
--> Ans: {8,4} (The 7th smallest value)
small({"def", "qwe", "abc", "try"}, 2)
--> Ans: {"def", 1} (The 2nd smallest value)
small({1,2,3,4}, -1)
--> Ans: {} -- no-value
small({1,2,3,4}, 10)
--> Ans: {} -- no-value

smallest

returns the smallest of the data points.
Signature:

smallest(object data_set)

public function
include stats.e
namespace stats

Arguments: ≡ data_set : A list of 1 or more numbers for which you want the smallest. Note: only
atom elements are included and any sub-sequences elements are ignored.

Returns: An object, either of:
• an atom (the smallest value) if there is at least one atom item in the set

• {} if there is no largest value.

Comments: Any data_set element which is not an atom is ignored.
Example 1:

? smallest({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,"text"}) -- Ans: 1
? smallest({"just","text"}) -- Ans: {}

stdev

returns the standard deviation based of the population.
Signature:

stdev(sequence data_set, object subseq_opt = ST_ALLNUM,
integer population_type = ST_SAMPLE)

public function
include stats.e
namespace stats

Arguments: ≡ data_set : a list of 1 or more numbers for which you want the estimated standard
deviation.
≡ subseq_opt : an object. When this is ST_ALLNUM (the default) it means that
data_set is assumed to contain no sub-sequences otherwise this gives instructions
about how to treat sub-sequences. See comments for details.
≡ population_type : an integer. ST_SAMPLE (the default) assumes that data_set is
a random sample of the total population. ST_FULLPOP means that data_set is the
entire population.

Returns: An atom, the estimated standard deviation. An empty sequence means that there is
no meaningful data to calculate from.

Comments: stdev() is a measure of how values are different from the average.

The numbers in data_set can either be the entire population of values or just a
random subset. You indicate which in the population_type parameter. By default
data_set represents a sample and not the entire population. When using this
function with sample data, the result is an estimated standard deviation.

If the data can contain sub-sequences, such as strings, you need to let the the
function know about this otherwise it assumes every value in data_set is an
number. If that is not the case then the function will crash. So it is important that if it
can possibly contain sub-sequences that you tell this function what to do with them.
Your choices are to ignore them or assume they have the value zero. To ignore
them, use ST_IGNSTR as the subseq_opt parameter value otherwise use
ST_ZEROSTR. However, if you know that data_set only contains numbers use the
default subseq_opt value, ST_ALLNUM. Note It is faster if the data only contains
numbers.

Example 1:

? stdev({4,5,6,7,5,4,3,7}) -- Ans: 1.457737974
? stdev({4,5,6,7,5,4,3,7} ,, ST_FULLPOP) -- Ans: 1.363589014
? stdev({4,5,6,7,5,4,3,"text"} , ST_IGNSTR) -- Ans: 1.345185418
? stdev({4,5,6,7,5,4,3,"text"}, ST_IGNSTR, ST_FULLPOP) -- Ans: 1.245399698
? stdev({4,5,6,7,5,4,3,"text"} , 0) -- Ans: 2.121320344
? stdev({4,5,6,7,5,4,3,"text"}, 0, ST_FULLPOP) -- Ans: 1.984313483

sum

returns the sum of all the atoms in an object.
Signature:

sum(object data_set, object subseq_opt = ST_ALLNUM)

public function
include stats.e
namespace stats

Arguments: ≡ data_set : Either an atom or a list of numbers to sum.
≡ subseq_opt : an object. When this is ST_ALLNUM (the default) it means that
data_set is assumed to contain no sub-sequences otherwise this gives instructions
about how to treat sub-sequences. See comments for details.

Returns: An atom, the sum of the set.

Comments: sum() is used as a measure of the magnitude of a sequence of positive values.

If the data can contain sub-sequences, such as strings, you need to let the the
function know about this otherwise it assumes every value in data_set is an
number. If that is not the case then the function will crash. So it is important that if it
can possibly contain sub-sequences that you tell this function what to do with them.
Your choices are to ignore them or assume they have the value zero. To ignore
them, use ST_IGNSTR as the subseq_opt parameter value otherwise use
ST_ZEROSTR. However, if you know that data_set only contains numbers use the
default subseq_opt value, ST_ALLNUM. Note It is faster if the data only contains
numbers.

The equation is:

sum(X) ==> SUM(X{1..N})
Example 1:

? sum({7,2,8.5,6,6,-4.8,6,6,3.341,-8,"text"}, 0) -- Ans: 32.041

sum_central_moments

returns sum of the central moments of each item in a data set.
Signature:

sum_central_moments(object data_set, integer order_mag = 1,
object subseq_opt = ST_ALLNUM)

public function
include stats.e
namespace stats

Arguments: ≡ data_set : a list of 1 or more numbers whose mean is used.
≡ order_mag: An integer. This is the order of magnitude required. Usually a number
from 1 to 4, but can be anything.
≡ subseq_opt : an object. When this is ST_ALLNUM (the default) it means that
data_set is assumed to contain no sub-sequences otherwise this gives instructions
about how to treat sub-sequences. See comments for details.

Returns: An atom. The total of the central moments calculated for each of the items in
data_set.

Comments: If the data can contain sub-sequences, such as strings, you need to let the the
function know about this otherwise it assumes every value in data_set is an
number. If that is not the case then the function will crash. So it is important that if it
can possibly contain sub-sequences that you tell this function what to do with them.
Your choices are to ignore them or assume they have the value zero. To ignore
them, use ST_IGNSTR as the subseq_opt parameter value otherwise use
ST_ZEROSTR. However, if you know that data_set only contains numbers use the
default subseq_opt value, ST_ALLNUM. Note It is faster if the data only contains
numbers.

Example 1:

sum_central_moments("the cat is the hatter", 1) --> -8.526512829e-14
sum_central_moments("the cat is the hatter", 2) --> 19220.57143
sum_central_moments("the cat is the hatter", 3) --> -811341.551
sum_central_moments("the cat is the hatter", 4) --> 56824083.71

task

General Notes
Warning
Routines

task_delay
task_clock_start
task_clock_stop
task_create
task_list
task_schedule
task_self
task_status
task_suspend
task_yield

General Notes

For a complete overview of the task system, please see the mini-guide Multitasking in Euphoria.

task API

task_clock_start

restarts the clock used for scheduling real-time tasks.
Signature:

task_clock_start()

<built-in> procedure

Comments: Call this routine, some time after calling task_clock_stop(), when you want
scheduling of real-time tasks to continue.

task_clock_stop() and task_clock_start() can be used to freeze the scheduling of
real-time tasks.

task_clock_start() causes the scheduled times of all real-time tasks to be
incremented by the amount of time since task_clock_stop() was called. This allows
a game, simulation, or other program to continue smoothly.

Time-shared tasks are not affected.

See Also: task_clock_stop, task_schedule, task_yield, task_suspend, task_delay
Example 1:

-- freeze the game while the player answers the phone
task_clock_stop()
while get_key() = -1 do
end while
task_clock_start()

task_clock_stop

unresolved.html

stops the scheduling of real-time tasks.
Signature:

task_clock_stop()

<built-in> procedure

Comments: Call task_clock_stop() when you want to take time out from scheduling real-time
tasks. For instance, you want to temporarily suspend a game or simulation for a
period of time.

Scheduling will resume when task_clock_start() is called.

Time-shared tasks can continue. The current task can also continue, unless it is a
real-time task and it yields.

The time() function is not affected by this.

See Also: task_clock_start, task_schedule, task_yield, task_suspend, task_delay

task_create

creates a new task, given a home procedure and the arguments passed to it.
Signature:

task_create(integer rid, sequence args)

<built-in> function

Arguments: ≡ rid : an integer, the routine_id of a user-defined Euphoria procedure.
≡ args : a sequence, the list of arguments that will be passed to this procedure when
the task starts executing.

Returns: An atom, a task identifier, created by the system. It can be used to identify this task
to the other Euphoria multitasking routines.

Comments: task_create() creates a new task, but does not start it executing. You must call
task_schedule() for this purpose.

Each task has its own set of private variables and its own call stack. Global and
local variables are shared between all tasks.

If a run-time error is detected, the traceback will include information on all tasks, with
the offending task listed first.

Many tasks can be created that all run the same procedure, possibly with different
parameters.

A task cannot be based on a function, since there would be no way of using the
function result.

Each task id is unique. task_create() never returns the same task id as it did before.
Task id's are integer-valued atoms and can be as large as the largest integer-valued
atom (15 digits).

See Also: task_schedule, task_yield, task_suspend, task_self
Example 1:

mytask = task_create(routine_id("myproc"), {5, 9, "ABC"})

task_delay

suspends a task for a short period, allowing other tasks to run in the meantime.
Signature:

task_delay(atom delaytime)

public procedure
include task.e
namespace task

Arguments: ≡ delaytime : an atom, the duration of the delay in seconds.

Comments: This procedure is similar to sleep(), but allows for other tasks to run by yielding on a
regular basis. Like sleep(), its argument needs not being an integer.

See Also: sleep

task_list

gets a sequence containing the task id's for all active or suspended tasks.
Signature:

task_list()

<built-in> function

Returns: A sequence, of atoms, the list of all task that are or may be scheduled.

Comments: This function lets you find out which tasks currently exist. Tasks that have
terminated are not included. You can pass a task id to task_status() to find out more
about a particular task.

See Also: task_status, task_create, task_schedule, task_yield, task_suspend
Example 1:

sequence tasks

tasks = task_list()
for i = 1 to length(tasks) do
 if task_status(tasks[i]) > 0 then
 printf(1, "task %d is active\n", tasks[i])
 end if
end for

task_schedule

schedules a task to run using a scheduling parameter.
Signature:

task_schedule(atom task_id, object schedule)

<built-in> procedure

Arguments: ≡ task_id : an atom, the identifier of a task that did not terminate yet.
≡ schedule : an object, describing when and how often to run the task.

Comments: task_id must have been returned by task_create().

The task scheduler, which is built-in to the Euphoria run-time system, will use
schedule as a guide when scheduling this task. It may not always be possible to
achieve the desired number of consecutive runs, or the desired time frame. For
instance, a task might take so long before yielding control, that another task misses
its desired time window.

schedule is being interpreted as follows:

schedule is an integer:

This defines task_id as time shared, and tells the task scheduler how many times it
should the task in one burst before it considers running other tasks. schedule must
be greater than zero then.

Increasing this count will increase the percentage of CPU time given to the selected
task, while decreasing the percentage given to other time-shared tasks. Use trial
and error to find the optimal trade off. It will also increase the efficiency of the
program, since each actual task switch wastes a bit of time.

schedule is a sequence:

In this case, it must be a pair of positive atoms, the first one not being less than the
second one. This defines task_id as a real time task. The pair states the minimum
and maximum times, in seconds, to wait before running the task. The pair also sets
the time interval for subsequent runs of the task, until the next call to
task_schedule() or task_suspend().

Real-time tasks have a higher priority. Time-shared tasks are run when no real-time
task is ready to execute.

-

See Also: task_create, task_yield, task_suspend
Example 1:

-- Task t1 will be executed up to 10 times in a row before
-- other time-shared tasks are given control. If a real-time
-- task needs control, t1 will lose control to the real-time task.
task_schedule(t1, 10)

-- Task t2 will be scheduled to run some time between 4 and 5 seconds
-- from now. Barring any rescheduling of t2, it will continue to
-- execute every 4 to 5 seconds thereafter.
task_schedule(t2, {4, 5})

task_self

returns the task id of the current task.
Signature:

task_self()

<built-in> function

Comments: This value may be needed, if a task wants to schedule or suspend itself.

See Also: task_create, task_schedule, task_yield, task_suspend
Example 1:

-- schedule self
task_schedule(task_self(), {5.9, 6.0})

task_status

returns the status of a task.
Signature:

task_status(atom task_id)

<built-in> function

Arguments: ≡ task_id : an atom, the id of the task being queried.

Returns: An integer,
• -1 -- task does not exist, or terminated
• 0 -- task is suspended
• 1 -- task is active

Comments: A task might want to know the status of one or more other tasks when deciding
whether to proceed with some processing.

See Also: task_list, task_create, task_schedule, task_suspend
Example 1:

integer s

s = task_status(tid)
if s = 1 then
 puts(1, "ACTIVE\n")
elsif s = 0 then
 puts(1, "SUSPENDED\n")
else
 puts(1, "DOESN'T EXIST\n")
end if

task_suspend

suspends execution of a task.
Signature:

task_suspend(atom task_id)

<built-in> procedure

Arguments: ≡ task_id : an atom, the id of the task to suspend.

Comments: A suspended task will not be executed again unless there is a call to
task_schedule() for the task.

task_id is a task id returned from task_create(). - Any task can suspend any other
task. If a task suspends itself, the suspension will start as soon as the task calls
task_yield().

Suspending a task and never scheduling it again is how to kill a task. There is no
task_kill() primitives because undead tasks were creating too much trouble and
confusion. As a general fact, nothing that impacts a running task can be effective as
long as the task has not yielded.

See Also: task_create, task_schedule, task_self, task_yield
Example 1:

-- suspend task 15
task_suspend(15)

-- suspend current task
task_suspend(task_self())

task_yield

yields control to the scheduler.
Signature:

task_yield()

<built-in> procedure

Comments: The scheduler can then choose another task to run, or perhaps let the current task
continue running.

Tasks should call task_yield() periodically so other tasks will have a chance to run.
Only when task_yield() is called, is there a way for the scheduler to take back
control from a task. This is what is known as cooperative multitasking.

A task can have calls to task_yield() in many different places in its code, and at any
depth of subroutine call.

The scheduler will use the current scheduling parameter (see task_schedule), in
determining when to return to the current task.

When control returns, execution will continue with the statement that follows
task_yield(). The call-stack and all private variables will remain as they were when
task_yield() was called. Global and local variables may have changed, due to the
execution of other tasks.

Tasks should try to call task_yield() often enough to avoid causing real-time tasks
to miss their time window, and to avoid blocking time-shared tasks for an excessive
period of time. On the other hand, there is a bit of overhead in calling task_yield(),
and this overhead is slightly larger when an actual switch to a different task takes
place. A task_yield() where the same task continues executing takes less time.

A task should avoid calling task_yield() when it is in the middle of a delicate
operation that requires exclusive access to some data. Otherwise a race condition
could occur, where one task might interfere with an operation being carried out by
another task. In some cases a task might need to mark some data as "locked" or
"unlocked" in order to prevent this possibility. With cooperative multitasking, these
concurrency issues are much less of a problem than with the preemptive
multitasking that other languages support.

See Also: task_create, task_schedule, task_suspend
Example 1:

-- From Language war game.
-- This small task deducts life support energy from either the
-- large Euphoria ship or the small shuttle.
-- It seems to run "forever" in an infinite loop,
-- but it's actually a real-time task that is called
-- every 1.7 to 1.8 seconds throughout the game.
-- It deducts either 3 units or 13 units of life support energy each time.

procedure task_life()
-- independent task: subtract life support energy
 while TRUE do
 if shuttle then
 p_energy(-3)
 else
 p_energy(-13)
 end if
 task_yield()
 end while
end procedure

text

Routines
sprintf
sprint

trim_head
trim_tail
trim
set_encoding_properties
get_encoding_properties
lower
upper
proper
keyvalues
escape
quote
dequote
format
wrap

text API

dequote

removes 'quotation' text from the argument.
Signature:

dequote(sequence text_in, object quote_pairs = {{"\"", "\""}},
integer esc = - 1)

public function
include text.e
namespace text

Arguments: ≡ text_in : The string or set of strings to de-quote.
≡ quote_pairs : A set of one or more sub-sequences of two strings, or an atom
representing a single character to be used as both the open and close quotes. The
first string in each sub-sequence is the opening quote to look for, and the second
string is the closing quote. The default is "\"", "\"" which means that the output is
'quoted' if it is enclosed by double-quotation marks.
≡ esc : A single escape character. If this is not negative (the default), then this is
used to 'escape' any embedded occurrences of the quote characters. In which case
the 'escape' character is also removed.

Returns: A sequence, the original text but with 'quote' strings stripped of quotes.
Example 1:

-- Using the defaults.
s = dequote("\"The small man\"")
-- 's' now contains "The small man"

Example 2:

-- Using the defaults.
s = dequote("(The small ?(?) man)", {{"(",")"}}, '?')
-- 's' now contains "The small () man"

escape

escapes special characters in a string.
Signature:

escape(sequence s, sequence what = "\"")

public function
include text.e
namespace text

Arguments: ≡ s: string to escape
≡ what: sequence of characters to escape defaults to escaping a double quote.

Returns: An escaped sequence representing s.

See Also: quote
Example 1:

sequence s = escape("John \"Mc\" Doe")
puts(1, s)
-- output is: John \"Mc\" Doe

format

formats a set of arguments into a string based on a supplied pattern.
Signature:

format(sequence format_pattern, object arg_list = {})

public function
include text.e
namespace text

Arguments: ≡ format_pattern : A sequence: the pattern string that contains zero or more tokens.
≡ arg_list : An object: Zero or more arguments used in token replacement.

Returns: A string sequence, the original format_pattern but with tokens replaced by
corresponding arguments.

Comments: The format_pattern string contains text and argument tokens. The resulting string is
the same as the format string except that each token is replaced by an item from the
argument list.

A token has the form [<Q>], where <Q> is are optional qualifier codes.

The qualifier. <Q> is a set of zero or more codes that modify the default way that the
argument is used to replace the token. The default replacement method is to convert
the argument to its shortest string representation and use that to replace the token.
This may be modified by the following codes, which can occur in any order.

Clearly, certain combinations of these qualifier codes do not make sense and in
those situations, the rightmost clashing code is used and the others are ignored.

Any tokens in the format that have no corresponding argument are simply removed
from the result. Any arguments that are not used in the result are ignored.

Any sequence argument that is not a string will be converted to its pretty format
before being used in token replacement.

If a token is going to be replaced by a zero-length argument, all white space
following the token until the next non-whitespace character is not copied to the
result string.

Qualifiers:
Qualifier Usage
N ('N' is an integer) The index of the argument to use

{id} Uses the argument that begins with "id=" where "id" is an identifier
name.

%envvar% Uses the Environment Symbol 'envar' as an argument
w For string arguments, if capitalizes the first letter in each word
u For string arguments, it converts it to upper case.
l For string arguments, it converts it to lower case.
< For numeric arguments, it left justifies it.
> For string arguments, it right justifies it.
c Centers the argument.
z For numbers, it zero fills the left side.

:S ('S' is an integer) The maximum size of the resulting field. Also, if 'S'
begins with '0' the field will be zero-filled if the argument is an integer

.N ('N' is an integer) The number of digits after the decimal point
+ For positive numbers, show a leading plus sign
(For negative numbers, enclose them in parentheses
b For numbers, causes zero to be all blanks

s If the resulting field would otherwise be zero length, this ensures that at
least one space occurs between this token's field

t After token replacement, the resulting string up to this point is trimmed.
X Outputs integer arguments using hexadecimal digits.
B Outputs integer arguments using binary digits.

?
The corresponding argument is a set of two strings. This uses the first
string if the previous token's argument is not the value 1 or a zero-
length string, otherwise it uses the second string.

[Does not use any argument. Outputs a left-square-bracket symbol

,X

Insert thousands separators. The <X> is the character to use. If this is a
dot "." then the decimal point is rendered using a comma. Does not
apply to zero-filled fields. N.B. if hex or binary output was specified, the
separators are every 4 digits otherwise they are every three digits.

T If the argument is a number it is output as a text character, otherwise it
is output as text string

See Also: sprintf
Example 1:

format("Cannot open file '[]' - code []", {"/usr/temp/work.dat", 32})
-- "Cannot open file '/usr/temp/work.dat' - code 32"

format("Err-[2], Cannot open file '[1]'", {"/usr/temp/work.dat", 32})
-- "Err-32, Cannot open file '/usr/temp/work.dat'"

format("[4w] [3z:2] [6] [5l] [2z:2], [1:4]", {2009,4,21,"DAY","MONTH","of"})
-- "Day 21 of month 04, 2009"

format("The answer is [:6.2]%", {35.22341})
-- "The answer is 35.22%"

format("The answer is [.6]", {1.2345})
-- "The answer is 1.234500"

format("The answer is [,,.2]", {1234.56})
-- "The answer is 1,234.56"

format("The answer is [,..2]", {1234.56})
-- "The answer is 1.234,56"

format("The answer is [,:.2]", {1234.56})
-- "The answer is 1:234.56"

format("[] [?]", {5, {"cats", "cat"}})
-- "5 cats"

format("[] [?]", {1, {"cats", "cat"}})
-- "1 cat"

format("[<:4]", {"abcdef"})
-- "abcd"

format("[>:4]", {"abcdef"})
-- "cdef"

format("[>:8]", {"abcdef"})
-- " abcdef"

format("seq is []", {{1.2, 5, "abcdef", {3}}})
-- `seq is {1.2,5,"abcdef",{3}}`

format("Today is [{day}], the [{date}]", {"date=10/Oct/2012", "day=Wednesday"})
-- "Today is Wednesday, the 10/Oct/2012"

format("'A' is [T]", 65)
-- `'A' is A`

get_encoding_properties

gets the table of lowercase and uppercase characters that is used by
Signature:

get_encoding_properties()

public function
include text.e
namespace text

Returns: A sequence, containing three items.
{Encoding_Name, lower case_Set, upper case_Set}

See Also: lower, upper, set_encoding_properties
Example 1:

encode_sets = get_encoding_properties()

keyvalues

converts a string containing Key/Value pairs into a set of
Signature:

keyvalues(sequence source, object pair_delim = ";,",
object kv_delim = ":=", object quotes = "\"'`",
object whitespace = " \t\n\r", integer haskeys = 1)

public function
include text.e
namespace text

Arguments: ≡ source : a text sequence, containing the representation of the key/values.
≡ pair_delim : an object containing a list of elements that delimit one key/value pair
from the next. The defaults are semi-colon (;) and comma (,).
≡ kv_delim : an object containing a list of elements that delimit the key from its value.
The defaults are colon (:) and equal (=).
≡ quotes : an object containing a list of elements that can be used to enclose either
keys or values that contain delimiters or whitespace. The defaults are double-quote
("), single-quote (') and back-quote (`)
≡ whitespace : an object containing a list of elements that are regarded as
whitespace characters. The defaults are space, tab, new-line, and carriage-return.
≡ haskeys : an integer containing true or false. The default is true. When true, the
kv_delim values are used to separate keys from values, but when false it is
assumed that each 'pair' is actually just a value.

Returns: A sequence, of pairs. Each pair is in the form {key, value}.

LowerCase.html
UpperCase.html

Comments: String representations of atoms are not converted, either in the key or value part, but
returned as any regular string instead.

If haskeys is true, but a substring only holds what appears to be a value, the key is
synthesized as p[n], where n is the number of the pair. See example #2.

By default, pairs can be delimited by either a comma or semi-colon ",;" and a key is
delimited from its value by either an equal or a colon "=:". Whitespace between
pairs, and between delimiters is ignored.

If you need to have one of the delimiters in the value data, enclose it in quotation
marks. You can use any of single, double and back quotes, which also means you
can quote quotation marks themselves. See example #3.

It is possible that the value data itself is a nested set of pairs. To do this enclose the
value in parentheses. Nested sets can nested to any level. See example #4.

If a sub-list has only data values and not keys, enclose it in either braces or square
brackets. See example #5. If you need to have a bracket as the first character in a
data value, prefix it with a tilde. Actually a leading tilde will always just be stripped
off regardless of what it prefixes. See example #6.

Example 1:

s= keyvalues("foo=bar, qwe=1234, asdf='contains space, comma, and equal(=)'")
-- s is
-- {
-- {"foo", "bar"},
-- {"qwe", "1234"},
-- {"asdf", "contains space, comma, and equal(=)"}
-- }

Example 2:

s = keyvalues("abc fgh=ijk def")
-- s is { {"p[1]", "abc"}, {"fgh", "ijk"}, {"p[3]", "def"} }

Example 3:

s = keyvalues("abc=`'quoted'`")
-- s is { {"abc", "'quoted'"} }

Example 4:

s = keyvalues("colors=(a=black, b=blue, c=red)")
-- s is { {"colors", {{"a", "black"}, {"b", "blue"},{"c", "red"}} } }
s = keyvalues("colors=(black=[0,0,0], blue=[0,0,FF], red=[FF,0,0])")
-- s is
-- { {"colors",
-- {{"black",{"0", "0", "0"}},
-- {"blue",{"0", "0", "FF"}},
-- {"red", {"FF","0","0"}}}} }

Example 5:

s = keyvalues("colors=[black, blue, red]")
-- s is { {"colors", { "black", "blue", "red"} } }

Example 6:

s = keyvalues("colors=~[black, blue, red]")
-- s is { {"colors", "[black, blue, red]"} } }
-- The following is another way to do the same.
s = keyvalues("colors=`[black, blue, red]`")
-- s is { {"colors", "[black, blue, red]"} } }

lower

converts an atom or sequence to lower case.
Signature:

lower(object x)

public function
include text.e
namespace text

Arguments: ≡ x : Any Euphoria object.

Returns: A sequence, the lowercase version of x

Comments:
• For windows systems this uses the current code page for conversion
• For unix systems this only works on ASCII characters. It alters characters in the
'a'..'z' range. If you need to do case conversion with other encodings use the
set_encoding_properties first.
• x may be a sequence of any shape, all atoms of which will be acted upon.

Warning:

When using ASCII encoding, this can also affect floating point numbers in the range 65 to 90.

See Also: upper, proper, set_encoding_properties, get_encoding_properties
Example 1:

s = lower("Euphoria")
-- s is "euphoria"

a = lower('B')
-- a is 'b'

s = lower({"Euphoria", "Programming"})
-- s is {"euphoria", "programming"}

proper

converts a text sequence to capitalized words.
Signature:

proper(sequence x)

public function
include text.e
namespace text

Arguments: ≡ x : A text sequence.

Returns: A sequence, the Capitalized Version of x

Comments: A text sequence is one in which all elements are either characters or text
sequences. This means that if a non-character is found in the input, it is not
converted. However this rule only applies to elements on the same level, meaning
that sub-sequences could be converted if they are actually text sequences.

See Also: lower upper
Example 1:

s = proper("euphoria programming language")
-- s is "Euphoria Programming Language"
s = proper("EUPHORIA PROGRAMMING LANGUAGE")
-- s is "Euphoria Programming Language"
s = proper({"EUPHORIA PROGRAMMING", "language", "rapid dEPLOYMENT", "sOfTwArE"})
-- s is {"Euphoria Programming", "Language", "Rapid Deployment", "Software"}
s = proper({'a', 'b', 'c'})

-- s is {'A', 'b', c'} -- "Abc"
s = proper({'a', 'b', 'c', 3.1472})
-- s is {'a', 'b', c', 3.1472} -- Unchanged because it contains a non-character.
s = proper({"abc", 3.1472})
-- s is {"Abc", 3.1472} -- The embedded text sequence is converted.

quote

returns a quoted version of the first argument.
Signature:

quote(sequence text_in, object quote_pair = {"\"", "\""},
integer esc = - 1, t_text sp = "")

public function
include text.e
namespace text

Arguments: ≡ text_in : The string or set of strings to quote.
≡ quote_pair : A sequence of two strings. The first string is the opening quote to
use, and the second string is the closing quote to use. The default is {"\"", "\""} which
means that the output will be enclosed by double-quotation marks.
≡ esc : A single escape character. If this is not negative (the default), then this is
used to 'escape' any embedded quote characters and 'esc' characters already in the
text_in string.
≡ sp : A list of zero or more special characters. The text_in is only quoted if it
contains any of the special characters. The default is "" which means that the
text_in is always quoted.

Returns: A sequence, the quoted version of text_in.

See Also: escape
Example 1:

-- Using the defaults. Output enclosed in double-quotes, no escapes and no specials.
s = quote("The small man")
-- 's' now contains '"the small man"' including the double-quote characters.

Example 2:

s = quote("The small man", {"(", ")"})
-- 's' now contains '(the small man)'

Example 3:

s = quote("The (small) man", {"(", ")"}, '~')
-- 's' now contains '(The ~(small~) man)'

Example 4:

s = quote("The (small) man", {"(", ")"}, '~', "#")
-- 's' now contains "the (small) man"
-- because the input did not contain a '#' character.

Example 5:

s = quote("The #1 (small) man", {"(", ")"}, '~', "#")
-- 's' now contains '(the #1 ~(small~) man)'
-- because the input did contain a '#' character.

Example 6:

-- input is a set of strings...
s = quote({"a b c", "def", "g hi"},)
-- 's' now contains three quoted strings: '"a b c"', '"def"', and '"g hi"'

set_encoding_properties

sets the table of lowercase and uppercase characters that is used by
Signature:

set_encoding_properties(sequence en = "", sequence lc = "",
sequence uc = "")

public procedure
include text.e
namespace text

Arguments: ≡ en : The name of the encoding represented by these character sets
≡ lc : The set of lowercase characters
≡ uc : The set of upper case characters

Comments:
• lc and uc must be the same length.
• If no parameters are given, the default ASCII table is set.

See Also: lower, upper, get_encoding_properties
Example 1:

set_encoding_properties("Elvish", "aeiouy", "AEIOUY")

Example 2:

set_encoding_properties("1251") -- Loads a predefined code page.

sprint

returns the representation of any Euphoria object as a string of characters.
Signature:

sprint(object x)

public function
include text.e
namespace text

Arguments: ≡ x : Any Euphoria object.

Returns: A sequence, a string representation of x.

Comments: This is exactly the same as print(fn, x), except that the output is returned as a
sequence of characters, rather than being sent to a file or device. x can be any
Euphoria object.

The atoms contained within x will be displayed to a maximum of ten significant
digits, just as with print().

See Also: sprintf, printf
Example 1:

s = sprint(12345)
-- s is "12345"

Example 2:

s = sprint({10,20,30}+5)
-- s is "{15,25,35}"

sprintf

returns a string sequence based on the format string with embeded values
(analogous to printf).

Signature:

sprintf(sequence format, object values)

<built-in> function

Arguments: ≡ format : a sequence, the text to print. This text may contain format specifiers.
≡ values : usually, a sequence of values. It should have as many elements as format
specifiers in format, as these values will be substituted to the specifiers.

Returns: A sequence, of printable characters, representing format with the values in values
spliced in.

Comments: printf(fn, st, x) is equivalent to puts(fn, sprintf(st, x)).

Some typical uses of sprintf() are:

Converting numbers to strings. # Creating strings to pass to system(). # Creating
formatted error messages that can be passed to a common error message handler.

See Also: printf, sprint, format
Example 1:

s = sprintf("%08d", 12345)
-- s is "00012345"

trim

trim all items in the supplied set from both the left end (head,start) and right end
(tail,end)

Signature:

trim(sequence source, object what = " \t\r\n", integer ret_index = 0)

public function
include text.e
namespace text

Arguments: ≡ source : the sequence to trim.
≡ what : the set of item to trim from source (defaults to " \t\r\n").
≡ ret_index : If zero (the default) returns the trimmed sequence, otherwise it returns
a 2-element sequence containing the index of the leftmost item and rightmost item
not in what.

Returns: A sequence, if ret_index is zero, which is the trimmed version of source
A 2-element sequence, if ret_index is not zero, in the form {left_index, right_index}.

See Also: trim_head, trim_tail
Example 1:

object s
s = trim("\r\nSentence read from a file\r\n", "\r\n")
-- s is "Sentence read from a file"
s = trim("\r\nSentence read from a file\r\n", "\r\n", TRUE)
-- s is {3,27}
s = trim(" This is a sentence.\n") -- Default is to trim off all " \t\r\n"
-- s is "This is a sentence."

trim_head

trims all items in the supplied set from the leftmost (start or head) of a sequence.

Signature:

trim_head(sequence source, object what = " \t\r\n", integer ret_index = 0)

public function
include text.e
namespace text

Arguments: ≡ source : the sequence to trim.
≡ what : the set of item to trim from source (defaults to " \t\r\n").
≡ ret_index : If zero (the default) returns the trimmed sequence, otherwise it returns
the index of the leftmost item not in what.

Returns: A sequence, if ret_index is zero, which is the trimmed version of source
A integer, if ret_index is not zero, which is index of the leftmost element in source
that is not in what.

See Also: trim_tail, trim, pad_head
Example 1:

object s
s = trim_head("\r\nSentence read from a file\r\n", "\r\n")
-- s is "Sentence read from a file\r\n"
s = trim_head("\r\nSentence read from a file\r\n", "\r\n", TRUE)
-- s is 3

trim_tail

trims all items in the supplied set from the rightmost (end or tail) of a sequence.
Signature:

trim_tail(sequence source, object what = " \t\r\n", integer ret_index = 0)

public function
include text.e
namespace text

Arguments: ≡ source : the sequence to trim.
≡ what : the set of item to trim from source (defaults to " \t\r\n").
≡ ret_index : If zero (the default) returns the trimmed sequence, otherwise it returns
the index of the rightmost item not in what.

Returns: A sequence, if ret_index is zero, which is the trimmed version of source
A integer, if ret_index is not zero, which is index of the rightmost element in source
that is not in what.

See Also: trim_head, trim, pad_tail
Example 1:

object s
s = trim_tail("\r\nSentence read from a file\r\n", "\r\n")
-- s is "\r\nSentence read from a file"
s = trim_tail("\r\nSentence read from a file\r\n", "\r\n", TRUE)
-- s is 27

upper

Convert an atom or sequence to upper case.
Signature:

upper(object x)

public function

include text.e
namespace text

Arguments: ≡ x : Any Euphoria object.

Returns: A sequence, the uppercase version of x

Comments:
• For windows systems this uses the current code page for conversion
• For unix this only works on ASCII characters. It alters characters in the 'a'..'z' range.
If you need to do case conversion with other encodings use the
set_encoding_properties first.
• x may be a sequence of any shape, all atoms of which will be acted upon.

Warning:

When using ASCII encoding, this can also affects floating point numbers in the range 97 to 122.

See Also: lower, proper, set_encoding_properties, get_encoding_properties
Example 1:

s = upper("Euphoria")
-- s is "EUPHORIA"

a = upper('b')
-- a is 'B'

s = upper({"Euphoria", "Programming"})
-- s is {"EUPHORIA", "PROGRAMMING"}

wrap

wraps text to a length limit.
Signature:

wrap(sequence content, integer width = 78, sequence wrap_with = "\n",
sequence wrap_at = " \t")

public function
include text.e
namespace text

Arguments:
• content - sequence content to wrap
• width - width to wrap at, defaults to 78
• wrap_with - sequence to wrap with, defaults to "\n"
• wrap_at - sequence of characters to wrap at, defaults to space and tab

Returns: Sequence containing wrapped text
Example 1:

sequence result = wrap("Hello, World")
-- result = "Hello, World"

Example 2:

sequence msg = "Hello, World. Today we are going to learn about apples."
sequence result = wrap(msg, 40)
-- result =
-- "Hello, World. today we are going to\n"
-- "learn about apples."

Example 3:

sequence msg = "Hello, World. Today we are going to learn about apples."
sequence result = wrap(msg, 40, "\n ")
-- result =

-- "Hello, World. today we are going to\n"
-- " learn about apples."

Example 4:

sequence msg = "Hello, World. This, Is, A, Dummy, Sentence, Ok, World?"
sequence result = wrap(msg, 30, "\n", ",")
-- result =
-- "Hello, World. This, Is, A,"
-- "Dummy, Sentence, Ok, World?"

types

OBJ_UNASSIGNED
OBJ_INTEGER
OBJ_ATOM
OBJ_SEQUENCE
object
integer
atom
sequence
FALSE
TRUE

Predefined character sets
CS_FIRST
CS_Consonant
CS_Vowel
CS_Hexadecimal
CS_Whitespace
CS_Punctuation
CS_Printable
CS_Displayable
CS_Lowercase
CS_Uppercase
CS_Alphanumeric
CS_Identifier
CS_Alphabetic
CS_ASCII
CS_Control
CS_Digit
CS_Graphic
CS_Bytes
CS_SpecWord
CS_Boolean
CS_LAST

Support Functions
char_test
set_default_charsets
get_charsets
set_charsets

Types
boolean

t_boolean
t_alnum
t_identifier
t_alpha
t_ascii
t_cntrl
t_digit
t_graph
t_specword
t_bytearray
t_lower
t_print
t_display
t_punct
t_space
t_upper
t_xdigit
t_vowel
t_consonant
integer_array
t_text
number_array
sequence_array
ascii_string
string
cstring
INVALID_ROUTINE_ID
NO_ROUTINE_ID

types API

CS_ASCII

Signature:

CS_ASCII

public enum
include types.e
namespace types

CS_Alphabetic

Signature:

CS_Alphabetic

public enum
include types.e
namespace types

CS_Alphanumeric

Signature:

CS_Alphanumeric

public enum
include types.e
namespace types

CS_Boolean

Signature:

CS_Boolean

public enum
include types.e
namespace types

CS_Bytes

Signature:

CS_Bytes

public enum
include types.e
namespace types

CS_Consonant

Signature:

CS_Consonant

public enum
include types.e
namespace types

CS_Control

Signature:

CS_Control

public enum
include types.e
namespace types

CS_Digit

Signature:

CS_Digit

public enum
include types.e
namespace types

CS_Displayable

Signature:

CS_Displayable

public enum
include types.e
namespace types

CS_FIRST

Signature:

CS_FIRST

public enum
include types.e
namespace types

CS_Graphic

Signature:

CS_Graphic

public enum
include types.e
namespace types

CS_Hexadecimal

Signature:

CS_Hexadecimal

public enum
include types.e
namespace types

CS_Identifier

Signature:

CS_Identifier

public enum
include types.e
namespace types

CS_LAST

Signature:

CS_LAST

public enum
include types.e
namespace types

CS_Lowercase

Signature:

CS_Lowercase

public enum
include types.e
namespace types

CS_Printable

Signature:

CS_Printable

public enum
include types.e
namespace types

CS_Punctuation

Signature:

CS_Punctuation

public enum
include types.e
namespace types

CS_SpecWord

Signature:

CS_SpecWord

public enum
include types.e
namespace types

CS_Uppercase

Signature:

CS_Uppercase

public enum
include types.e
namespace types

CS_Vowel

Signature:

CS_Vowel

public enum
include types.e
namespace types

CS_Whitespace

Signature:

CS_Whitespace

public enum
include types.e
namespace types

FALSE

is a FALSE Boolean value.
Signature:

FALSE

public constant
include types.e
namespace types

INVALID_ROUTINE_ID

indicates no valid routine_id.
Signature:

INVALID_ROUTINE_ID

public constant
include types.e
namespace types

Comments: value returned from routine_id() when the routine does not exist or is out of scope.
this is typically seen as -1 in legacy code.

NO_ROUTINE_ID

a flag for no routine_id
Signature:

NO_ROUTINE_ID

public constant
include types.e
namespace types

Comments: This constant is to be used as a flag for no routine_id() supplied.

OBJ_ATOM

Object is atom
Signature:

OBJ_ATOM

public constant
include types.e
namespace types

OBJ_INTEGER

Object is integer
Signature:

OBJ_INTEGER

public constant
include types.e
namespace types

OBJ_SEQUENCE

Object is sequence
Signature:

OBJ_SEQUENCE

public constant
include types.e
namespace types

OBJ_UNASSIGNED

Object not assigned
Signature:

OBJ_UNASSIGNED

public constant
include types.e
namespace types

TRUE

is a TRUE Boolean value.
Signature:

TRUE

public constant
include types.e
namespace types

ascii_string

tests for ASCII characters.
Signature:

ascii_string(object x)

public type
include types.e
namespace types

Returns: TRUE if argument is a sequence that only contains zero or more ASCII characters.
Example 1:

ascii_string(-1) -- FALSE (not a sequence)
ascii_string("abc") -- TRUE (all single ASCII characters)
ascii_string({1, 2, "abc"}) -- FALSE (contains a sequence)
ascii_string({1, 2, 9.7}) -- FALSE (contains a non-integer)
ascii_string({1, 2, 'a'}) -- TRUE
ascii_string({1, -2, 'a'}) -- FALSE (contains a negative integer)
ascii_string({}) -- TRUE

atom

tests if the supplied argument x to an atom.
Signature:

atom(object x)

<built-in> type

Returns: # An integer.
…… ♦ 1 if x is an atom.
…… ♦ 0 if x is not an atom.

See Also: sequence(), object(), integer()
Example 1:

? atom(1) --> 1
? atom(1.1) --> 1
? atom("1") --> 0

boolean

the Boolean datatype.
Signature:

boolean(object test_data)

public type

include types.e
namespace types

Returns: Returns TRUE if argument is 1 or 0

Returns FALSE if the argument is anything else other than 1 or 0.
Example 1:

boolean(-1) -- FALSE
boolean(0) -- TRUE
boolean(1) -- TRUE
boolean(1.234) -- FALSE
boolean('A') -- FALSE
boolean('9') -- FALSE
boolean('?') -- FALSE
boolean("abc") -- FALSE
boolean("ab3") -- FALSE
boolean({1,2,"abc"}) -- FALSE
boolean({1, 2, 9.7) -- FALSE
boolean({}) -- FALSE (empty sequence)

char_test

determines whether one or more characters are in a given character set.
Signature:

char_test(object test_data, sequence char_set)

public function
include types.e
namespace types

Arguments: ≡ test_data : an object to test, either a character or a string
≡ char_set : a sequence, either a list of allowable characters, or a list of pairs
representing allowable ranges.

Returns: An integer, 1 if all characters are allowed, else 0.

Comments: pCharset is either a simple sequence of characters eg. "qwertyuiop[]
" or a sequence of character pairs, which represent allowable ranges of characters.
eg. Alphabetic is defined as {{'a','z'}, {'A', 'Z'}}

To add an isolated character to a character set which is defined using ranges,
present it as a range of length 1, like in {%,%}.

Example 1:

char_test("ABCD", {{'A', 'D'}})
-- TRUE, every char is in the range 'A' to 'D'

char_test("ABCD", {{'A', 'C'}})
-- FALSE, not every char is in the range 'A' to 'C'

char_test("Harry", {{'a', 'z'}, {'D', 'J'}})
-- TRUE, every char is either in the range 'a' to 'z',
-- or in the range 'D' to 'J'

char_test("Potter", "novel")
-- FALSE, not every character is in the set 'n', 'o', 'v', 'e', 'l'

cstring

tests for string sequences (disallows null character).
Signature:

cstring(object x)

public type
include types.e
namespace types

Returns: TRUE if argument is a sequence that only contains zero or more non-null byte
characters.

Example
1:

cstring(-1) -- FALSE (not a sequence)
cstring("abc'6") -- TRUE (all single byte characters)
cstring({1, 2, "abc'6"}) -- FALSE (contains a sequence)
cstring({1, 2, 9.7}) -- FALSE (contains a non-integer)
cstring({1, 2, 'a'}) -- TRUE
cstring({1, 2, 'a', 0}) -- FALSE (contains a null byte)
cstring({1, -2, 'a'}) -- FALSE (contains a negative integer)
cstring({}) -- TRUE

get_charsets

gets the definition for each of the defined character sets.
Signature:

get_charsets()

public function
include types.e
namespace types

Returns: A sequence, of pairs. The first element of each pair is the character set id , eg.
CS_Whitespace, and the second is the definition of that character set.

Comments: This is the same format required for the set_charsets() routine.

See Also: set_charsets, set_default_charsets
Example 1:

sequence sets
sets = get_charsets()

integer

tests if the supplied argument x to see if it is an integer.
Signature:

integer(object x)

<built-in> type

Returns: # An integer.
…… ♦ 1 if x is an integer.
…… ♦ 0 if x is not an integer.

See Also: sequence(), object(), atom()
Example 1:

? integer(1) --> 1
? integer(1.1) --> 0
? integer("1") --> 0

integer_array

tests if elements are integers.

Signature:

integer_array(object x)

public type
include types.e
namespace types

Returns: TRUE if argument is a sequence that only contains zero or more integers.
Example 1:

integer_array(-1) -- FALSE (not a sequence)
integer_array("abc") -- TRUE (all single characters)
integer_array({1, 2, "abc"}) -- FALSE (contains a sequence)
integer_array({1, 2, 9.7}) -- FALSE (contains a non-integer)
integer_array({1, 2, 'a'}) -- TRUE
integer_array({}) -- TRUE

number_array

tests elements if they are atoms.
Signature:

number_array(object x)

public type
include types.e
namespace types

Returns: TRUE if argument is a sequence that only contains zero or more numbers.
Example 1:

number_array(-1) -- FALSE (not a sequence)
number_array("abc") -- TRUE (all single characters)
number_array({1, 2, "abc"}) -- FALSE (contains a sequence)
number_array(1, 2, 9.7}) -- TRUE
number_array(1, 2, 'a'}) -- TRUE
number_array({}) -- TRUE

object

returns information about the object type of the supplied argument x.
Signature:

object(object x)

<built-in> type

Returns: # An integer.
…… ♦ OBJ_UNASSIGNED if x has not been assigned anything yet.
…… ♦ OBJ_INTEGER if x holds an integer value.
…… ♦ OBJ_ATOM if x holds a number that is not an integer.
…… ♦ OBJ_SEQUENCE if x holds a sequence value.

See Also: sequence(), integer(), atom()
Example 1:

? object(1) --> OBJ_INTEGER
? object(1.1) --> OBJ_ATOM
? object("1") --> OBJ_SEQUENCE
object x
? object(x) --> OBJ_UNASSIGNED

sequence

tests if the supplied argument x if it is a sequence.
Signature:

sequence(object x)

<built-in> type

Returns: # An integer.
…… ♦ 1 if x is a sequence.
…… ♦ 0 if x is not an sequence.

See Also: integer(), object(), atom()
Example 1:

? sequence(1) --> 0
? sequence({1}) --> 1
? sequence("1") --> 1

sequence_array

tests elements if they are sequences.
Signature:

sequence_array(object x)

public type
include types.e
namespace types

Returns: TRUE if argument is a sequence that only contains zero or more sequences.
Example 1:

sequence_array(-1) -- FALSE (not a sequence)
sequence_array("abc") -- FALSE (all single characters)
sequence_array({1, 2, "abc"}) -- FALSE (contains some atoms)
sequence_array({1, 2, 9.7}) -- FALSE
sequence_array({1, 2, 'a'}) -- FALSE
sequence_array({"abc", {3.4, 99182.78737}}) -- TRUE
sequence_array({}) -- TRUE

set_charsets

sets the definition for one or more defined character sets.
Signature:

set_charsets(sequence charset_list)

public procedure
include types.e
namespace types

Arguments: ≡ charset_list : a sequence of zero or more character set definitions.

Comments: charset_list must be a sequence of pairs. The first element of each pair is the
character set id (for example: CS_Whitespace) and the second is the definition of
that character set.

This is the same format returned by the get_charsets() routine.

You cannot create new character sets using this routine.

See Also: get_charsets
Example 1:

set_charsets({{CS_Whitespace, " \t"}})
t_space('\n') --> FALSE

t_specword('$') --> FALSE
set_charsets({{CS_SpecWord, "_-#$%"}})
t_specword('$') --> TRUE

set_default_charsets

sets all the defined character sets to their default definitions.
Signature:

set_default_charsets()

public procedure
include types.e
namespace types

Example 1:

set_default_charsets()

string

tests for string sequences (allows null character).
Signature:

string(object x)

public type
include types.e
namespace types

Returns: TRUE if argument is a sequence that only contains zero or more byte characters.
Example 1:

string(-1) -- FALSE (not a sequence)
string("abc'6") -- TRUE (all single byte characters)
string({1, 2, "abc'6"}) -- FALSE (contains a sequence)
string({1, 2, 9.7}) -- FALSE (contains a non-integer)
string({1, 2, 'a'}) -- TRUE
string({1, 2, 'a', 0}) -- TRUE (even though it contains a null byte)
string({1, -2, 'a'}) -- FALSE (contains a negative integer)
string({}) -- TRUE

t_alnum

tests for alphanumeric values.
Signature:

t_alnum(object test_data)

public type
include types.e
namespace types

Returns: Returns TRUE if argument is an alphanumeric character or if every element of the

argument is an alphanumeric character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or
contains non-alphanumeric elements

Example
1:

t_alnum(-1) -- FALSE
t_alnum(0) -- FALSE
t_alnum(1) -- FALSE
t_alnum(1.234) -- FALSE
t_alnum('A') -- TRUE
t_alnum('9') -- TRUE
t_alnum('?') -- FALSE
t_alnum("abc") -- TRUE (every element is alphabetic or a digit)
t_alnum("ab3") -- TRUE
t_alnum({1, 2, "abc"}) -- FALSE (contains a sequence)
t_alnum({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_alnum({}) -- FALSE (empty sequence)

t_alpha

tests for alphabetic characters.
Signature:

t_alpha(object test_data)

public type
include types.e
namespace types

Returns: Returns TRUE if argument is an alphabetic character or if every element of the
argument is an alphabetic character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or
contains non-alphabetic elements

Example
1:

t_alpha(-1) -- FALSE
t_alpha(0) -- FALSE
t_alpha(1) -- FALSE
t_alpha(1.234) -- FALSE
t_alpha('A') -- TRUE
t_alpha('9') -- FALSE
t_alpha('?') -- FALSE
t_alpha("abc") -- TRUE (every element is alphabetic)
t_alpha("ab3") -- FALSE
t_alpha({1, 2, "abc"}) -- FALSE (contains a sequence)
t_alpha({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_alpha({}) -- FALSE (empty sequence)

t_ascii

tests for ASCII values.
Signature:

t_ascii(object test_data)

public type
include types.e
namespace types

Returns: Returns TRUE if argument is an ASCII character or if every element of the argument

is an ASCII character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or
contains non-ASCII elements

Example
1:

t_ascii(-1) -- FALSE
t_ascii(0) -- TRUE
t_ascii(1) -- TRUE
t_ascii(1.234) -- FALSE
t_ascii('A') -- TRUE
t_ascii('9') -- TRUE
t_ascii('?') -- TRUE
t_ascii("abc") -- TRUE (every element is ascii)
t_ascii("ab3") -- TRUE
t_ascii({1, 2, "abc"}) -- FALSE (contains a sequence)
t_ascii({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_ascii({}) -- FALSE (empty sequence)

t_boolean

tests for boolean data.
Signature:

t_boolean(object test_data)

public type
include types.e
namespace types

Returns: Returns TRUE if argument is boolean (1 or 0) or if every element of the argument is
boolean.

Returns FALSE if the argument is an empty sequence, or contains sequences, or
contains non-boolean elements

Example
1:

t_boolean(-1) -- FALSE
t_boolean(0) -- TRUE
t_boolean(1) -- TRUE
t_boolean({1, 1, 0}) -- TRUE
t_boolean({1, 1, 9.7}) -- FALSE
t_boolean({}) -- FALSE (empty sequence)

t_bytearray

tests for valid bytes.
Signature:

t_bytearray(object test_data)

public type
include types.e
namespace types

Returns: Returns TRUE if argument is a byte or if every element of the argument is a byte.
(Integers from 0 to 255)

Returns FALSE if the argument is an empty sequence, or contains sequences, or
contains non-byte

Example

1:

t_bytearray(-1) -- FALSE (contains value less than zero)
t_bytearray(0) -- TRUE
t_bytearray(1) -- TRUE
t_bytearray(10) -- TRUE
t_bytearray(100) -- TRUE
t_bytearray(1000) -- FALSE (greater than 255)
t_bytearray(1.234) -- FALSE (contains a floating number)
t_bytearray('A') -- TRUE
t_bytearray('9') -- TRUE
t_bytearray('?') -- TRUE
t_bytearray(' ') -- TRUE
t_bytearray("abc") -- TRUE
t_bytearray("ab3") -- TRUE
t_bytearray("123") -- TRUE
t_bytearray({1, 2, "abc"}) -- FALSE (contains a sequence)
t_bytearray({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_bytearray({1, 2, 'a'}) -- TRUE
t_bytearray({}) -- FALSE (empty sequence)

t_cntrl

Returns TRUE if argument is an Control character or if every element of
Signature:

t_cntrl(object test_data)

public type
include types.e
namespace types

Example 1:

t_cntrl(-1) -- FALSE
t_cntrl(0) -- TRUE
t_cntrl(1) -- TRUE
t_cntrl(1.234) -- FALSE
t_cntrl('A') -- FALSE
t_cntrl('9') -- FALSE
t_cntrl('?') -- FALSE
t_cntrl("abc") -- FALSE (every element is ascii)
t_cntrl("ab3") -- FALSE
t_cntrl({1, 2, "abc"}) -- FALSE (contains a sequence)
t_cntrl({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_cntrl({1, 2, 'a'}) -- FALSE (contains a non-control)
t_cntrl({}) -- FALSE (empty sequence)

t_consonant

tests for consonant characters.
Signature:

t_consonant(object test_data)

public type
include types.e
namespace types

Returns: Returns TRUE if argument is a consonant character or if every element of the
argument is an consonant character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or
contains non-consonant character.

Example
1:

t_consonant(-1) -- FALSE
t_consonant(0) -- FALSE
t_consonant(1) -- FALSE
t_consonant(1.234) -- FALSE
t_consonant('A') -- FALSE
t_consonant('9') -- FALSE
t_consonant('?') -- FALSE
t_consonant("abc") -- FALSE
t_consonant("rTfM") -- TRUE
t_consonant("123") -- FALSE
t_consonant({1, 2, "abc"}) -- FALSE (contains a sequence)
t_consonant({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_consonant({1, 2, 'a'}) -- FALSE (contains a non-digit)
t_consonant({}) -- FALSE (empty sequence)

t_digit

tests for numerical digits.
Signature:

t_digit(object test_data)

public type
include types.e
namespace types

Returns: Returns TRUE if argument is an digit character or if every element of the argument is
an digit character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or
contains non-digits

Example
1:

t_digit(-1) -- FALSE
t_digit(0) -- FALSE
t_digit(1) -- FALSE
t_digit(1.234) -- FALSE
t_digit('A') -- FALSE
t_digit('9') -- TRUE
t_digit('?') -- FALSE
t_digit("abc") -- FALSE
t_digit("ab3") -- FALSE
t_digit("123") -- TRUE
t_digit({1, 2, "abc"}) -- FALSE (contains a sequence)
t_digit({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_digit({1, 2, 'a'}) -- FALSE (contains a non-digit)
t_digit({}) -- FALSE (empty sequence)

t_display

tests if characters can be displayed.
Signature:

t_display(object test_data)

public type
include types.e
namespace types

Returns: Returns TRUE if argument is a character that can be displayed or if every element of
the argument is a character that can be displayed.

Returns FALSE if the argument is an empty sequence, or contains sequences, or
contains characters that cannot be displayed.

contains characters that cannot be displayed.
Example
1:

t_display(-1) -- FALSE
t_display(0) -- FALSE
t_display(1) -- FALSE
t_display(1.234) -- FALSE
t_display('A') -- TRUE
t_display('9') -- TRUE
t_display('?') -- TRUE
t_display("abc") -- TRUE
t_display("ab3") -- TRUE
t_display("123") -- TRUE
t_display("123 ") -- TRUE
t_display("123\n") -- TRUE
t_display({1, 2, "abc"}) -- FALSE (contains a sequence)
t_display({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_display({1, 2, 'a'}) -- FALSE
t_display({}) -- FALSE (empty sequence)

t_graph

tests for printable characters.
Signature:

t_graph(object test_data)

public type
include types.e
namespace types

Returns: Returns TRUE if argument is a glyph character or if every element of the argument is
a glyph character. (One that is visible when displayed)

Returns FALSE if the argument is an empty sequence, or contains sequences, or
contains non-glyph

Example
1:

t_graph(-1) -- FALSE
t_graph(0) -- FALSE
t_graph(1) -- FALSE
t_graph(1.234) -- FALSE
t_graph('A') -- TRUE
t_graph('9') -- TRUE
t_graph('?') -- TRUE
t_graph(' ') -- FALSE
t_graph("abc") -- TRUE
t_graph("ab3") -- TRUE
t_graph("123") -- TRUE
t_graph({1, 2, "abc"}) -- FALSE (contains a sequence)
t_graph({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_graph({1, 2, 'a'}) -- FALSE (control chars (1,2) don't have glyphs)
t_graph({}) -- FALSE (empty sequence)

t_identifier

tests for valid identifier text strings.
Signature:

t_identifier(object test_data)

public type
include types.e
namespace types

Returns: Returns TRUE if argument is an alphanumeric character or if every element of the
argument is an alphanumeric character and that the first character is not numeric and
the whole group of characters are not all numeric.

Returns FALSE if the argument is an empty sequence, or contains sequences, or
contains non-alphanumeric elements

Example
1:

t_identifier(-1) -- FALSE
t_identifier(0) -- FALSE
t_identifier(1) -- FALSE
t_identifier(1.234) -- FALSE
t_identifier('A') -- TRUE
t_identifier('9') -- FALSE
t_identifier('?') -- FALSE
t_identifier("abc") -- TRUE (every element is alphabetic or a digit)
t_identifier("ab3") -- TRUE
t_identifier("ab_3") -- TRUE (underscore is allowed)
t_identifier("1abc") -- FALSE (identifier cannot start with a number)
t_identifier("102") -- FALSE (identifier cannot be all numeric)
t_identifier({1, 2, "abc"}) -- FALSE (contains a sequence)
t_identifier({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_identifier({}) -- FALSE (empty sequence)

t_lower

tests for lowercase characters.
Signature:

t_lower(object test_data)

public type
include types.e
namespace types

Returns: Returns TRUE if argument is a lowercase character or if every element of the
argument is an lowercase character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or
contains non-lowercase

Example
1:

t_lower(-1) -- FALSE
t_lower(0) -- FALSE
t_lower(1) -- FALSE
t_lower(1.234) -- FALSE
t_lower('A') -- FALSE
t_lower('9') -- FALSE
t_lower('?') -- FALSE
t_lower("abc") -- TRUE
t_lower("ab3") -- FALSE
t_lower("123") -- TRUE
t_lower({1, 2, "abc"}) -- FALSE (contains a sequence)
t_lower({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_lower({1, 2, 'a'}) -- FALSE (contains a non-digit)
t_lower({}) -- FALSE (empty sequence)

t_print

tests for printable characters.
Signature:

t_print(object test_data)

public type
include types.e
namespace types

Returns: Returns TRUE if argument is a character that has an ASCII glyph or if every element
of the argument is a character that has an ASCII glyph.

Returns FALSE if the argument is an empty sequence, or contains sequences, or
contains characters that do not have an ASCII glyph.

Example
1:

t_print(-1) -- FALSE
t_print(0) -- FALSE
t_print(1) -- FALSE
t_print(1.234) -- FALSE
t_print('A') -- TRUE
t_print('9') -- TRUE
t_print('?') -- TRUE
t_print("abc") -- TRUE
t_print("ab3") -- TRUE
t_print("123") -- TRUE
t_print("123 ") -- FALSE (contains a space)
t_print("123\n") -- FALSE (contains a new-line)
t_print({1, 2, "abc"}) -- FALSE (contains a sequence)
t_print({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_print({1, 2, 'a'}) -- FALSE
t_print({}) -- FALSE (empty sequence)

t_punct

tests for punctuation characters.
Signature:

t_punct(object test_data)

public type
include types.e
namespace types

Returns: Returns TRUE if argument is an punctuation character or if every element of the
argument is an punctuation character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or
contains non-punctuation symbols.

Example
1:

t_punct(-1) -- FALSE
t_punct(0) -- FALSE
t_punct(1) -- FALSE
t_punct(1.234) -- FALSE
t_punct('A') -- FALSE
t_punct('9') -- FALSE
t_punct('?') -- TRUE
t_punct("abc") -- FALSE
t_punct("(-)") -- TRUE
t_punct("123") -- TRUE
t_punct({1, 2, "abc"}) -- FALSE (contains a sequence)
t_punct({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_punct({1, 2, 'a'}) -- FALSE (contains a non-digit)
t_punct({}) -- FALSE (empty sequence)

t_space

tests for whitespace characters.
Signature:

t_space(object test_data)

public type
include types.e
namespace types

Returns: Returns TRUE if argument is a whitespace character or if every element of the
argument is an whitespace character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or
contains non-whitespace character.

Example
1:

t_space(-1) -- FALSE
t_space(0) -- FALSE
t_space(1) -- FALSE
t_space(1.234) -- FALSE
t_space('A') -- FALSE
t_space('9') -- FALSE
t_space('\t') -- TRUE
t_space("abc") -- FALSE
t_space("123") -- FALSE
t_space({1, 2, "abc"}) -- FALSE (contains a sequence)
t_space({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_space({1, 2, 'a'}) -- FALSE (contains a non-digit)
t_space({}) -- FALSE (empty sequence)

t_specword

tests for a special word character.
Signature:

t_specword(object test_data)

public type
include types.e
namespace types

Returns: Returns TRUE if argument is a special word character or if every element of the
argument is a special word character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or
contains non-special-word characters.

Comments: A special word character is any character that is not normally part of a word but in
certain cases may be considered. This is most commonly used when looking for
words in programming source code which allows an underscore as a word
character.

Example 1:

t_specword(-1) -- FALSE
t_specword(0) -- FALSE
t_specword(1) -- FALSE
t_specword(1.234) -- FALSE
t_specword('A') -- FALSE
t_specword('9') -- FALSE
t_specword('?') -- FALSE
t_specword('_') -- TRUE
t_specword("abc") -- FALSE
t_specword("ab3") -- FALSE
t_specword("123") -- FALSE
t_specword({1, 2, "abc"}) -- FALSE (contains a sequence)

t_specword({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_specword({1, 2, 'a'}) -- FALSE (control chars (1,2) don't have glyphs)
t_specword({}) -- FALSE (empty sequence)

t_text

tests for characters.
Signature:

t_text(object x)

public type
include types.e
namespace types

Returns: TRUE if argument is a sequence that only contains zero or more characters.
Example 1:

t_text(-1) -- FALSE (not a sequence)
t_text("abc") -- TRUE (all single characters)
t_text({1, 2, "abc"}) -- FALSE (contains a sequence)
t_text({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_text({1, 2, 'a'}) -- TRUE
t_text({1, -2, 'a'}) -- FALSE (contains a negative integer)
t_text({}) -- TRUE

t_upper

tests for uppercase characters.
Signature:

t_upper(object test_data)

public type
include types.e
namespace types

Returns: Returns TRUE if argument is an uppercase character or if every element of the
argument is an uppercase character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or
contains non-uppercase characters.

Example
1:

t_upper(-1) -- FALSE
t_upper(0) -- FALSE
t_upper(1) -- FALSE
t_upper(1.234) -- FALSE
t_upper('A') -- TRUE
t_upper('9') -- FALSE
t_upper('?') -- FALSE
t_upper("abc") -- FALSE
t_upper("ABC") -- TRUE
t_upper("123") -- FALSE
t_upper({1, 2, "abc"}) -- FALSE (contains a sequence)
t_upper({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_upper({1, 2, 'a'}) -- FALSE (contains a non-digit)
t_upper({}) -- FALSE (empty sequence)

t_vowel

tests for vowel characters.
Signature:

Signature:

t_vowel(object test_data)

public type
include types.e
namespace types

Returns: Returns TRUE if argument is a vowel or if every element of the argument is a vowel
character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or
contains non-vowels

Example
1:

t_vowel(-1) -- FALSE
t_vowel(0) -- FALSE
t_vowel(1) -- FALSE
t_vowel(1.234) -- FALSE
t_vowel('A') -- TRUE
t_vowel('9') -- FALSE
t_vowel('?') -- FALSE
t_vowel("abc") -- FALSE
t_vowel("aiu") -- TRUE
t_vowel("123") -- FALSE
t_vowel({1, 2, "abc"}) -- FALSE (contains a sequence)
t_vowel({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_vowel({1, 2, 'a'}) -- FALSE (contains a non-digit)
t_vowel({}) -- FALSE (empty sequence)

t_xdigit

tests for hexadecimal digits.
Signature:

t_xdigit(object test_data)

public type
include types.e
namespace types

Returns: Returns TRUE if argument is an hexadecimal digit character or if every element of
the argument is an hexadecimal digit character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or
contains non-hexadecimal character.

Example
1:

t_xdigit(-1) -- FALSE
t_xdigit(0) -- FALSE
t_xdigit(1) -- FALSE
t_xdigit(1.234) -- FALSE
t_xdigit('A') -- TRUE
t_xdigit('9') -- TRUE
t_xdigit('?') -- FALSE
t_xdigit("abc") -- TRUE
t_xdigit("fgh") -- FALSE
t_xdigit("123") -- TRUE
t_xdigit({1, 2, "abc"}) -- FALSE (contains a sequence)
t_xdigit({1, 2, 9.7}) -- FALSE (contains a non-integer)
t_xdigit({1, 2, 'a'}) -- FALSE (contains a non-digit)
t_xdigit({}) -- FALSE (empty sequence)

unittest

Background
Constants

TEST_QUIET
TEST_SHOW_FAILED_ONLY
TEST_SHOW_ALL

Setup Routines
set_test_verbosity
set_wait_on_summary
set_accumulate_summary
set_test_abort

Reporting
test_report

Tests
test_equal
test_not_equal
test_true
assert
test_false
test_fail
test_pass

Background Unit testing is the process of assuring that the smallest programming units are
actually delivering functionality that complies with their specification. The units in question are
usually individual routines rather than whole programs or applications.

The theory is that if the components of a system are working correctly, then there is a high
probability that a system using those components can be made to work correctly.

In Euphoria terms, this framework provides the tools to make testing and reporting on functions
and procedures easy and standardized. It gives us a simple way to write a test case and to report
on the findings.
Example:

include std/unittest.e

test_equal("Power function test #1", 4, power(2, 2))
test_equal("Power function test #2", 4, power(16, 0.5))

test_report()

Name your test file in the special manner, t_NAME.e and then simply run eutest in that directory.

C:\Euphoria> eutest
t_math.e:
failed: Bad math, expected: 100 but got: 8
2 tests run, 1 passed, 1 failed, 50.0% success

===== Test failure summary:
FAIL: t_math.e

2 file(s) run 1 file(s) failed, 50.0% success--

In this example, we use the test_equal function to record the result of a test. The first parameter
is the name of the test, which can be anything and is displayed if the test fails. The second
parameter is the expected result -- what we expect the function being tested to return. The third
parameter is the actual result returned by the function being tested. This is usually written as a
call to the function itself.

It is typical to provide as many test cases as would be required to give us confidence that the
function is being truly exercised. This includes calling it with typical values and edge-case or
exceptional values. It is also useful to test the function's error handling by calling it with bad
parameters.

When a test fails, the framework displays a message, showing the test's name, the expected
result and the actual result. You can configure the framework to display each test run, regardless
of whether it fails or not.

After running a series of tests, you can get a summary displayed by calling the test_report()
procedure. To get a better feel for unit testing, have a look at the provided test cases for the
standard library in the tests directory.

When included in your program, unittest.e sets a crash handler to log a crash as a failure.

unittest API

TEST_QUIET

Signature:

TEST_QUIET

public enum
include unittest.e
namespace unittest

TEST_SHOW_ALL

Signature:

TEST_SHOW_ALL

public enum
include unittest.e
namespace unittest

TEST_SHOW_FAILED_ONLY

Signature:

TEST_SHOW_FAILED_ONLY

public enum
include unittest.e
namespace unittest

assert

records whether a test passes. If it fails, the program also fails.
Signature:

assert(object name, object outcome)

public procedure
include unittest.e

namespace unittest

Arguments: ≡ name : a string, the name of the test
≡ outcome : an object, some actual value that should not be zero.

Comments: This is identical to test_true() except that if the test fails, the program will also be
forced to fail at this point.

See Also: test_equal, test_not_equal, test_false, test_pass, test_fail

set_accumulate_summary

requests the test report to save run stats in "unittest.dat" before exiting.
Signature:

set_accumulate_summary(integer accumulate)

public procedure
include unittest.e
namespace unittest

Arguments: ≡ accumulate : an integer, zero not to accumulate, nonzero to accumulate.

Comments: The file "unittest.dat" is appended to with {t,f}
: where :: t is total number of tests run :: f is the total number of tests that failed

set_test_abort

sets the behavior on test failure, and return previous value.
Signature:

set_test_abort(integer abort_test)

public function
include unittest.e
namespace unittest

Arguments: ≡ abort_test : an integer, the new value for this setting.

Returns: An integer, the previous value for the setting.

Comments: By default, the tests go on even if a file crashed.

set_test_verbosity

sets the amount of information that is returned about passed and failed tests.
Signature:

set_test_verbosity(atom verbosity)

public procedure
include unittest.e
namespace unittest

Arguments: ≡ verbosity : an atom which takes predefined values for verbosity levels.

Comments: The following values are allowable for verbosity:
• TEST_QUIET -- 0,
• TEST_SHOW_FAILED_ONLY -- 1
• TEST_SHOW_ALL -- 2

However, anything less than TEST_SHOW_FAILED_ONLY is treated as TEST_QUIET, and

everything above TEST_SHOW_ALL is treated as TEST_SHOW_ALL.

• At the lowest verbosity level, only the score is shown, ie the ratio passed tests/total
tests.
• At the medium level, in addition, failed tests display their name, the expected
outcome and the outcome they got. This is the initial setting.
• At the highest level of verbosity, each test is reported as passed or failed.

If a file crashes when it should not, this event is reported no matter the verbosity
level.

The command line switch "-failed" causes verbosity to be set to medium at startup.
The command line switch "-all" causes verbosity to be set to high at startup.

See Also: test_report

set_wait_on_summary

requests the test report to pause before exiting.
Signature:

set_wait_on_summary(integer to_wait)

public procedure
include unittest.e
namespace unittest

Arguments: ≡ to_wait : an integer, zero not to wait, nonzero to wait.

Comments: Depending on the environment, the test results may be invisible if
set_wait_on_summary(1) was not called prior, as this is not the default. The
command line switch "-wait" performs this call.

See Also: test_report

test_equal

records whether a test passes by comparing two values.
Signature:

test_equal(sequence name, object expected, object outcome)

public procedure
include unittest.e
namespace unittest

Arguments: ≡ name : a string, the name of the test
≡ expected : an object, the expected outcome of some action
≡ outcome : an object, some actual value that should equal the reference expected.

Comments:
• For floating point numbers, a fuzz of 1e-9 is used to assess equality.

A test is recorded as passed if equality holds between expected and outcome. The
latter is typically a function call, or a variable that was set by some prior action.

While expected and outcome are processed symmetrically, they are not recorded
symmetrically, so be careful to pass expected before outcome for better test failure
reports.

See Also: test_not_equal, test_true, test_false, test_pass, test_fail

test_fail

records that a test failed.
Signature:

test_fail(sequence name)

public procedure
include unittest.e
namespace unittest

Arguments: ≡ name : a string, the name of the test

See Also: test_equal, test_not_equal, test_true, test_false, test_pass

test_false

records whether a test passes by comparing two values.
Signature:

test_false(sequence name, object outcome)

public procedure
include unittest.e
namespace unittest

Arguments: ≡ name : a string, the name of the test
≡ outcome : an object, some actual value that should be zero

Comments: This assumes an expected value of 0. No fuzz is applied when checking whether an
atom is zero or not. Use test_equal() instead in this case.

See Also: test_equal, test_not_equal, test_true, test_pass, test_fail

test_not_equal

records whether a test passes by comparing two values.
Signature:

test_not_equal(sequence name, object a, object b)

public procedure
include unittest.e
namespace unittest

Arguments: ≡ name : a string, the name of the test
≡ expected : an object, the expected outcome of some action
≡ outcome : an object, some actual value that should equal the reference expected.

Comments:
• For atoms, a fuzz of 1e-9 is used to assess equality.
• For sequences, no such fuzz is implemented.

A test is recorded as passed if equality does not hold between expected and
outcome. The latter is typically a function call, or a variable that was set by some
prior action.

See Also: test_equal, test_true, test_false, test_pass, test_fail

test_pass

records that a test passed.
Signature:

test_pass(sequence name)

public procedure
include unittest.e
namespace unittest

Arguments: ≡ name : a string, the name of the test

See Also: test_equal, test_not_equal,test_true, test_false, test_fail

test_report

outputs the test report.
Signature:

test_report()

public procedure
include unittest.e
namespace unittest

Comments: The report components are described in the comments section for
set_test_verbosity. Everything prints on the standard error device.

See Also: set_test_verbosity

test_true

records whether a test passes.
Signature:

test_true(sequence name, object outcome)

public procedure
include unittest.e
namespace unittest

Arguments: ≡ name : a string, the name of the test
≡ outcome : an object, some actual value that should not be zero.

Comments: This assumes an expected value different from 0. No fuzz is applied when checking
whether an atom is zero or not. Use test_equal() instead in this case.

See Also: test_equal, test_not_equal, test_false, test_pass, test_fail

utils

Routines
iif

utils API

iif

embeds a conditional test inside an expression; iif stands for inline if or immediate
if.

Signature:

iif(atom test, object ifTrue, object ifFalse)

public function
include utils.e
namespace utils

Arguments: ≡ test : an atom, the result of a boolean expression
≡ ifTrue : an object, returned if test is non-zero
≡ ifFalse : an object, returned if test is zero

Returns: An object. Either ifTrue or ifFalse is returned depending on the value of test.
Warning:

You must take care when using this function because (just like all other Euphoria routines) it
does not do any lazy evaluation.

All argument expressions are evaluated before the function is called, thus, it cannot be used
when one of the parameters could fail to evaluate correctly.

Example 1:

The reason for this is that both var[1] and var will be evaluated. Therefore if var happens to be
an atom, the var[1] statement will fail.

first = iif(sequence(var), var[1], var)

Example 2:

if sequence(var) then
 first = var[1]
 else
 first = var
 end if

Example 3:

msg = sprintf("%s: %s", {
 iif(ErrType = 'E', "Fatal error", "Warning"),
 errortext
})

wildcard

Routines
is_match

wildcard API

is_match

tests if a string matches a pattern.
Signature:

is_match(sequence pattern, sequence string)

public function
include wildcard.e
namespace wildcard

Arguments: ≡ pattern : a string, the pattern to match.
≡ string : the string to be matched against.

Returns: An integer, TRUE if string matches pattern, else FALSE.

Comments: The pattern may contain * and ? wildcards, but there is currently no way search for
literal * or ? characters in a pattern.

Character comparisons are case sensitive. If you want case insensitive
comparisons then convert (using either lower or upper) the arguments (pattern and
string) to lower or upper case .

If you want to detect a pattern anywhere within a string, add * to each end of the
pattern:

i = is_match('*' & pattern & '*', string)

See Also: upper, lower
Example 1:

i = is_match("A?B*", "AQBXXYY")
-- i is 1 (TRUE)

Example 2:

i = is_match("*xyz*", "AAAbbbxyz")
-- i is 1 (TRUE)

Example 3:

i = is_match("A*B*C", "a111b222c")
-- i is 0 (FALSE) because upper/lower case doesn't match

Example 4:

/demo/search

	Euphoria 4 API Reference
	Caution
	Undocumented Include Files

	Built-in Methods
	base64
	decode
	encode

	cmdline
	AT_EXPANSION
	EXTRAS
	HAS_CASE
	HAS_PARAMETER
	HELP
	HELP_RID
	MANDATORY
	MULTIPLE
	NO_AT_EXPANSION
	NO_CASE
	NO_HELP
	NO_HELP_ON_ERROR
	NO_PARAMETER
	NO_VALIDATION
	NO_VALIDATION_AFTER_FIRST_EXTRA
	ONCE
	OPTIONAL
	OPT_CNT
	OPT_IDX
	OPT_REV
	OPT_VAL
	PAUSE_MSG
	SHOW_ONLY_OPTIONS
	VALIDATE_ALL
	VERSIONING
	build_commandline
	cmd_parse
	command_line
	option_switches
	parse_commandline
	show_help

	console
	See Also:
	See Also:
	BLOCK_CURSOR
	HALF_BLOCK_CURSOR
	KC_LBUTTON
	NO_CURSOR
	THICK_UNDERLINE_CURSOR
	UNDERLINE_CURSOR
	allow_break
	any_key
	attr_to_colors
	check_break
	clear_screen
	colors_to_attr
	cursor
	display
	display_text_image
	free_console
	get_key
	get_screen_char
	has_console
	key_codes
	maybe_any_key
	positive_int
	prompt_number
	prompt_string
	put_screen_char
	save_text_image
	set_keycodes
	text_rows
	wait_key

	convert
	atom_to_float32
	atom_to_float64
	atom_to_float80
	bits_to_int
	bytes_to_int
	float32_to_atom
	float64_to_atom
	float80_to_atom
	hex_text
	int_to_bits
	int_to_bytes
	set_decimal_mark
	to_integer
	to_number
	to_string

	datetime
	DATE
	DAY
	DAYS
	HOUR
	HOURS
	MINUTE
	MINUTES
	MONTH
	MONTHS
	SECOND
	SECONDS
	WEEKS
	YEAR
	YEARS
	add
	ampm
	date
	datetime
	day_abbrs
	day_names
	days_in_month
	days_in_year
	diff
	format
	from_date
	from_unix
	is_leap_year
	month_abbrs
	month_names
	new
	new_time
	now
	now_gmt
	parse
	subtract
	time
	to_unix
	weeks_day
	years_day

	dll
	Example 1:
	See Also:
	C_BOOL
	C_BYTE
	C_CHAR
	C_DOUBLE
	C_DWORD
	C_DWORDLONG
	C_FLOAT
	C_HANDLE
	C_HRESULT
	C_HWND
	C_INT
	C_LONG
	C_LONGLONG
	C_LPARAM
	C_POINTER
	C_SHORT
	C_SIZE_T
	C_UBYTE
	C_UCHAR
	C_UINT
	C_ULONG
	C_USHORT
	C_WORD
	C_WPARAM
	E_ATOM
	E_INTEGER
	E_OBJECT
	E_SEQUENCE
	NULL
	c_func
	c_proc
	call_back
	define_c_func
	define_c_proc
	define_c_var
	open_dll

	eds
	BAD_FILE
	BAD_RECNO
	BAD_SEEK
	CONNECTION
	CONNECT_FREE
	CONNECT_LOCK
	CONNECT_TABLES
	DB_BAD_NAME
	DB_EXISTS_ALREADY
	DB_FATAL_FAIL
	DB_LOCK_EXCLUSIVE
	DB_LOCK_FAIL
	DB_LOCK_NO
	DB_LOCK_READ_ONLY
	DB_LOCK_SHARED
	DB_OK
	DB_OPEN_FAIL
	DISCONNECT
	DUP_TABLE
	INIT_FREE
	INIT_TABLES
	INSERT_FAILED
	LAST_ERROR_CODE
	LOCK_METHOD
	MISSING_END
	NO_DATABASE
	NO_TABLE
	check_free_list
	db_cache_clear
	db_clear_table
	db_close
	db_compress
	db_connect
	db_create
	db_create_table
	db_current
	db_current_table
	db_delete_record
	db_delete_table
	db_dump
	db_fatal_id
	db_fetch_record
	db_find_key
	db_get_errors
	db_get_recid
	db_insert
	db_open
	db_record_data
	db_record_key
	db_record_recid
	db_rename_table
	db_replace_data
	db_replace_recid
	db_select
	db_select_table
	db_set_caching
	db_table_list
	db_table_size

	error
	abort
	crash
	crash_file
	crash_message
	crash_routine
	warning
	warning_file

	eumem
	free
	malloc
	ram_space
	valid

	filesys
	AS_IS
	BYTES_PER_SECTOR
	CORRECT
	COUNT_DIRS
	COUNT_FILES
	COUNT_SIZE
	COUNT_TYPES
	D_ALTNAME
	D_ATTRIBUTES
	D_DAY
	D_HOUR
	D_MILLISECOND
	D_MINUTE
	D_MONTH
	D_NAME
	D_SECOND
	D_SIZE
	D_YEAR
	EOL
	EOLSEP
	EXT_COUNT
	EXT_NAME
	EXT_SIZE
	FILETYPE_DIRECTORY
	FILETYPE_FILE
	FILETYPE_NOT_FOUND
	FILETYPE_UNDEFINED
	FREE_BYTES
	NULLDEVICE
	NUMBER_OF_FREE_CLUSTERS
	PATHSEP
	PATH_BASENAME
	PATH_DIR
	PATH_DRIVEID
	PATH_FILEEXT
	PATH_FILENAME
	SECTORS_PER_CLUSTER
	SHARED_LIB_EXT
	SLASH
	SLASHES
	TOTAL_BYTES
	TOTAL_NUMBER_OF_CLUSTERS
	TO_LOWER
	TO_SHORT
	USED_BYTES
	W_BAD_PATH
	abbreviate_path
	absolute_path
	canonical_path
	case_flagset_type
	chdir
	checksum
	clear_directory
	copy_file
	create_directory
	create_file
	curdir
	current_dir
	defaultext
	delete_file
	dir
	dir_size
	dirname
	disk_metrics
	disk_size
	driveid
	file_exists
	file_length
	file_timestamp
	file_type
	filebase
	fileext
	filename
	init_curdir
	join_path
	locate_file
	move_file
	my_dir
	pathinfo
	pathname
	remove_directory
	rename_file
	split_path
	temp_file
	walk_dir

	flags
	flags_to_string
	which_bit

	get
	GET_EOF
	GET_FAIL
	GET_LONG_ANSWER
	GET_NOTHING
	GET_SHORT_ANSWER
	GET_SUCCESS
	defaulted_value
	get
	value

	graphcst
	BGSET
	BLACK
	BLINKING
	BLUE
	BMP_INVALID_MODE
	BMP_OPEN_FAILED
	BMP_SUCCESS
	BMP_UNEXPECTED_EOF
	BMP_UNSUPPORTED_FORMAT
	BRIGHT_BLUE
	BRIGHT_CYAN
	BRIGHT_GREEN
	BRIGHT_MAGENTA
	BRIGHT_RED
	BRIGHT_WHITE
	BROWN
	BYTES_PER_CHAR
	CYAN
	FGSET
	GRAY
	GREEN
	MAGENTA
	RED
	VC_COLOR
	VC_COLUMNS
	VC_LINES
	VC_MODE
	VC_NCOLORS
	VC_PAGES
	VC_SCRNCOLS
	VC_SCRNLINES
	VC_XPIXELS
	VC_YPIXELS
	WHITE
	YELLOW
	color
	mixture
	true_bgcolor
	true_fgcolor
	video_config

	graphics
	bk_color
	console_colors
	get_position
	graphics_mode
	position
	scroll
	text_color
	wrap

	hash
	ADLER32
	FLETCHER32
	HSIEH30
	HSIEH32
	MD5
	SHA256
	hash

	image
	graphics_point
	read_bitmap
	save_bitmap

	io
	?
	BINARY_MODE
	DOS_TEXT
	EOF
	LOCK_EXCLUSIVE
	LOCK_SHARED
	SCREEN
	STDERR
	STDIN
	STDOUT
	TEXT_MODE
	UNIX_TEXT
	append_lines
	byte_range
	close
	file_number
	file_position
	flush
	get_bytes
	get_dstring
	get_integer16
	get_integer32
	getc
	gets
	lock_file
	lock_type
	open
	print
	printf
	process_lines
	put_integer16
	put_integer32
	puts
	read_file
	read_lines
	seek
	unlock_file
	where
	write_file
	write_lines
	writef
	writefln

	lcid
	get_lcid
	lcid

	locale
	datetime
	get
	get_def_lang
	get_lang_path
	get_text
	lang_load
	money
	number
	set
	set_def_lang
	set_lang_path
	translate
	trsprintf

	localeconv
	canon2win
	canonical
	decanonical
	locale_canonical
	platform_locale
	posix_names
	w32_name_canonical
	w32_names

	map
	ADD
	APPEND
	AVERAGE_BUCKET
	CONCAT
	DIVIDE
	LARGEMAP
	LARGEST_BUCKET
	LEAVE
	MULTIPLY
	NUM_BUCKETS
	NUM_ENTRIES
	NUM_IN_USE
	PUT
	SMALLEST_BUCKET
	SMALLMAP
	SM_RAW
	SM_TEXT
	STDEV_BUCKET
	SUBTRACT
	calc_hash
	clear
	compare
	copy
	for_each
	get
	has
	keys
	load_map
	map
	nested_get
	nested_put
	new
	new_extra
	new_from_kvpairs
	new_from_string
	optimize
	pairs
	put
	rehash
	remove
	save_map
	size
	statistics
	threshold
	type_of
	values

	math
	abs
	and_bits
	approx
	arccos
	arccosh
	arcsin
	arcsinh
	arctan
	arctanh
	atan2
	ceil
	cos
	cosh
	deg2rad
	ensure_in_list
	ensure_in_range
	exp
	fib
	floor
	frac
	gcd
	intdiv
	is_even
	is_even_obj
	larger_of
	log
	log10
	max
	min
	mod
	not_bits
	or_all
	or_bits
	power
	powof2
	product
	rad2deg
	remainder
	rotate_bits
	round
	shift_bits
	sign
	sin
	sinh
	smaller_of
	sqrt
	sum
	tan
	tanh
	trunc
	xor_bits

	mathcons
	DEGREES_TO_RADIANS
	E
	EULER_GAMMA
	HALFPI
	HALFSQRT2
	INVLN10
	INVLN2
	INVSQ2PI
	LN10
	LN2
	MINF
	PHI
	PI
	PINF
	PISQR
	QUARTPI
	RADIANS_TO_DEGREES
	SQRT2
	SQRT3
	SQRT5
	SQRTE
	TWOPI

	memconst
	PAGE_EXECUTE
	PAGE_EXECUTE_READ
	PAGE_EXECUTE_READWRITE
	PAGE_EXECUTE_WRITECOPY
	PAGE_NOACCESS
	PAGE_NONE
	PAGE_READ
	PAGE_READONLY
	PAGE_READWRITE
	PAGE_READ_EXECUTE
	PAGE_READ_WRITE
	PAGE_READ_WRITE_EXECUTE
	PAGE_WRITECOPY
	PAGE_WRITE_COPY
	PAGE_WRITE_EXECUTE_COPY

	memory
	os
	CMD_SWITCHES
	FREEBSD
	LINUX
	NETBSD
	OPENBSD
	OSX
	WIN32
	WINDOWS
	get_pid
	getenv
	instance
	is_win_nt
	platform
	setenv
	sleep
	system
	system_exec
	uname
	unsetenv

	pipeio
	CHILD
	PARENT
	PID
	STDERR
	STDIN
	STDOUT
	close
	create
	error_no
	exec
	kill
	process
	read
	write

	pretty
	DISPLAY_ASCII
	FP_FORMAT
	INDENT
	INT_FORMAT
	LINE_BREAKS
	MAX_ASCII
	MAX_LINES
	MIN_ASCII
	PRETTY_DEFAULT
	START_COLUMN
	WRAP
	pretty_print
	pretty_sprint

	primes
	calc_primes
	next_prime
	prime_list

	rand
	chance
	get_rand
	rand
	rand_range
	rnd
	rnd_1
	roll
	sample
	set_rand

	regex
	General Use
	Compile Time and Match Time
	Compile Time Option Constants
	Match Time Option Constants
	ANCHORED
	AUTO_CALLOUT
	BSR_ANYCRLF
	BSR_UNICODE
	CASELESS
	DEFAULT
	DFA_RESTART
	DFA_SHORTEST
	DOLLAR_ENDONLY
	DOTALL
	DUPNAMES
	ERROR_BADCOUNT
	ERROR_BADMAGIC
	ERROR_BADNEWLINE
	ERROR_BADOPTION
	ERROR_BADPARTIAL
	ERROR_BADUTF8
	ERROR_BADUTF8_OFFSET
	ERROR_CALLOUT
	ERROR_DFA_RECURSE
	ERROR_DFA_UCOND
	ERROR_DFA_UITEM
	ERROR_DFA_UMLIMIT
	ERROR_DFA_WSSIZE
	ERROR_INTERNAL
	ERROR_MATCHLIMIT
	ERROR_NOMATCH
	ERROR_NOMEMORY
	ERROR_NOSUBSTRING
	ERROR_NULL
	ERROR_NULLWSLIMIT
	ERROR_PARTIAL
	ERROR_RECURSIONLIMIT
	ERROR_UNKNOWN_NODE
	ERROR_UNKNOWN_OPCODE
	EXTENDED
	EXTRA
	FIRSTLINE
	MULTILINE
	NEWLINE_ANY
	NEWLINE_ANYCRLF
	NEWLINE_CR
	NEWLINE_CRLF
	NEWLINE_LF
	NOTBOL
	NOTEMPTY
	NOTEOL
	NO_AUTO_CAPTURE
	NO_UTF8_CHECK
	PARTIAL
	STRING_OFFSETS
	UNGREEDY
	UTF8
	all_matches
	error_message
	error_names
	error_to_string
	escape
	find
	find_all
	find_replace
	find_replace_callback
	find_replace_limit
	get_ovector_size
	has_match
	is_match
	matches
	new
	option_spec
	option_spec_to_string
	regex
	split
	split_limit

	search
	NESTED_ALL
	NESTED_ANY
	NESTED_BACKWARD
	NESTED_INDEX
	begins
	binary_search
	compare
	ends
	equal
	find
	find_all
	find_all_but
	find_any
	find_each
	find_from
	find_nested
	find_replace
	is_in_list
	is_in_range
	lookup
	match
	match_all
	match_any
	match_from
	match_replace
	rfind
	rmatch
	vlookup

	sequence
	ADD_APPEND
	ADD_PREPEND
	ADD_SORT_DOWN
	ADD_SORT_UP
	BK_LEN
	BK_PIECES
	COMBINE_SORTED
	COMBINE_UNSORTED
	RD_INPLACE
	RD_PRESORTED
	RD_SORT
	ROTATE_LEFT
	ROTATE_RIGHT
	SEQ_NOALT
	STDFLTR_ALPHA
	add_item
	append
	apply
	binop_ok
	breakup
	build_list
	columnize
	combine
	extract
	fetch
	filter
	flatten
	head
	insert
	join
	length
	mapping
	mid
	minsize
	pad_head
	pad_tail
	patch
	pivot
	prepend
	project
	remove
	remove_all
	remove_dups
	remove_item
	remove_subseq
	repeat
	repeat_pattern
	replace
	retain_all
	reverse
	rotate
	series
	shuffle
	sim_index
	slice
	splice
	split
	split_any
	store
	tail
	transform
	transmute
	valid_index
	vslice

	serialize
	deserialize
	dump
	load
	serialize

	socket
	Socket Options In Common
	AF_APPLETALK
	AF_BTH
	AF_INET
	AF_INET6
	AF_UNIX
	AF_UNSPEC
	EAF_APPLETALK
	EAF_BTH
	EAF_INET
	EAF_INET6
	EAF_UNIX
	EAF_UNSPEC
	ERR_ACCESS
	ERR_ADDRINUSE
	ERR_ADDRNOTAVAIL
	ERR_AFNOSUPPORT
	ERR_AGAIN
	ERR_ALREADY
	ERR_CONNABORTED
	ERR_CONNREFUSED
	ERR_CONNRESET
	ERR_DESTADDRREQ
	ERR_FAULT
	ERR_HOSTUNREACH
	ERR_INPROGRESS
	ERR_INTR
	ERR_INVAL
	ERR_IO
	ERR_ISCONN
	ERR_ISDIR
	ERR_LOOP
	ERR_MFILE
	ERR_MSGSIZE
	ERR_NAMETOOLONG
	ERR_NETDOWN
	ERR_NETRESET
	ERR_NETUNREACH
	ERR_NFILE
	ERR_NOBUFS
	ERR_NOENT
	ERR_NOTCONN
	ERR_NOTDIR
	ERR_NOTINITIALISED
	ERR_NOTSOCK
	ERR_OPNOTSUPP
	ERR_PROTONOSUPPORT
	ERR_PROTOTYPE
	ERR_ROFS
	ERR_SHUTDOWN
	ERR_SOCKTNOSUPPORT
	ERR_TIMEDOUT
	ERR_WOULDBLOCK
	ESOCK_DGRAM
	ESOCK_RAW
	ESOCK_RDM
	ESOCK_SEQPACKET
	ESOCK_STREAM
	ESOCK_TYPE_AF
	ESOCK_TYPE_OPTION
	ESOCK_TYPE_TYPE
	ESOCK_UNDEFINED_VALUE
	ESOCK_UNKNOWN_FLAG
	MSG_CONFIRM
	MSG_CTRUNC
	MSG_DONTROUTE
	MSG_DONTWAIT
	MSG_EOR
	MSG_ERRQUEUE
	MSG_FIN
	MSG_MORE
	MSG_NOSIGNAL
	MSG_OOB
	MSG_PEEK
	MSG_PROXY
	MSG_RST
	MSG_SYN
	MSG_TRUNC
	MSG_TRYHARD
	MSG_WAITALL
	OK
	SCM_TIMESTAMP
	SCM_TIMESTAMPING
	SCM_TIMESTAMPNS
	SD_BOTH
	SD_RECEIVE
	SD_SEND
	SELECT_IS_ERROR
	SELECT_IS_READABLE
	SELECT_IS_WRITABLE
	SELECT_SOCKET
	SOCKET_SOCKADDR_IN
	SOCKET_SOCKET
	SOCK_DGRAM
	SOCK_RAW
	SOCK_RDM
	SOCK_SEQPACKET
	SOCK_STREAM
	SOL_SOCKET
	SO_ACCEPTCONN
	SO_ATTACH_FILTER
	SO_BINDTODEVICE
	SO_BROADCAST
	SO_BSDCOMPAT
	SO_CONNDATA
	SO_CONNDATALEN
	SO_CONNOPT
	SO_CONNOPTLEN
	SO_DEBUG
	SO_DETACH_FILTER
	SO_DISCDATA
	SO_DISCDATALEN
	SO_DISCOPT
	SO_DISCOPTLEN
	SO_DOMAIN
	SO_DONTLINGER
	SO_DONTROUTE
	SO_ERROR
	SO_KEEPALIVE
	SO_LINGER
	SO_MARK
	SO_MAXDG
	SO_MAXPATHDG
	SO_NO_CHECK
	SO_OOBINLINE
	SO_OPENTYPE
	SO_PASSCRED
	SO_PASSSEC
	SO_PEERCRED
	SO_PEERNAME
	SO_PEERSEC
	SO_PRIORITY
	SO_PROTOCOL
	SO_RCVBUF
	SO_RCVBUFFORCE
	SO_RCVLOWAT
	SO_RCVTIMEO
	SO_REUSEADDR
	SO_REUSEPORT
	SO_RXQ_OVFL
	SO_SECURITY_AUTHENTICATION
	SO_SECURITY_ENCRYPTION_NETWORK
	SO_SECURITY_ENCRYPTION_TRANSPORT
	SO_SNDBUF
	SO_SNDBUFFORCE
	SO_SNDLOWAT
	SO_SNDTIMEO
	SO_SYNCHRONOUS_ALTERT
	SO_SYNCHRONOUS_NONALERT
	SO_TIMESTAMP
	SO_TIMESTAMPING
	SO_TIMESTAMPNS
	SO_TYPE
	SO_USELOOPBACK
	accept
	bind
	close
	connect
	create
	error_code
	get_option
	info
	listen
	receive
	receive_from
	select
	send
	send_to
	service_by_name
	service_by_port
	set_option
	shutdown
	socket

	sort
	ASCENDING
	DESCENDING
	NORMAL_ORDER
	REVERSE_ORDER
	custom_sort
	insertion_sort
	merge
	sort
	sort_columns

	stack
	FIFO
	FILO
	at
	clear
	dup
	is_empty
	last
	new
	peek_end
	peek_top
	pop
	push
	set
	size
	stack
	swap
	top

	stats
	ST_ALLNUM
	ST_FULLPOP
	ST_IGNSTR
	ST_SAMPLE
	ST_ZEROSTR
	avedev
	average
	central_moment
	count
	emovavg
	geomean
	harmean
	kurtosis
	largest
	median
	mode
	movavg
	range
	raw_frequency
	skewness
	small
	smallest
	stdev
	sum
	sum_central_moments

	task
	task_clock_start
	task_clock_stop
	task_create
	task_delay
	task_list
	task_schedule
	task_self
	task_status
	task_suspend
	task_yield

	text
	dequote
	escape
	format
	get_encoding_properties
	keyvalues
	lower
	proper
	quote
	set_encoding_properties
	sprint
	sprintf
	trim
	trim_head
	trim_tail
	upper
	wrap

	types
	CS_ASCII
	CS_Alphabetic
	CS_Alphanumeric
	CS_Boolean
	CS_Bytes
	CS_Consonant
	CS_Control
	CS_Digit
	CS_Displayable
	CS_FIRST
	CS_Graphic
	CS_Hexadecimal
	CS_Identifier
	CS_LAST
	CS_Lowercase
	CS_Printable
	CS_Punctuation
	CS_SpecWord
	CS_Uppercase
	CS_Vowel
	CS_Whitespace
	FALSE
	INVALID_ROUTINE_ID
	NO_ROUTINE_ID
	OBJ_ATOM
	OBJ_INTEGER
	OBJ_SEQUENCE
	OBJ_UNASSIGNED
	TRUE
	ascii_string
	atom
	boolean
	char_test
	cstring
	get_charsets
	integer
	integer_array
	number_array
	object
	sequence
	sequence_array
	set_charsets
	set_default_charsets
	string
	t_alnum
	t_alpha
	t_ascii
	t_boolean
	t_bytearray
	t_cntrl
	t_consonant
	t_digit
	t_display
	t_graph
	t_identifier
	t_lower
	t_print
	t_punct
	t_space
	t_specword
	t_text
	t_upper
	t_vowel
	t_xdigit

	unittest
	TEST_QUIET
	TEST_SHOW_ALL
	TEST_SHOW_FAILED_ONLY
	assert
	set_accumulate_summary
	set_test_abort
	set_test_verbosity
	set_wait_on_summary
	test_equal
	test_fail
	test_false
	test_not_equal
	test_pass
	test_report
	test_true

	utils
	iif

	wildcard
	is_match

