
A Beginners Guide To Euphoria

By David Gay

TM

ABGTE Euphoria
OpenEuphoria Annotated Version – Tom Ciplijauskas

© OpenEuphoria Group

© 18 April, 2012

1

ABGTE Euphoria 2

ABGTE Euphoria, Preface

The Opening Screen to ABGTE2.

The First Lesson in ABGTE2

ABGTE is synonymous with “Euphoria Tutorial.” David Gay creat-
ed an ebook reader, code browser, and demonstration programs that
operatedunder DOSandprovidedanexcellent tutorialon the Euphoria
programming language. The year was 1997 and Euphoria was at ver-
sion 1.5.

By version 3.0 Euphoria was multi-platform and open source.
With the advent of OpenEuphoria 4.0, the Euphoria language has
been changed dramatically. OpenEuphoria no longer supports DOS,
now operates under Windows and Unix , the standard library has been
re-written and expanded, and the language has been modernized.

ABGTE Euphoria 3

The essence of Euphoria remains the same in OpenEuphoria.
That means ABGTE is still a valuable tutorial if the DOS specific
content is ignored.

While ABGTE2 is still available, running it under current operating
systems is problematic. Jacob extracted the contents of ABGTE2 and
produced an html version—making the tutorial accessible once again.

It was the intent of David Gay that his original work not be edited
or altered. This edition preserves his text and artwork. It has been
annotated making ABGTE relevant to users of OpenEuphoria.

Annotations appear like
this.

Tom

ABGTE Euphoria 4

HTML Conversion, Original Comments by Jacob

From the Euphoria web site:

Euphoria is a simple, flexible, and easy-to-learn programming lan-
guage. It lets you quickly and easily develop programs for Windows, DOS,
Linux and FreeBSD. Euphoria was first released in 1993. Since then Rapid
Deployment Software has been steadily improving it with the help of a
growing number of enthusiastic users. Although Euphoria provides sub-
script checking, uninitialized variable checking and numerous other run-
time checks, it is extremely fast. People use it to develop Windows GUI
programs, high-speed DOS games, and Linux FreeBSD X Windowsppp
programs. It is also very useful for CGI (Web-based) programming.A description of Euphoria 3

Euphoria is free and open source software. You can download it
here.1

This is a conversion of David Gay’s interactive DOS tutorial,which
canstill be downloaded fromthe archive.It overcomes some limitations
of the original format, such as not being able to print out any text or
demo programs (which are here listed in the body of the text), and of
course, the tutorial can now easily be read by Linux / FreeBSD users.
The tutorial assumes no prior knowledge of programming in any lan-
guage,andisa finecomplement to theofficialEuphoriadocumentation.
I suggest you copy and paste each demo program to your favourite ed-
itor as you come to it, then add these lines at the top:

with trace
trace(1)

This will enable you to step through each line of code and see the
variables change as the programruns.Note that the content of the tuto-
rialhas been faithfully preserved fromDavid’s executable,so occasion-
al references to “the console,” etc (which may give rise to some puzzle-
ment) are a reflection of the original format.There have been many ad-
ditions andenhancements to the language during the years since 1997
when this tutorial was originally written. Chapters 21and 22 should re-
ally be re-named ’Euphoria And OS’, to reflect the fact that Euphoria
is now multi-platform. The download now includes a database system
(EDS), and more recently, multi-tasking was built-in to the interpreter.
In spite of this, the tutorial still stands as the most comprehensive in-
troduction to the basics. The later chapters were copied directly from
a screen, so a few errors may have crept in. Also, although the demo
programs should work ok, I haven’t tested them all. If you find any er-
rors / bugs, drop me a line at jacobite1@fastmail.fm, and I’ll fix them.

1www.OpenEuphoria.org

ABGTE Euphoria 5

TM

ABGTE Euphoria
OpenEuphoria Annotated Version

ABGTE Euphoria 6

ABGTE2, Original Comments by David Gay

The Origin Of A Beginner’s Guide To Euphoria II

Where to begin? I suppose I should start from my
beginning….

It all started when I got my first computer (a TRS-80 Model
I) in 1981. I was 17 back then, and like any bright-eyed teen, I was
intrigued with the technology of that time. I enjoyed fiddling with
the hardware and making it do what I wanted, even though it only
had 4K (!!!!!) of RAM and virtually no semblance of an operating
system (yep, everything hardcoded into the computer). But what I
really liked was the ability to write my own programs.At that time,
all I had to work with was a primitive form of Radio Shack BASIC
and Z-80 Assembler, but it was worth the effort.

As time went on and the technology became more advanced,
I played with more programming languages. I played with GW-
BASIC, then QuickBASIC (both the compiler and interpretor ver-
sions). I also flirted with Assembler.But like the programming lan-
guages on my TRS-80, I couldn’t find the language I was really look-
ing for.

One of my reasons for this dissatisfaction was the weak sup-
port in graphics. I was certainly not an artist by any standards,
plus the amount of graphic commands available did not make it
very easy to create images. Even though there were programs out
there that created very professional graphics, it was extremely
hard to get information in layman’s term on how to load them into
the programs I wrote.A second beef was the amount of (what I con-
sidered personally to be) “junk variable” types that were too com-
plex and too inflexable to be of any use.My third beef was the trend
programming languages were heading. I noticed that as program-
ming languages got more powerful, the protective barrier between
the program and the operating system became thinner.By the time
I went to C programming, I was playing with dangerous commands
like pointers and Assembler calls to graphic routines. As a result,
I found current programming languages too inflexable for writing
software.

ABGTE Euphoria 7

This changed when I came across Euphoria. It was version
1.2 at the time, which I downloaded from a BBS. The first thing
that caught my eye was the number of variable types. There were
only two types: atoms and sequences. I initially found this rather
lacking, seeing that C for example had many variable types. What
could be done with two? But as I experimented with the code, I un-
derstood the reasoning behind Euphoria variables. By only intro-
ducing two very elemental types of variables, you have the abili-
ty to use them as building blocks to create more complex variable
types for your use. The concept of the sequence type variable was
extremely radical, yet had the best traits of both singular data
values and arrays. With this sort of variable, you can treat it as
both a single value and as a list of values. Another thing that I re-
ally liked about Euphoria was the emphasis on program stability.
Euphoria will not allow you to write programs with uninitialized
variables. Euphoria also did away with pointers, yet still allowed
programmers to pass a series of values to procedures without any
restrictions. C on the other hand needs pointers in order to pass a
dynamic list of parameters to procedures. But the best I saved for
last: the ability to read in bitmapped graphics (.BMP’s) without
needing to write the required code. In other words, only one line of
code is needed to read in any .BMP made by a professional graphic
program.To display that bitmap on the screen,you only needed one
line of code. That’s two lines of code!

I was won over. I registered at 1.3 and became interested in
learning this language in more detail. Actually, I became a fan and
started to tell my friends about it. Some of them were a little leery
at first. They felt Euphoria’s new approach to data organization
and the easy way it can handle bitmapped graphics made it more
like an intelligent “query” script instead of a programming lan-
guage. However, once they tried to write sample programs with the
shareware release, they realized how powerful Euphoria was.

It was at this point I wanted to kill two birds with one stone,
namely to learn the language in more depth and to further adver-
tise Euphoria to other people. This stone turned out to be a web
page devoted to teaching novice programmers about Euphoria. I
felt I could pull it off because I have tutored people in QuickBASIC
before, and also was a computer programmer for two years before
the recession of 1990 put a permanent change to my career. Also,
while Rapid Deployment’s Euphoria manual explained Euphoria’s
features clearly, it could not teach a user who was totally new to
programming how to write a program. I mean, how could they un-
derstand what a variable was, or how to perform input and output?
I wrote an Email to Rapid Deployment Software asking for permis-
sion to write a web page that taught Euphoria programming on a
beginner’s level. When they gave me the go-ahead, I began to write
the first six installments of “A Beginner’s Guide To Euphoria.”

ABGTE Euphoria 8

On April 21st 1996, “A Beginner’s Guide To Euphoria” made
it’s debut on the Internet with the first six installments. As time
went on, I wrote more installments and added them to the web
page. I received positive comments in Email about how much the
web page helped them understand Euphoria. However, one com-
mon theme I was reading in the Email was a request to create an
“offline” version of the web page.This made sense because it by the
time I wrote my last installment, entitled “Euphoria And DOS” on
June 28th 1996, “A Beginner’s Guide To Euphoria” contained 36 in-
stallments.A lot of online time was needed to go through the entire
web page.

I didn’t want to write just any old text version of the program.
I wanted the “offline” version to be entertaining and interesting
to view. I also wanted to take the advertising of Euphoria one step
beyond by demonstrating what Euphoria can offer as you read the
tutorial. So, I decided to write a program version of the web page
that people could run on their computer. The program would be
based on a futuristic storyline about warring language factions of
a spacefaring civilization (Euphoria being one of them) fighting
for supremacy. The storyline was based on the very real history
of programming language evolution. After all, there are so many
programming languages available today. To learn Euphoria, you
would sit in front of this training console and read the information
on the screen. By using the mouse, you can move anywhere in the
tutorial and even run examples of Euphoria’s graphic and DOS
features.

The first tutorial (as I now like to call it) was released shy
of August 1st, 1996. And judging from the number of downloads
(nearly 2,500 from August 1996 to July 1997 according to Interlog),
and from the Email from users, the tutorial appears to have done
it’s job very well. However, it really wasn’t the tutorial I wanted to
release.Due to time constraints, I had to make some concessions on
the appearance of the tutorial. Instead of the original design of a
pure GUI interface using just a mouse, I created an acceptable yet
more awkward interface that mirrored more the keyboard than the
mouse. Also, I found that maintaining the text of the tutorial was
difficult. So, in February 1997, I decided that a new second tutorial
was necessary, and began work on what was originally called “A
Beginner’s Guide To Euphoria 2.00.” The new tutorial would be
similar to the first one with the following enhancements:

- the material introduced in the tutorial would follow the
style used by the reference manual supplied with the Euphoria
software.

- the user would only require a mouse to operate the entire
tutorial (with the exception of the keyboard during the execution
of any demo programs), using a simple to understand GUI in-
terface.

- the user can view the source of demo programs as well as
run them.

ABGTE Euphoria 9

- the second tutorial would use graphics and colour more
effectively, giving it a more professional look.

- the Euphoria programming language would be covered in a
much wider scale to appease those newcomers to Euphoria who
were proficient in other languages like QBasic or C. For example,
chapters were added explaining the concepts of bits and bytes and
how to use Euphoria library routines to manipulate them. At the
same time, the material was made more detailed and broadened
to help even the completely computer naive person who wanted
to learn programming.

By the time I finished, there was so little left of the original
tutorial I changed the name to “A Beginner’s Guide To Euphoria
II,” Version 1.00.

RDS was asked, as with the first tutorial, to test the tutori-
al and review the text to make sure everything was accurate. As
a result, this tutorial is RDS-approved as a supplement to under-
standing Euphoria. In addition, several “test drive” versions were
released between April 1997 and July 1997 for users to try in order
to find any bugs or inaccuracies in the text.

It is my intention to use the easier to maintain structure of
this tutorial to add references to any new features of Euphoria that
come out, rather than create yet another tutorial software. I do not
expect to write a “A Beginner’s Guide To Euphoria III” for at least
two years or more.

In the meantime, I am in the process of exporting the text
from inside the new tutorial to files stored in directory DATA This
is needed in order to reduce the size of the executable down to a
managable level. I also want to add a “print” feature and to expand
the remote to give it more features, like a “subject index.”

David Gay October 1st, 1997

Thanks

The name Euphoria and the programming language is copy-
right 1997 Rapid Deployment Software. My warmest thanks to
Robert Craig and Junko C. Miura of Rapid Deployment Software
for giving me permission to write this program tutorial, and for
their incredible efforts in bughunting and proofreading the tutori-
al. Without them, it just wouldn’t have been possible. Thanks also
to RDS for creating the Euphoria programming language!!!! :)

Thanks to Digital Liquid (www.digital-liquid.com) for their
(temporary) hosting and maintenance of the “A Beginner’s Guide
To Euphoria” web site. While our alliance was short-lived and
unsuccessful, it managed to give me precious time that I used to
get this tutorial back on track. Thanks Todd!

ABGTE Euphoria 10

Thanks also to my close friend Jennifer Hanson, pouty web
author genius. In addition to her flood of suggestions about the
tutorial graphics, her repeating of the following words motivated
me enough to finish a difficult project:

“Haven’t You Finished That Tutorial Yet?!?!”

Finally, thanks to everyone who tried the first tutorial, and
for telling me that it helped them understand Euphoria. May this
second one help a new batch of programmers!

David Gay
July 27th, 1997

ABGTE Euphoria 11

1. Euphoria Programs And The Programming Language

Before any understanding of Euphoria programming is be-
gun, you must first understand what the terms “program” and
“programming” mean. A program, simply put, is a series of com-
puter instructions organized in order to complete a given task. For
example, this tutorial’s task is to teach a newcomer how to program
in Euphoria. It is made up of computer instructions organized in
a way so it can carry out that given task. More complex programs
may have their primary task broken down into a series of smaller
tasks. For example, a spreadsheet program’s primary purpose is to
organize and calculate numeric data but this is then broken down
further into smaller tasks like graphing forecasting, incorporat-
ing the computed figures into a report and so forth. Your very first
programs will have very simple tasks, but as you create larger pro-
grams, those tasks will become more complex.The original text of

ABGTE2 has not been
altered. But, for current
users, color has been
added to show where oE
(Open Euphoria) dif-
fers from Eu (original
Euphoria).

Works on oE, v4 and up

Works on Eu, v3 and
down

oE users need to make
changes (often just small
changes.)

DOS specific

Not for oE

Most of the demonstra-
tion programs will run
(cut and paste from this
document) as presented.
Because oE retains the
original include library,
they execute without
problems. However, in-
clude is emphasized when
the new standard library
is the preferred choice.

To create a program on your computer is referred to as
“programming.” You may have also heard of the phrase “coding,”
which is the same as “programming.” “Coding” comes from the fact
that the instructions that make up a program are sometimes re-
ferred to as “program code.” It doesn’t really matter what terms
you use, just as long as you understand what they mean. But ex-
actly what do the individual instructions that make up a program
look like? And how do we enter and group program instructions to
create a program? Just as all words of our vocabulary make up the
English language, a set of all related computer instructions make
up a programming language.

The one programming language a computer understands is
called “binary.” It’s called binary because the program instructions
are made up of two numbers, 1 and 0, like 100101 for example.
Binary language is also referred to as “machine language.”

Unfortunately, to write a program in this very difficult lan-
guage is beyond the ability of most people, save for a very chosen
few. The very first computers of the 1950’s and 1960’s could only
be maintained by scientists who had a good understanding of ma-
chine language.

ABGTE Euphoria 12

As time went on, more understandable and easy to use pro-
gramming languages were created. The program instructions of
these languages were more English-like in appearance. Perhaps
you may have seen or heard of some of them, such as BASIC,
COBOL, RPG, ADA, FORTRAN, PASCAL, C and others.

OpenEuphoria,
free and open source.

Euphoria is the newest form of computer programming lan-
guage. For your personal interest, Euphoria stands for End User
Programming with Hierarchical Objects for Robust Interpreted
Applications. Quite a mouthful, but as you will soon discover, the
name is the only difficult part of the Euphoria programming lan-
guage to understand.

Any plain text editor will
work. See the oE Wiki for
some editor suggestions
and syntax files.

To create a Euphoria program, you first start up an editor
program that lets you enter Euphoria programming instructions,
called “statements.” Just as if you were writing a letter, you start
typing at the top of the editor window, and then proceed down-
wards. Exactly what you will be typing will be revealed soon. Un-
derstand for now you will require an editor program to do this.
MS-DOS’s EDIT program is satisfactory, or you can use ED, which
comes with the Euphoria software. Once you have finished typing
your Euphoria program, you can save it to the hard drive or floppy
drive as a file with .EX as the extension.

But you’re not finished just yet.Remember that your computer
only understands machine language. It cannot understand Eupho-
ria programming statements. So, it must be converted to machine
language.

There are two types of programs that can translate Euphoria
to machine language. Both do the same thing but they differ in
their methods.

The oE compiler is euc One is called a compiler. It takes a Euphoria program and
creates a machine language program. This machine language
replica has the same name as your Euphoria program, but has a
different file extension of .EXE.

The oE interpreter is eui The other type of translator program is called an interpreter.
It translates each Euphoria program statement to a machine lan-
guage instruction, which is then run. This differs from a compiler,
which creates the entire program to be run. Euphoria both comes
with a compiler (BIND.BAT) and an interpreter (EX.EXE).

To run a program using EX.EXE, you type:

For oE interpreter type:

eui filename

EX filename.EX

For oE compiler (transla-
tor) type:

euc filename

To create an executable using BIND.BAT, you type:

BIND filename.EX

ABGTE Euphoria 13

When the executable is created, type:

Under Unix run as

./filename

filename

Binding combines
an interpreter with
source-code, producing
“stand-alone” executa-
bles.

The translator, euc ,
makes actual compiled ex-
ecutables.

The Euphoria program that BIND.BAT will translate into a
machine language program is called a “source file.” The machine
language program is called an “object file.” EX.EXE generates
“object code.”

Sometimes it may not be possible to successfully translate
your Euphoria program to machine language. While entering
Euphoria statements, it is possible you may misspell a word. Just
as we have spelling and grammar rules in the written language,
Euphoria also demands we follow set rules when typing in these
statements. When a spelling or grammar type error is made dur-
ing the typing in of these statements, it’s referred to as a “syntax
error.” When your compiler encounters this error in your program
while trying to translate it to machine language, it will stop. You
will then see a message explaining what the error is, and where
it is in your Euphoria program. You then start up your editor, cor-
rect the statement in error and try to run the compiler or inter-
preter again.

All programs, no matter what purpose each serves, perform
one function. They all process data. This processing of data is
broken down into the following three stages listed below:

1. A program will accept data. The data will consist of numeric
figures from either an external source (a keyboard, mouse,
digital camera,or voice card) or from somewhere inside the
computer (such as a file on a CD-ROM, floppy diskette, or your
hard drive).

2. A program will analyze the accepted data. This step involves
temporarily storing the data for both arithmetic calculations
and comparison against predefined values, and then making a
decision based on the result of the calculation or comparison.

3. A program will present data in a meaningful form.This means
either displaying figures on the screen or printer, storing
information on the hard or floppy drive for another program
to use later, or creating graphics and sound from the computer
that has a meaning to the person running the program.

No doubt all of this has you eager to start learning how to
write your own Euphoria programs.Well, let’s get started on learn-
ing the actual concepts and instruction statements of the Euphoria
programming language!

ABGTE Euphoria 14

2. Variables And Data Objects

We mentioned previously that a program will store data for analy-
sis.Your computer’smemory (RAM) best resembles a huge group of
mail boxes, each of which is uniquely addressed by a number.Each
of these storage locations can hold a value between 0 and 255.Each
of these values is referred to as a “byte.” If values over 255 need
to be stored in RAM, it is split up between various locations. While
data is always stored as numbers in RAM, it can be both numeric
or characters like “A.”

To write a program that accesses RAM locations by address
number would be tedious, especially when dealing with large data
values. Thankfully, Euphoria offers a way to access stored data in
RAM not by the actual RAM address number, but by a label like
“salary” or “points.” This symbolically referenced memory location
is called a “variable.”

Variables are invaluable for two reasons. First of all, it’s much
easier to know where all your data is located in your program if
you use meaningful names. For example, if you are writing a space
combat game and want to store data representing the amount of
fuel you have left in your ship, storing it in a variable called “fuel”
makes it so much easier to find than some obscure RAM memory
address like 32767.

In addition, because a variable holds a single stored value re-
gardless of its size, there’s no complex handling of multiple RAM
locations when dealing with very large values. Euphoria does this
for you behind the scenes. When it comes time to compile or inter-
pret your program to be run, variable names are converted auto-
matically to actual RAM memory addresses. But that is something
a Euphoria programmer does not need to be concerned about.

ABGTE Euphoria 15

Variable names can be any length in size, and can both be real
words or made up ones that border on nonsense, as long as the
name itself is meaningful to the programmer. However, Euphoria
does place some limits on what you can use for a variable name.
First of all, variable names must start with a letter and then can
be followed by any combination of letters, numbers and the under-
score (“ _ ”). Second, case is significant. This means the variable
name “tax” is not the same as “TAX.” Finally, words used in the Eu-
phoria language cannot be used as a variable name. They include,
but are not limited to,words like “and,” “global,” “function,” “while,”
and “exit.” These words are called “reserved words.” A complete list
can be found in the Euphoria Reference Manual.

Now that we have completed our understanding of variables,
let’s move on to learn about the type of data we can store inside
a variable.

In Euphoria, all data is referred to as “data objects.” The rea-
son this term is used to describe data is because data isn’t some-
thing you work out in arithmetic calculations. Instead, data in Eu-
phoria is viewed as tangible items you can merge together, break
apart, twist, or alter at the slightest whim. As we go further into
understanding the Euphoria language, you will soon see this to
be true.

Atoms can now be writ-
ten with underscore spac-
ers: 1_000_000 or 1_23 or
0.0_3

Data objects come in two types. The first type is the atom,
which is a single numeric value. Below are examples of atoms:

2001 12.4 -5 3.14e3

The first three examples are very familiar to all of us, but the
fourth is an example of Standard Notation. The “e” means “times
10 to the power of,” with the number following. This means 3.14e3
is really 3.14 times 10 to the power of 3, which works out to 3140.

Standard notation is best used to represent atom values in a
compact form. Atoms can either be a floating point (with a decimal
point) or integer value (no decimal point) value, and can be either
positive or negative.Atoms can have a value range of approximate-
ly between -1e300 and +1e300 (that’s -1 followed by 300 zeros to
1 followd by 300 zeros, inclusive). While chances are good you will
never design a program that handles such huge numbers, it is nice
to have that wide a margin to work with.

The second type of data object is called a sequence, and is
a little more complex in structure. Sequences are a list of data
objects joined in the same manner as links on a chain. Each linked
data object is referred to as an “element.” Sequences can be made
up of either atoms, smaller sequences, or any mixing of both. You
can have sequences inside of sequences, which in turn are part of
bigger sequences, and so on, to any level of dimension. Computer
memory is the only limiting factor.

ABGTE Euphoria 16

Sequences always start with a “ { ”, have commas or “,” sepa-
rating each individual data object, and a closing “ } ”.Here are some
examples of sequences:

A sequence made up of atoms:

{2,4,6,8,10} .

A sequence that is made up of three smaller sequences:

{{31,32,33,34,35},{41,42,43},{51,52,53,54,55,56}}

namely

{31,32,33,34,35}, {41,42,43}

and

{51,52,53,54,55,56} .

A sequence that is made up of both an atom and two se-
quences:

{{100,101,102},200,{301,302,{-401,-402},303}}

namely

{100,101,102},200

and

{301,302,{-401,-402},303} .

Notice that the third sequence example has a sequence within
a sequence as the third element.

Sequences can be represented in the form of a character
string, like the text you are reading now. Character strings begin
with a quotation mark followed by any numbers, letters or special
characters, then ended with a second quotation mark. The charac-
ter string is translated by Euphoria to the sequence’s real form au-
tomatically.

For example, the following two values:

"David Alan Gay"

{68,97,118,105,100,32,65,108,97,110,32,71,97,121}

ABGTE Euphoria 17

are identical in value. They only differ in the way they are pre-
sented. The numbers in the second value are the ASCII codes of
each character. ASCII is a convention that assigns each character,
displayable or not, a numeric code. This convention was created to
ensure that all computers, no matter who made them, will display
data the same way. ASCII stands for American Standard Code for
Information Interchange.

Character strings are best used to define sequences that
are to be used for display on a screen or printer, such as names,
addresses, etc.

If you are feeling a little overwhelmed by all these terms,
like “variables,” “data objects,” “atoms,” and “sequences,” don’t be
alarmed. It’s because you haven’t had the chance to see how they
work in Euphoria. That will now change. You will now be intro-
duced to your first Euphoria programming statements,by learning
how to create variables for your program to use later.

ABGTE Euphoria 18

3. Declaring Variables In Euphoria

Before using variables in Euphoria, you first must “declare” them.
Declaring a variable is similar to declaring items in front of a
customs officer. When you declare items, you tell the officer what
they are, what type of items they are and so forth. In Euphoria,
declaring variables in a program involves two things: stating what
they are going to be named, and defining the type of data they are
supposed to hold.oE is more flexible—can

declare and assign in one
statement.

Eu style (declare, then as-
sign) still works.

To declare a variable in Euphoria, you use the following
syntax:

variable type variable name

variable type means the type of data object the variable will
hold.

variable name means the name of the variable, of course.

The first part of the variable declaration, the variable type,
comes in only four accepted words: “sequence,” “atom,” “object,”
and “integer.” “sequence’ means the variable can only hold data ob-
jects that are sequences. You cannot place atom data objects in this
type of variable. “atom” means the variable can only hold data ob-
jects that are atoms. Sequences are not allowed. A variable type of
“object” means the variable can hold both atom and sequence data
objects. One must wonder why we bother having variables of type
atom and type sequence when a type object variable can hold both.
Type object variables are needed to hold the result of program data
processing where the data type is unknown. “integer” means the
variable can hold atoms, but only integer atoms. An integer atom
can have a value between -1073741824 and 1073741823. If you
want to use even larger integer in your programs, you need to use
the type atom variables to hold them.

ABGTE Euphoria 19

Declarations do not have
to be at the top of the pro-
gram. It can be more clear
if declarations are made
just before a variable is
used.

Variable declarations usually appear at the top of the pro-
gram, so they are one of the first things typed in by the program-
mer. However, there are exceptions where they may appear else-
where in the program. A variable declaration is entered only once
for every variable in the program. Once entered, you cannot enter
a second variable declaration using the same variable name, even
if the variable type is different.

Let’s start entering our very first Euphoria statements. To
declare a variable named “address” that holds sequence type data
objects, we enter:

sequence address

To declare a variable named “age” that holds atom data objects
we enter:

atom age

To declare a variable named “grab_bag” that can hold both
atoms and sequences, we enter:

object grab_bag

To declare a variable named “whole_numbers” that can hold
integer atoms between -1073741824 and 1073741823, we enter:

integer whole_numbers

When dealing many variables of the same type, you can de-
clare them all with one variable type followed by a series of vari-
able names.

For example:

sequence name, address, city, country

will just as easily declare these four variables as if you used a
single declaration line for each variable. If you wanted to get really
fancy, this is also a legal way to declare multiple variables:

atom hours_worked,
 hourly_rate,
 deductions,
 net_income

Euphoria offers the ability to split variable declarations (and
other types of statements) into several lines as opposed to one line.
Just remember the commas, and only split the line where there is
a space.

ABGTE Euphoria 20

Having a variable type as part of a variable declaration is a
kind of safety system. It prevents a programmer from entering the
wrong type of value into a variable. It also ensures that certain
features of the Euphoria programming language that are meant
to work on one data type do not get slipped with a variable value
that is of a different data object type.

Which brings us next to the topic of variable values. Is there
an initial value placed inside a variable after it is declared? The
answer is no. Don’t get the impression, however, that there is noth-
ing inside a variable.Most likely it is left-over data from a previous
program run, and probably so garbled that it is unusable. For this
reason,Euphoria rulesdictate that a programmer must place a val-
ue inside a variable for the first time before it can be used.

The next few chapters will discuss the process of initializing
variables with values, and even changing those values. This is
an important part of Euphoria that must be clearly understood,
because it involves the primary purpose of all programs, which is
to process data.

ABGTE Euphoria 21

4. Assigning Values To Atom Variables, Part One

This chapter begins the topic of placing values in atom variables.
But first, an important note. Even though this chapter uses atom
variables in the examples, what you learn here also pertains to ob-
ject type variables. You can also use integer variables, but remem-
ber that integer variables only hold positive and negative whole
numbers. To place values in atom (and in other types of) variables,
you use an “assignment statement.”oE lets you declare a vari-

able and assign a value in
one statement.

You can still write write
programs as described
here.

The concept of assignment statements is really quite easy
to follow. Here is the syntax of the assignment statement listed
below:

variable = expression

variable is of course, a variable. The equal sign means “is
given the value of.” expression is either a constant value, another
variable, or a complex formula. An expression is evaluated to a
single value, which is then stored in the variable to the left of the
equal sign.

Let’s begin with a simple example of assigning a variable with
a value:

atom year, copy_of_year
year = 1997
copy_of_year = year

(Author’s note: first, you could say the above is a simple exam-
ple of a program, and second, from this time forth, any examples
involving Euphoria will always show the appropriate variables
declared.)

In the example on the previous page, the atom variable “year”
is being assigned a value of 1997. The value 1997 is the simplest
example of an expression, as it is already a value of 1997. The
variable “copy_of_year” is given a value of what was just placed
in “year.” Euphoria checks to see what is inside “year,” and then
places that value in variable “copy_of_year,” which is 1997.

atom letter_of_the_alphabet
letter_of_the_alphabet = ’C’

ABGTE Euphoria 22

In the example above, the variable, “letter_of_the_alphabet” is be-
ing assigned a numeric value,but the numeric value is represented
here as a character between single quotes or ’. This character rep-
resentation is evaluated into the numeric ASCII value of the letter
C. This means “letter_of_the_alphabet” ends up containing a value
of 67.

Here’s another way to assign an atom variable with a numeric
value:

atom double_quotation_mark
double_quotation_mark = ’\ " ’

This example program places the ASCII value of a double quota-
tion mark in variable “double_quotation_mark,” which is 34. It
works just like the previous example that used a character repre-
sentation of a numeric value. This form of expression is commonly
used for special characters that cannot be entered by keyboard, or
to use Euphoria symbols like the for output. Other examples of “\”
–prefixed special characters include “\n” for new line, “\t” for tab,
and “\\” for reverse slash. A complete list of these special charac-
ters is explained in the Euphoria Reference Manual.

But expressions can also be more than just a special repre-
sentation of a single value. They can be the result of very complex
arithmetic calculations.In this case, expressions are a combination
of numbers, other variables, and special arithmetic operators. In
Euphoria, the following symbols listed below are arithmetic oper-
ators:

+ addition

- subtraction

* multiplication

/ division

Let’s put these operators to use in the program example on
the following page. Here is a program example that works out the
amount of tax paid and the total cost of a pair of jeans.

atom jeans, tax, tax_paid, total_cost
jeans = 22.00
tax = .07
tax_paid = jeans * tax
total_cost = jeans + tax_paid

Variable “jeans” represents the sale price of a pair of jeans, so we
assign it a value of 22.00 (with decimal points to look like dollars).
Variable “tax” is then assigned a value of 7%, which is 0.07. Next,
variable “tax_paid” is computed by multiplying the values of
variables “jeans” and “tax” together.Finally, variable “total_cost” is
assigned the sum of the values stored in “tax_paid ” and‘ ‘jeans.”

ABGTE Euphoria 23

The previous program examples have all shown variables be-
ing initialized for the first time, and only once. What happens if a
variable already contained a value, but was assigned a new value?
Well, the old value of the variable would be replaced with the new
value. A variable may only hold one value at any time. But this
shouldn’t be considered a problem, as variable value modification
is just as important as initialization. Note the following example:

atom counter
counter = 0
counter = counter + 1
counter = counter + 1
counter = counter + 1

What is the value of variable “counter” after this program fin-
ishes?

Let’s look at the program again, this time examining it line
by line:

atom counter
counter = 0 -- "counter" is initialized to 0
counter = counter + 1 -- "counter"’s value is now 1, by adding 1 to 0
counter = counter + 1 -- "counter"’s value is now 2, by adding 1 to 1
counter = counter + 1 -- "counter"’s value is now 3, by adding 1 to 2

After variable “counter” is set to zero, its old value is replaced
with a new one in the next 3 lines, by taking the original value and
adding 1 to it to produce a new value. This is done three times in
the program example.

An introduction to relational and logical expressions is our
next stop!

ABGTE Euphoria 24

5. Assigning Values To Atom Variables, Part Two

Continuing our discussion of assigning atom variables with
values, we now introduce relational and logical expressions.

Relational means based on comparison. For example, you can
be taller than one person, yet shorter than another. Your parents
are older than you, yet at the same time, you are older than your
children or younger siblings.There is no ’boolean’ type.

Euphoria works fine with-
out it. But you may define
one if you really need it.

It works the same way in Euphoria.
Is one variable value larger or smaller than an expected value? Is
this value equal or unequal in a comparison with another value?
Relational expressions are evaluated to one of two values: 1 for
true, or 0 for false.

The same syntax as in
most languages.

Here are a list of valid Euphoria relational operators:

< less than

> greater than

<= less than or equal to

>= greater than or equal to

= equal to

!= not equal to

Here is a program example that uses several of these opera-
tors in relational expressions.See if you can guess the value of each
variable first before reading the explanation of each line:

atom t1, t2, t3, t4

t1 = 5 > 4 --1 (TRUE) in " t1 "
 : 5 is GREATER than 4

t2 = 7 != 7 --0 (FALSE) in " t2 "
 : 7 is EQUAL to 7, not UNEQUAL

t3 = 13 <= 13 --1 (TRUE) in " t3 "
 : 13 is LESS THAN OR EQUAL to 13

t4 = 12 = 2 * 6 --1 (TRUE) in " t4 "
 : 12 is EQUAL to 2 * 6, which is 12

ABGTE Euphoria 25

Logical expressions focus more on whether a given situa-
tion is true or false. For example, if one says, “The bedroom light
is switched on.” the statement is either true (the light is indeed
switched on), or false (the light is not switched on).

The analysis of the truth of a situation can be more complex
than the bedroom light example. For instance, the handling of
delinquent accounts at a loans company requires more than one
condition to be met. First of all, the account must be in a state of
not being paid. Second, it must be in that state for a given set of
time before the customer is called.Both of these conditions must be
true before an account is considered delinquent (the given situation
is true). If any one of the conditions are not met, then the account
cannot be delinquent (the given situation is false).

Euphoria has logical operators that work using a system
called BOOLEAN LOGIC. This system dictates that the outcome
of paired conditions, either single values or relational expressions,
are based on the rules below:

 Condition 1 Condition 2 Result

============= =========== =========

1 (true) and 1 (true) 1 (true)

0 (false) and 1 (true) 0 (false)

1 (true) and 0 (false) 0 (false)

0 (false) and 0 (false) 0 (false)

1 (true) or 1 (true) 1 (true)

0 (false) or 1 (true) 1 (true)

1 (true) or 0 (false) 1 (true)

0 (false) or 0 (false) 0 (false)

}

An “and” logical expression only evaluates to a single true val-
ue if both conditions are themselves evaluated to be true, and an
“or” logical expression is only false when both conditions are false.

So let’s put this knowledge to use in an example Euphoria
program:

atom value1,value2,test1,test2,test3,test4

value1 = 50
value2 = 25
test1 = value1 < 10 and value2 = 25
test2 = value1 > 5 and value2 = 12.5 * 2
test3 = value1 != 100 or value2 < 90
test4 = value1 = 5 or value2 > 27

Try to guess the value of each variable before going to the
next page.

value1 = 50
value2 = 25
test1 = value1 < 10 and value2 = 25

ABGTE Euphoria 26

Because variable “value1” is not smaller than 10, the first
relational expression is false. Variable “value2” is equal to 25, so
the second part of the “and” expression is true. But because one of
the relational expressions were not true, “test1” is assigned a value
of 0.

test2 = value1 > 5 and value2 = 12.5 * 2

Because variable “value1” is larger than 5, the first relational
expression is true. Variable “value2” is equal to 12.5 * 2, so the
second relational expression of the “and” logical expression is
true. Because both expressions are true, “test2” is assigned a value
of 1.

test3 = value1 != 100 or value2 > 2000

The first relational expression of this “or” logical expression
works out to be true because 50 is not equal to 100. The second
relational expression works out to be false because 25 is not larger
than 2000. As a result, the “or” logical expression works out to be
true because at least one of the expressions was true, so variable
“test3” is assigned a value of 1.

test4 = value1 = 5 or value2 < 49

Variable “value1” is certainly not equal to 5, so the first rela-
tional expression is false. Variable “value2” is not smaller than 49,
so the second relational expression is also false. Because neither
relational expression worked out to a true value, the “or” logical
expression is false. This means “test4” is assigned a value of 0.

Euphoria also has a “not” logical operator that gives you the
oppositevalueof a relationalexpression.Here’sa programexample
that best demonstrates this:

atom opposite, result

result = 15 < 20
opposite = not result

First, “15 < 20” is evaluated, which has 1 (true) stored in vari-
able “result,” Next, “not” reverses the value in “result” to 0 (false),
so the variable “opposite” is assigned a value of 0. In short, if the
expression beside a “not” works out to be false, “not” reverses it
to true. If the expression works out to be true, “not” reverses it to
false. “not” gives you the opposite value of the outcome of an ex-
pression.

You can link as many relational and logical expressionstogeth-
er to make larger complex expressions. You can even link arith-
metic, relational and logical expressions together to formulate a
value to be stored in the appropriate variable.However, you should
know a few important things.

ABGTE Euphoria 27

In a situation where you are using the equal sign (=) in a re-
lational expression, Euphoria uses a rule to define when the equal
sign is an assignment operator and when it is a relational operator.
The leftmost equal sign on the line is assumed to be an assignment
operator. All other equal signs that follow are assumed to be rela-
tional operators.

The outcome of arithmetic expressions can be tested with
logical operators. This means you can do expressions like the fol-
lowing:

complex_result = value1 * 5 and value2 - 8

If arithmetic expressions are used with logical operators,
non-zero results like 5.2 or -4 are assumed true. Zero results still
mean false.

Euphoria also uses a system called precedence that defines
which parts of larger complex expressions are done first by default.
For example:

atom rent1, rent2, rent3, average_rent

rent1 = 500
rent2 = 600
rent3 = 400
average_rent = rent1 + rent2 + rent3 / 3

This example is supposed to work out the average of three
rents. But precedence dictates that division is done first before
addition.This means this program will work out the average of the
rents incorrectly!

We can fix this by using parentheses to force different parts
of the expression to be worked out in a manner different from
precedence of operators:

average_rent = (rent1 + rent2 + rent3) / 3

If in doubt, just add ()
braces to make things
clear.

This forces the three rents to be added together before divi-
sion takes place. A complete list of precedence operators is in the
Euphoria Reference Manual.

This completes your introduction to assigning atom (and ob-
ject) type variables.If you clearly understand variable assignment,
arithmetic, logical and relational expressions, and precedence,
move on to sequence variable assignment in the next chapter. If
not, please go over the two chapters again. You must understand
these concepts before moving on to sequence variable assignment.

ABGTE Euphoria 28

6. Assigning Values To Sequence Variables

Assigning values to sequence variables is just like assigning val-
ues to atom variables. Sequence variables can be given an actual
value, or the result of an expression. And as with atom variables,
the expressions can be arithmetic, relational or logical. However,
because sequences consist of linked data objects instead of a single
one, there are a few twists to learn about. It’s important to note that
the examples used in this chapter can also be applied to object type
variables.Sequences are what make

Euphoria flexible and
powerful.

It is important to fully un-
derstand how sequences
work.

Here’s a simple example of a sequence variable being assigned
a value:

sequence list_of_values

list_of_values = {1,2,3,4,5,6,7,8,9,0}

It is also legal to assign a sequence variable the following
value:

sequence Mister_No_Elements

Mister_No_Elements = {}

This is an example of a sequence value with no elements. You
would use this approach to assign a sequence variable an “empty”
value before using it in the program. It’s similar to setting an atom
variable with a zero value.

If you wanted to store a sequence value that was a person’s
name, address or city of residence, you could use the previous-
ly mentioned character string method to represent a sequence
value.

sequence my_name

my_name = "David Alan Gay"

In this program example, we’re storing “David Alan Gay” into
a sequence variable meant to be my name. But understand that
Euphoria converts this character string into the actual sequence
value before it is stored in variable “my_name.” If you could look
inside variable “my_name,” this is what you would see:

ABGTE Euphoria 29

{68,97,118,105,100,32,65,108,97,110,32,71,97,121}

It’s important to note that a character string of "D" for exam-
ple is NOT the same as ’D’ . The former is a character string rep-
resentation of a sequence value that is one element long, while the
latter is a character representation of an atom value.

Important: an atom is not
a sequence.

But, sometimes, x and { x
} ’behave’ as if they were
the same. For example we
say the length of x and { x
} are the same, because it
is convenient for some op-
erations.

Having said this, you shouldn’t assume also that you can as-
sign a one element long sequence value into both an atom variable
and a sequence variable. An atom value and a one element long se-
quence value are NOT identical!

The previous sequence variable assignment examples used
values that are considered one-dimensional (where the elements
are all atom values). Remember that sequences can also be com-
posed of smaller sequences or a mix of atoms and smaller se-
quences. This program example assigns more complex sequence
values to a series of sequence variables:

sequence seq1, seq2

seq1 = {{1,2,3}, {4,5,6}, {7,8,9}}
seq2 = {{5,5,5,5,5,5,5}, -98, {100,-50,20.3}}

You could also represent the previous program example to help
clarify the individual elements of each sequence using split lines:

sequence seq1, seq2

seq1 = {{1,2,3},
 {4,5,6},
 {7,8,9}}

seq2 = {{5,5,5,5,5,5,5},
 -98,
 {100,-50,20.3}}

Instead of using constant elements in a sequence value, you
are also allowed to use variable names and expressions to de-
fine the elements in a sequence value to be stored in a sequence
variable:

sequence mixed_bunch
atom some_atom_element

some_atom_element = 502
mixed_bunch = { "Euphoria" , some_atom_element,
 some_atom_element/2}

ABGTE Euphoria 30

Before this sequence value is stored in variable
“mixed_bunch,” each individual element must be worked
out. In element 1, the character string “Euphoria” is con-
verted to a true sequence value. In element 2, the value of
“some_atom_element” is used. In element 3, the expression of
the value of “some_atom_element” being divided by 2 is worked
out. Once these steps are completed, the actual value is stored
in “mixed_bunch.”

You can also use arithmetic, relational,and logical expressions
to assign values to sequence variables, using the same operators
introduced in the previous chapters on atom variable value assign-
ment. This program example below works out a rent increase for
five different apartments:

sequence old_rents, new_rents
atom rent_increase

old_rents = {413,500,435,619,372}
rent_increase = 1.05
new_rents = old_rents * rent_increase

Variable “old_rents” is given a 5-element sequence value that
is the old rent amounts for five apartments. “rent_increase” is
assigned the percentage to raise the rents by. “new_rents” is the
new rents of the five apartments.

Let’s look at the statement that works out the new rents
more closely:

new_rents = old_rents * rent_increase

When using both atom and sequence variables or values in a
binary expression (something that is made up of two parts), the
atom part is replaced with a temporary sequence value that is as
long as the other sequence. This is done before the expression is
evaluated. As a result, variable “rent_increase”’s value becomes

{1.05,1.05,1.05,1.05,1.05} .

So, the above expression is then worked out in the following
manner:

element 1 of "old_rents" (413) x element 1 of temporary sequence (1.05)
element 2 of "old_rents" (500) x element 2 of temporary sequence (1.05)
element 3 of "old_rents" (435) x element 3 of temporary sequence (1.05)
element 4 of "old_rents" (619) x element 4 of temporary sequence (1.05)
element 5 of "old_rents" (372) x element 5 of temporary sequence (1.05)

The result of this element by element multiplication stores
the value of:

{433.65, 525, 456.75, 649.95, 390}

ABGTE Euphoria 31

in variable “new_rents.”

This also works for logical and relational expressions as well.
Here is a program example that uses sequence and atom in both
expression types:

sequence test1,test2

test1 = {1,0,0} and 0
test2 = {20,30,40} <= 30

Try to determine the value of “test1” and “test2” before going on to
the next page. It’s just like the rent increase program example!

element 1 of {1,0,0} (1) and element 1 of {0,0,0} (0) = 0
element 2 of {1,0,0} (0) and element 2 of {0,0,0} (0) = 0
element 3 of {1,0,0} (0) and element 3 of {0,0,0} (0) = 0

Thus, variable “test1” is assigned a value of {0,0,0}

element 1 of {20,30,40} (20) <= element 1 of {30,30,30} (30),
 giving a value of 1.

element 2 of {20,30,40} (30) <= element 2 of {30,30,30} (30),
 giving a value of 1.

element 3 of {20,30,40} (4d0) <= element 3 of {30,30,30} (30),
 giving a value of 0.

Thus, variable “test2” is assigned a value of {1,1,0}

If two sequence variables or values are involved in a binary
expression, both sequence lengths must be the same. For example,
you cannot have an expression that tries to add a five element se-
quence and a six element sequence together to produce a result.
You can, however, use sequences that are the same length but with
different element types. This means you can add a sequence com-
posed of atoms to a sequence composed of sequences.This program
example helps clarify this point:

sequence seq1, seq2
seq1 = {1,0,1,0,1} or {0,1,0,1,0}
seq2 = {2,{2,2},2} + {{2,2},2,{2,2}}

Variable “seq1” is assigned a value of {1,1,1,1,1} , while
“seq2” is assigned a value of {{4,4},{4,4},{4,4}} . The rule of
atoms and sequences in a binary expression was used in working
out “seq2” ’s value.

This chapter not only taught you how to assign values to se-
quence type variables, it also showed you how powerful sequences
can be in data manipulation. With a single Euphoria statement,
you can change a series of linked values in a flash. Try doing that
with a handful of atom variables!

ABGTE Euphoria 32

But all of this is at the top level of the sequence. How do we
access and change individual elements of a sequence, or create
new sequence values by joining existing atom and sequence val-
ues in our programs? Well, the next chapter will focus on these
topics as we journey further in the adventure that is the Euphoria
language!

ABGTE Euphoria 33

7. Sequence Element Access And Manipulation

Even though we devoted an entire chapter of this tutorial to the
assignment of sequence variables with entire sequence values, it
is actually the handling of elements that will take up most of your
time when programming with sequences. This makes sense, as
sequences allow the programmer to handle many individual data
objects very quickly and all at once.This chapter will show you how
to extract elements out of sequences and also to link them together
to make new sequences.

To start off, you need to know the Euphoria syntax required
to reference individual elements of a sequence. It is shown on the
next page, as it requires a considerable amount of explanation.

variable = sequence variable[element number(s)]

Accessing an element involves the use of an assignment state-
ment. sequence variable contains the value that we want to ref-
erence the elements in element number(s)means one or more el-
ement numbers that are being referenced. The square braces [and
] are used to tell Euphoria that this is an element number and are
always on either side of the number. The first element number in a
sequence always starts at 1, and increases by one with the second
and following elements after. Accessed elements of a sequence are
stored in a receiving variable, defined here to the left of the equal
sign as variable. The actual type of the variable to receive the el-
ement depends on the type of data object the element is. If the ele-
ment is a sequence, the receiving variable must be able to hold se-
quences. If the element is an atom, the receiving variable must be
able to hold atoms.

ABGTE Euphoria 34

sequence list_of_days, list_of_months, month_name
atom days_in_month

list_of_months =
{ "January", "February", "March", "April",
 "May", "June", "July", "August",
 "September", "October", "November", "December"}

list_of_days = {31,28,31,30,31,30,31,31,30,31,30,31}

days_in_month = list_of_days[3]
month_name = list_of_months[3]

This program example obtains the name and number
of days for the month March from two sequence variables
(“list_of_months”and “list_of_days”) that were previously assigned
data. “month_name” is given the value of the third element of
“list_of_months,” and “days_of_month” is given the third element
of “list_of_days.” Notice both receiving variables have the correct
variable type needed to accept the values. This is important!

When accessing an element of a sequence that is itself a se-
quence, it is possible to access the elements inside that sequence as
well. What is required is another element index to access a second
level. To access elements within a two-dimensional index, you use
the syntax below:

variable = sequence variable [element number(s)][element number(s)]

If we were dealing with sequence made up of sequences, the first
element number(s) serves as the index number needed to access
any of the sequences making up the main sequence. The second
element number(s) serves to access the elements within the
sequence referenced by the first element number(s).

A program example on the next page will help clear up any
confusion in understanding how to use two indexes to reference
elements.

sequence days_of_months
atom no_leap_february, leap_february

days_of_months = {31,{28,29},31,30,31,30,31,31,30,31,30,31}
no_leap_february = days_of_months[2][1]
leap_february = days_of_months[2][2]

ABGTE Euphoria 35

This program example extracts the number of days in Febru-
ary in both a leap year and non-leap year situation. Look at
the second element of the sequence value stored in variable
“days_of_months.” It is itself a sequence two elements long. The
atom variable “no_leap_february” is assigned the value of 28,
the first element that makes up the sequence that is the sec-
ond element of “days_of_months” ([2][1]), while atom variable
“leap_february” is assigned 29, the second element that makes up
the second element of “days_of_months” ([2][2]).Notice the indexes
are in order of descending level, giving it a reversed appearance.

Here are the “ dos ” and “ don’ts ” of using element indexing
in any sequence. First of all, you can replace a constant number
with a variable name, like “[element_id]” for example.You can also
have more than two levels of element access if the sequence is built
for it. However, if an element is an atom, you cannot use another
level of element indexing to go deeper into that element: only
elements that are sequences can be accessed in this manner. Also,
you cannot use an element number of zero, or an element number
that is larger than the length of the sequence (for example, trying
to access element 4 in a sequence that is only 3 elements long).

It’s possible to reference more than one element of a sequence
at a time. The syntax below is a variation of what you were intro-
duced to before:

seq. variable = seq. variable[starting element..ending element]

Euphoria uses double periods (..) to indicate that this is not
a single element we are accessing but an inclusive (meaning
including the starting and ending points) range of elements.

The program example below shows how to access a range
of elements:

sequence nine_numbers, first_four, last_five

nine_numbers = {1,2,3,4,5,6,7,8,9}
first_four = nine_numbers[1..4]
last_five = nine_numbers[5..9]

"first_four" contains {1,2,3,4} }

"last_five" contains {5,6,7,8,9}

The symbol $ now means
‘the last element‘.

In this exam-
ple nine_numbers[5..9]
is the same as
nine_numbers[5..$]

A receiving variable is always of type sequence, as using a range
returns a sequence value, even if the starting and ending elements
are the same.

ABGTE Euphoria 36

Accessing ranges follow the same rules as accessing individual
elements. In addition, the starting and ending element numbers
must be within the length of the accessed sequence. If the starting
element number is equal to the ending element number + 1, a null
sequence ({ }) is returned. You cannot, however, have a situation
where the starting element number is greater than the ending
element number by more than 1. You can use ranges when dealing
with multi-dimensional sequences, but there are some limitations
as listed below in this example:

sequence bigseq, seq1, seq2
bigseq = {{1,1,1},{2,2,2},{3,3,3}}
seq1 = bigseq[1][1..2]
seq2 = bigseq[1..2][1]

While you can access a range in a sequence element, you
cannot reverse it to access an element out of a range of sequence
elements, as in “seq2.”

If we changed the syntax around to place the referenced
sequence element on the left side of the equal sign, we would have
the ability to change the value of a specific element:

sequence variable [element number(s)] = expression

Here is a program example that demonstrates how to change
both a single element and a range of elements:

sequence bunch
bunch = { "cat",5,{1,9,8,4},{0,0,0}}
bunch[1][1] = ’b’
bunch[2] = {7,7,7} + 1
bunch[3][3..4] = {9,7}
bunch[4][1..3] = -20

Let’s walk through the program example to understand what
is going on:

ABGTE Euphoria 37

bunch = { "cat",5,{1,9,8,4},{0,0,0}}
-- assign variable "bunch" with the value of
-- {{99,97,116},5,{1,9,8,4},{0,0,0}}

bunch[1][1] = ’b’
-- access first element in element 1 of "bunch"
-- and change it from 99 (’c’) to (98) (’b’),
-- "bunch[1]" is now {98,97,116}

bunch[2] = {7,7,7} + 1
-- access second element of "bunch"
-- and change it to the value of expression {7,7,7} + 1,
-- "bunch[2]" is now {8,8,8}

bunch[3][3..4] = {9,7}
-- access third and fourth elements in element 3 of "bunch",
-- and replace with {9,7}, "bunch[3]" is now {1,9,9,7}

bunch[4][1..3] = -20
-- access all three elements in element 4 of "bunch"
-- and replace with {-20,-20,-20},
-- "bunch[4]" is now {-20,-20,-20}

When a single atom value is being assigned to a range of el-
ements, Euphoria converts this to a temporary sequence value
equal to the length needed to cover the starting and ending ele-
ment numbers in the range. The sequence value is made up of the
original atom value repeated as many times as needed.That is why
“bunch[4]” is assigned a value of {-20,-20,-20} .

When the program example completes, the value of variable
“bunch” is:

{{98,97,116},{8,8,8},{1,9,9,7},{-20,-20,-20}}

You can also create new sequence values in variables by
adding together existing atom or even sequences. To do this, you
use the syntax below:

sequence variable = expression & expression

The & operator joins together expressions that evaluate into
atom or sequence values to form new sequences. The result is a se-
quence that is as long as (in elements) the total sum of the lengths
of the atoms and sequences used in the joining. For example, join-
ing a four element long sequence with an atom gives a five element
long sequence. This program example demonstrates the results of
several joining attempts:

ABGTE Euphoria 38

sequence s1, s2, s3

s1 = 5 & 4
 -- s1 is assigned {5,4}

s2 = 90 & {30,60}
 -- s2 is assigned {90,30,60}

s3 = {{1,1},{2,2,2}} & {3,3,3} + 1
 -- s3 is assigned {{1,1},{2,2,2},4,4,4}

Congratulations! You now understand the basic concepts of
Euphoria! Feel free to review the previous chapters again. A full
understanding of the core concepts is needed to learn the topics in
the next chapters ahead.

ABGTE Euphoria 39

8. Introduction To Library Routines

The chapters you have read so far have helped teach you how to ac-
complish the primary purpose of a program:the processing of data.
You know the two types of data, you know how to declare variables
to hold data, and you know how to use assignment statements in
order to initialize and change values in variables. However, this is
only the core. The declaration and assignment statements alone
are not enough to make a program that actually does something
useful.

oE Many of the libraries
described here are still
available, but are intend-
ed for backwards compati-
bility. Use the standard li-
brary instead. DOS spe-
cific routines (graphics,
mouse, sound) are limit-
ed Eu3

Euphoria has something called “library routines” that allow
you to do things beyond the power of simple assignment state-
ments. When requested by the programs that you will write, they
allow you to access specific features of your computer. This allows
you to write software like games, office and home applications, or
system utilities.

Euphoria (Version 1.5) has grouped all library routines into
the following categories:oE library is larger, and

organized differently

• Predefined Types - library routines that test the type of
a data

• Sequence Manipulation - library routines that offer advanced
sequence handling features

• Searching and Sorting - library routines that compare, look
for, and sort data objects

• Pattern Matching - library routines that can convert alphabet
case and allow pattern matching in a string of characters

• Math - library routines that handle advanced mathematic
formulas far beyond the power of the math operators +,-,/,
and *

ABGTE Euphoria 40

• Bitwise Logical Operators - library routines that handle
binary bits

• File And Device I/O - library routines that let programs use the
hard and floppy drives, screen, keyboard, and other computer
hardware.

• Mouse Support - library routines that let your programs use
the features of the mouse, like clicking buttons and pointer
movement.

• Operating System - library routines that handle your pro-
gram’s relationship with the operating system on your com-
puter.

• Special Machine Dependent Routines - library routines that
allow direct access to computer resources normally accessed
by Euphoria.

• Debugging - library routines that lets you do diagnostics on
the program while it runs.

• Graphics And Sound - library routines that lets your programs
perform multimedia features like graphics and sound.

• Machine Level Interface - library routines that allow access to
low level (machine language) features of the computer

We will cover most of the library routines in this tutorial,
except those that involve machine language work. These are for
the advanced programmer who has machine language experience.
The library routines will be introduced based on the subject in each
of the next chapters ahead.

Where are the library routines stored? Well, they are defined
in one of two places. Some are written in machine language and
are defined in the interpreter EX.EXE. The rest are written in
the Euphoria programming language. Library routines written
in Euphoria require a special Euphoria programming statement
called an “include” statement. The syntax is listed below:Legacy Eu include files

are in /include. Current
oE include files are in /in-
clude/std

Routines within are in-
terpreter itself are called
built-in routines—no in-
clude statement is needed
for them to work.

include (file name).e

include is no longer re-
stricted to the top of your
program. But, can not be
nested

To use library routines written in Euphoria,an include state-
ment MUST be at the top of your program or they will not work.
When you use EX.EXE to interpret your program, or BIND.BAT

Compile using euc

to create a machine language replica, (file name) is referenced to
get the programming statements of (file name).e, the library rou-
tine(s) stored in there. Include files always end in an .e extension.

The ‘.e‘ is common but not
mandatory, ‘any‘ or ‘no‘ ex-
tension is permitted

The name of the include file will depend on the Euphoria-cod-
ed library routine you are using. Euphoria (Version 1.5) has 8 in-
clude files, listed below with a brief description of each:

ABGTE Euphoria 41

These are legacy library
files. Use the standard li-
brary instead • GRAPHICS.E —Graphics And Sound

• SORT.E —Sorting Routine

• GET.E —Input And Conversion Routines

• MOUSE.E —Mouse Routines

• FILE.E —Random Access File Operations And Directory
Functions

• MACHINE.E —Machine Level Programming For 386’s
And Higher

• WILDCARD.E —Wildcard String Matching And Con-
version

• IMAGE.E —Graphical Image Routines

Remember to look up the
new replacements in the
standard library When a new Euphoria-coded routine is introduced in the tutorial,

the proper include file will be shown, so don’t worry about remem-
bering all these include file names.

The value returned by a
function may now be ig-
nored.

In this sense, functions
can be treated as proce-
dures.

There are two kinds of library routines: procedures and
functions. The only difference between a procedure and a function
is that a function will return a value after it finishes running,while
a procedure does not. To call a library routine that is a procedure,
here is the following syntax below:

procedure name (parameters)

The ‘parameter’ is proper-
ly called an ‘argument’

The procedure name is followed by a pair of brackets that
contain a list of values to be sent to the procedure for processing
called parameters.Parameters can be data object values,variable
names, or expressions that work out to a value. Procedures can
have no parameters (if they are not required), or an endless list of
parameters. If more than one parameter is passed to a procedure,
each parameter is separated by commas. If no parameters are
passed, then the brackets are placed back-to-back with no spaces
in-between, like “()”.

The following are actual Euphoria procedures that you will
be learning, about later. They are being presented here for you to
see how each accepts parameters. Don’t worry about what they do
just yet.

print(1, "Hey,now!")

clear_screen()

pixel({BRIGHT_BLUE,BRIGHT_RED,BRIGHT_GREEN},{100,150})

ABGTE Euphoria 42

Functions are identical in appearance to procedures, so the
syntax of a function isn’t hard to learn if you already understand
the syntax of procedures. However, a function requires a slight
addition to its syntax in order to return a value, as previously
mentioned. The syntax of a function is on the next page.

receiving variable = function name (parameters)

Because a function returns a value after processing is com-
plete, it must be used in an assignment statement with a variable
on the left side of the equal sign to receive the returned value. You
could say a function is very similiar to an expression because, like
an expression, it returns a single value.Functions can return a val-
ue of any data object type (an atom or sequence). Some Euphoria
functions can return both data object types. For this reason, it is
advisable to have a receiving variable of type object to handle both
types of return values. You may remember, in our discussion on
declaring variables, we mentioned object type variables are used
when the type of data being returned from a program process is
unknown. Now you know why object type variables are important
when dealing with functions!

This is how a function is
used most often.

Because a function’s syntax requires the use of an assign-
ment statement, and because it returns a single value, it can be
part of an expression that is itself evaluated to a single value.Here
are some examples of actual Euphoria functions, the last of which
is being used as part of an expression. Again, don’t try to under-
stand the meaning of each function.

index_bitmap = read_bitmap("index.bmp")

pressed_key = get_key()

computed_result = sqrt(25) * (30 + units)

While a function can modify the original value of a receiving
variable, both procedures and functions do not modify the param-
eter values that are passed to them. Also, procedure and function
names follow the same rules that variable names must adhere to.

The following abbreviations will be used every time a new li-
brary routine is introduced to you. Take a moment to look them
over:

ABGTE Euphoria 43

• a —either an atom data object or a variable of type atom

• i —either an integer data object or a variable of type in-
teger

• o —either an object data object or a variable of type
object

• s —either a sequence data object or a variable of type
sequence

• ra,ri,ro,rs —receiving variable, the second letter means
variable type.

• If any of these abbreviations are used more than once,
a number will follow the letter (i.e. s1, s2, s3 or o1, o2) to
separate the parameters apart.

The next chapter will begin your learning of Euphoria library
routines!

ABGTE Euphoria 44

9. Displaying Data On The Screen

Now that you have reached this current level of understanding
about the Euphoria programming language, the tutorial’s style of
teaching is going to change. Instead of reading program examples
on the screen, you will now be able to execute actual Euphoria
programs and view their source code. This approach is necessary,
as these advanced features of Euphoria need more than reading
text in the tutorial in order to be clearly understood.

The program examples you have studied through the past
chapter have one thing in common. All the data they process is
stored in the body of the program, in the form of assignment state-
ments. In real life, this is not the case. Today’s programs do not
keep data as part of the source code, but instead obtain it from
elsewhere.

The idea of retrieving and storing data outside the program
makes good sense, for three reasons. First of all, the data can be
edited without the program itself being changed. Second, if more
than one program uses the same kind of data (like an employee
list), there is no data duplication. The programs share the same
data instead of each program having its own copy of the data.
Finally, having the ability to send data outside the program means
the data can be made presentable to human eyes. Up to now, you
have taken the word of this tutorial and its author that what is
stored in the variables of example programs was the case. In real
life, people need more than that in the form of printed reports and
spreadsheet figures on the screen.

Data that is accepted by a program is called “input.” Data that
is produced by a program is called “output.”

Programs send data to and receive data from components of
your computer called “devices.” These device can either be “input
devices” that send data to a program, or “output devices” that re-
ceive data from a program. There is a third type of device called an
“I-O device,” which is both an input and an output device, but this
type will be covered in a later chapter. The keyboard and mouse
are examplesof input devices.The computer screen and printer are
examples of output devices.

ABGTE Euphoria 45

When a Euphoria program starts running, some devices are
automatically allocated for use. These three devices are listed
below:

• 0 or standard input, the keyboard by default

• 1 or standard output, the screen by default

• 2 or standard error, the screen by default

Devices 1 and 2 are actually the same, but are defined sepa-
rate in case there is a reason one type of screen output should be
made distinct from the rest. Notice the phrase “by default.” This
implies we can make the numbers mean something else other than
keyboard and screen. In a later chapter, you will be shown exact-
ly how to do this. To keep it simple for now, understand that 0
means “keyboard,” and 1 means “screen.” This chapter will intro-
duce screen output, while a future chapter will focus on keyboard
input.

Now that you are familiar with Euphoria’s device numbers,
let’s introduce you to your very first Euphoria library routine,
called print() :

print(1,o)

print() displays a Euphoria data object on the screen. The
object is displayed at the current cursor position.

print() displays data on the screen “as is,” meaning what is
displayed on the screen is the actual value of the data object. With
sequences, you will be able to see the braces and commas, even if
you used a character string to represent the value. If you click the
demo button on the remote, you will be able to run and view the
source of demo programs that use print() .

program 1You can cut and paste
these demo programs into
an editor,

save with extension .ex,

and execute them in a ter-
minal.

eui 01.ex

The expected output looks
like:

134.45

atom some_atom_value
some_atom_value = 134.45
print(1,some_atom_value)

134.45

program 2

sequence some_sequence_value
some_sequence_value = {1,2,3,4,3,2,1}
print(1,some_sequence_value)

{1,2,3,4,3,2,1}

ABGTE Euphoria 46

program 3

print(1,36/2)

18

program 4

sequence my_name
my_name = "David Gay"
print(1,my_name)

{68,97,118,105,100,32,71,97,121}

One minor drawback with print() is that it displays the actu-
al values of atom and sequence data objects. As a result, any data
object values meant to be shown on the screen as ASCII characters
cannot be displayed using print() . However, Euphoria has anoth-
er library routine that can display screen output in human-read-
able form:

puts(1,o)

Because puts() displays data as text characters instead of
actual values, cursor control codes such as line feed (10), carriage
return (13), and tab control (9) can be utilized. You can have text
strings separated by lines or formatted in different tab columns.
This makes puts() useful in print control as a result.

Two notes about puts(). First of all, this library routine can
only print one-dimensional sequences (those composed of atoms as
elements). This makes sense, as text character strings are really
a representation of one dimensional sequences. Also, any attempt
to print an atom value larger than 255 will result in an incorrect
character value being displayed. Again, this makes sense because
the ASCII code set goes from 0 to 255.

Some demo programs are available from this screen to show
how puts() works:

program 5

atom a_character
a_character = ’A’
puts(1,a_character)

A

program 6

sequence a_string
a_string = "Utter Nonsense"
puts(1,a_string)

Utter Nonsense

ABGTE Euphoria 47

program 7

puts(1,"Column 1\tColumn 2\tColumn 3\n\n")
puts(1,"********\t********\t********\n")
puts(1,"********\t********\t********\n")
puts(1,"********\t********\t********\n")
puts(1,"********\t********\t********\n")
puts(1,"********\t********\t********\n")
puts(1,"********\t********\t********\n")
puts(1,"********\t********\t********\n")
puts(1,"********\t********\t********\n")
puts(1,"********\t********\t********\n")
puts(1,"********\t********\t********\n")

Column 1 Column 2 Column 3

******** ******** ********
******** ******** ********
******** ******** ********
******** ******** ********
******** ******** ********
******** ******** ********
******** ******** ********
******** ******** ********
******** ******** ********
******** ******** ********

It is sometimes necessary to display additional screen output
to help clarify information. This process is called “print format-
ting.” Examples of print formatting are adding commas and dollar
signs to financial figures or to limit the number of decimal places
shown in scientific data. We can use the library routine printf()

to display formatted screen output:

printf(1,s,o)

printf() prints data (shown as o) as a character string on the
screen just like puts(). Before it does this, however, it formats the
data using a format string (shown as s). The format string must
contain special format codes that will edit the way the data will
appear on the screen, and optionally, some extra text. The data to
be displayed can either be a single atom value, or a sequence that
contains a list of values to be edited using the format string.

The number of format codes used will depend on the number
of values that are to be edited and then printed. Let’s look more
closely at the format codes available for the programmer to use:

%d — this will edit any atom values to appear as a decimal

integer. Decimal integers are the numbers we are all familiar with,
using a numbering system of 10 digits from 0 to 9.

%x — this will edit any atom values to appear as a hexadecimal

integer. Hexadecimal integers are numbers that are made up of
digits from 0 to 9, A, B, C, D, E, and F.It is also known as a “base-16”
numbering system (our decimal system is a “base-10” numbering
system).

ABGTE Euphoria 48

%o — this will edit any atom values to appear as an octal integer.

Octal integers are numbers that are made up of digits from 0 to 7.
It is also known as a “base-8” numbering system.

%s — this will edit any sequence values to appear as character

strings. This works just like puts() but with extra formatting
options.

%e — this will edit any atom values to appear as a floating point

number using exponential (or standard) notation.

%f — this will edit any atom values to appear as a floating point

number, but not using exponential notation.

%g — this will edit any atom values to appear as a floating point

number, using either the format offered by %e or %f, whichever
works best for the display of the value.

%% — this will display the percentage character.

Format codes can have a field width number added to control
the number of displayed characters. For example, %6d means a
minimum display size of 6 digits. If the number ends up smaller
than 6 digits in this example, it will be right-justified with spaces.
Adding a - in front of the number, like %-6d, will make it left-jus-
tified. If a zero is placed in front of the number, like %06d, zeroes
instead of blanks will be used to fill up any leftmost field positions
not used by the value. Placing a plus sign (+) in front of the num-
ber, like %+6d,will make positive values appear with a leading plus
sign. Normally, positive values are displayed without a sign.

The addition of a field size is not limited to decimal integers
alone. You can even add them to other format codes like %s or %f
(though using to fill any unused leftmost positions of a string with
zeroes is unusual, even if it is considered valid).

With floating point format codes (%f), the field size can be a
decimal number. The number to the LEFT of the decimal point is
the field size, while the number to the RIGHT of the decimal point
is the precision. Precision means how many digits of the decimal
fraction you want to have shown. For example, %7.3f will show
the floating point value 13.1705 as 13.170 with a leading blank
(13.170). The decimal fractions are not cut off, however: they are
rounded up. This means %6.2f will display the value 899.987 as
899.99 with no leading blanks.

Remember when we stated the data to be displayed in
printf() is either a single atom value or a sequence representing a
list of values to be displayed? For this reason, if you are attempting
to display a SINGLE sequence value as a string, you must make it
the only element of a sequence.

ABGTE Euphoria 49

This step is necessary, otherwise the sequence itself will
be treated as a list of values and only the first character will be
printed:

printf(1, "%s\n", "Euphoria") -- Only "E" is printed

printf(1, "%s\n",{"Euphoria"}) --"Euphoria" is printed

A series of demo programs have been assigned to this page to
help clarify printf() .

program 8

atom atom_value
integer integer_value

atom_value = 1233.14
integer_value = 255

print(1,atom_value)
printf(1,"\n is shown as %d when using %%d", atom_value)
printf(1,"\n is shown as %e when using %%e", atom_value)
printf(1,"\n is shown as %f when using %%f\n\n", atom_value)

print(1,integer_value)
printf(1,"\n is shown as %x when using %%x", integer_value)
printf(1,"\n is shown as %o when using %%o\n\n", integer_value)

atom_value = ’A’
print(1,atom_value)
printf(1,"\n is shown as %s when using %%s\n", atom_value)

1233.14
is shown as 1233 when using %d
is shown as 1.233140e+03 when using %e
is shown as 1233.140000 when using %f

255
is shown as FF when using %x
is shown as 377 when using %o

65
is shown as A when using %s

program 9

puts(1,"Field Width Using %9s\n")
puts(1,".........\n")
printf(1,"%9s", {"CAT"})
puts(1,"\n\n")

puts(1,"Field Width Using %-9s\n")
puts(1,".........\n")
printf(1,"%-9s", {"CAT"})
puts(1,"\n\n")

puts(1,"Field Width Using %4d\n")
puts(1,"....\n")
printf(1,"%4d", 123)
puts(1,"\n\n")

puts(1,"Field Width Using %04d\n")
puts(1,"....\n")

ABGTE Euphoria 50

printf(1,"%04d", 123)
puts(1,"\n\n")

puts(1,"Field Width Using %+4d\n")
puts(1,"....\n")
printf(1,"%+4d", 123)
puts(1,"\n\n")

Field Width Using %9s
.........
 CAT

Field Width Using %-9s
.........
CAT

Field Width Using %4d
....
 123

Field Width Using %04d
....
0123

Field Width Using %+4d
....
+123

program 10

puts(1, "How Decimal Precision Affects Floating Point Values\n\n")
printf(1,"%f <- Using Straight %%f\n", 123.7651)
puts(1,".......\n")
printf(1,"%7.3f <- %%7.3f\n", 123.7651)
printf(1,"%7.2f <- %%7.2f\n", 123.7651)
printf(1,"%7.1f <- %%7.1f\n", 123.7651)
printf(1,"%7.0f <- %%7.0f\n", 123.7651)

How Decimal Precision Affects Floating Point Values

123.765100 <- Using Straight %f
.......
123.765 <- %7.3f
 123.77 <- %7.2f
 123.8 <- %7.1f
 124 <- %7.0f

We would normally explore the other side of screen output by
introducing library routines that accept data from the keyboard.
However, because some keyboard library routines require a pro-
gram to execute a block of statements based on a condition or for a
set number of times in order to work properly, a detour is needed.
The next chapter will show you how to change the way your pro-
gram executes.

ABGTE Euphoria 51

10. Program Branching And Looping

The demonstration programs in this tutorial, while helpful in
understanding Euphoria, are not good models of how the majority
of programs work today. Program execution is not a straight line
from program start to program end. A program may execute a
group of statements meant to handle an anticipated condition, or
repeat those statements until a condition is met. In short, program
execution is a series of backtracks and detours.oE added ‘end loop’,

‘switch’ flow control state-
ments.

The basics, described
here, are all you need for
flow control.

A group of statements that runs only when a specific condi-
tion is met is called a program branch. A group of statements that
is meant to repeat while a condition is being met is called a pro-
gram loop.

Let’s begin our learning by introducing the “if” statement,
which is the workhorse of program branching:

if expression then
one or more Euphoria statements
end if

The “if” statement will execute one or more Euphoria state-

ments only if expressionevaluates to be true.If the expression eval-
uates to to be false, program control will skip the conditioned state-
ments and then resume with the first Euphoria statement follow-
ing the end if line.

The expression of an “if” statement can be any arithmetic, log-
ical, or relational expression, or even a constant value. Most of the
time,however,an expression is either a simple logical expression or
a larger relational expression linking logical expressions together.

A demo program is available to demonstrate a series of “if”
statement examples. But before you run the demo, view the source
to see if you can guess which of the puts() lines will be printed.

program 11

atom first, second, sum
first = 36
second = 1.5
sum = first * second

if second >= 1.4 and second <= 1.6 then

ABGTE Euphoria 52

 puts(1,"Condition 1 is true\n")
end if

if sum = 54 then
 puts(1,"Condition 2 is true\n")
 first = 63
end if

if first = 36 then
 puts(1,"Condition 3 is true\n")
end if

Condition 1 is true
Condition 2 is true

The “if” statement can be used to execute a group of state-
ments for both false and true outcomes of a condition. One way to
do this is to write a second “if” statement that checks for the oppo-
site of the first “if” statement.

if speed > 65 then
 puts(1,"You are driving too fast!\n")
end if

if speed <= 65 then
 puts(1,"Thank you for driving within the speed limit!\n")
end if

The use of two “if” statements works, but it is inefficient
because both “if” statements are checked even though only one of
two outcomes will happen. You can’t have a condition that is both
true and false. It would be nice to have the “if” statement work like
a toggle switch, executing the right block of statements with only
one condition check.

Fortunately, the “if” statement can be modified to handle two
outcomes without using two “if” statements:

if expression then

one or more statements

that will only run if expression is true

else

one or more statements

that will only run if expression is false

end if

ABGTE Euphoria 53

When the “if” statement has an “else” option added, only one
of two things will happen. If the expression portion of the “if”
statement works out to be true, the statements immediately follow-
ing below are executed, and the statements under the “else” line
are ignored. If the expression works out to be false, it’s the reverse
that happens. The statements under the “if” line are ignored, but
the statements under the “else” line are executed. Whatever the
outcome of the expression, the first statement following “end if” is
always executed once the “if” statement completes.A demo is avail-
able on this screen to show the use of “else.”

program 12

atom character

character = ’a’

if character = ’a’ then
 puts(1,"********************************\n")
 puts(1,"* This line should be printed! *\n")
 puts(1,"********************************\n")
else
 puts(1,"This line should not be printed!\n")
end if

character = ’b’

if character = ’a’ then
 puts(1,"This line should not be printed!\n")
else
 puts(1,"********************************\n")
 puts(1,"* This line should be printed! *\n")
 puts(1,"********************************\n")
end if

* This line should be printed! *

* This line should be printed! *

Using an “if-else” combination can handle situations that
result in only one of two outcomes. For situations that can result
in more than two outcomes, we replace “else” with “elsif.”

ABGTE Euphoria 54

if expression 1 then

one or more statements

that execute if expression 1 is true

elsif expression 2 then

one or more statements

that execute if expression 2 is true

elsif expression 3 then

one or more statements

that execute if expression 3 is true

elsif expression 4 then

one or more statements

that execute if expression 4 is true

end if

Using “elsif” with “if” creates a decision chain, where each of
the expressions are checked one after another, starting with the
first one, expression 1. Once an expression is found to be true, the
statements conditioned to that expression are run. After this, all
other expressions that follow in the “if-elsif” chain are skipped,and
the first statement following “end if” is executed.

Using “if-elsif” allows you to check for a specific set of out-
comes to a situation, rather then using “either this or the other”
kind of logic. It also lets you analyze a problem from a step-by-step
approach, eliminating the need for designing complex expressions
and typing out many “if” statements.

A demo program is available that shows one use of “if-elsif”
chains:

program 13

atom character

character = ’M’

if character >= ’A’ and character <= ’J’ then
 puts(1, "This line should not be printed\n")
elsif character >= ’K’ and character <= ’T’ then
 puts(1, "********************************\n")
 puts(1, "* This line should be printed! *\n")
 puts(1, "********************************\n")
elsif character >= ’U’ and character <= ’Z’ then
 puts(1, "This line should not be printed\n")
end if

* This line should be printed! *

You can have what is called nested “if” statements, where one
“if” statement leads to a second “if” statement when its expression
is true:

ABGTE Euphoria 55

if expression 1 then

if expression 2 then

one or more statements

that run only if expression 2 is true

end if

end if

In the case of the example on the previous page, it is the
same as:

if expression 1 and expression 2 then

one or more expressions

to be run only if both expressions are true

end if

However, using nested “if” statements allow you more flexi-
bility, particularly when you want to mix “if” statements, library
routine calls, and assignment statements in a block of conditioned
statements to be run. It also gives you the option of avoiding the
use of “if” statements that have complex relational expressions
made up of smaller expressions.

When using nested “if” statements, make sure each “if” has a
matching “end if” for each “if” level, just like the example you saw
earlier. Make sure that any optional “else” and “elsif” used are on
the correct level as the “if” statement they are associated with.

You’ve probably noticed, in all of the “if” statement examples
we have shown, we used expressions that involved atom variables
and values. The reason for this is because “if” statements cannot
handle direct comparisons using sequence data objects. Howev-
er, there is a library routine that can help you get around this
problem:

ri = compare(o1,o2)

compare() takes two data objects, o1 and o2, and compares them,
returning an integer value that represents the result of the com-
parison. If o1 is equal to o2, 0 is returned. If o2 is smaller than
o1, -1 is returned. If o2 is larger than o1, 1 is returned. compare()

can compare two atoms, two sequences, or a sequence and an atom.
Atoms are always assumed to be smaller than sequences in value.
Where sequence comparison is concerned, it’s an element by ele-
ment comparison until a difference is found, either in the length of
the sequences or a different element value.

So, to compare one sequence with another, you simply follow
the format shown in this example below:

ABGTE Euphoria 56

sequence my_name

my_name = "David Gay"
if compare(my_name, "David Gay") = 0 then
 puts(1,"Hi, David!\n")
else
 puts(1,"Who the heck are you?\n")
end if

A program demo is available to help clarify compare() if
needed:

program 14

sequence animal1, animal2

animal1 = "cat"
animal2 = animal1

if compare(animal1,animal2) = 0 then
 puts(1, "These strings are the same\n")
else
 puts(1, "These strings are unequal\n")
end if

animal2 = "CAT"

if compare(animal1,animal2) = 0 then
 puts(1, "These strings are the same\n")
else
 puts(1, "These strings are unequal\n")
end if

These strings are the same
These strings are unequal

Program branching is only one part of changing the way your
program runs. You can also make a group of statements repeat for
as long as an expression remains true. This is done by using the
“while” statement:

while expression do

one or more statements

that are executed while condition is true

end while

When the “while” statement first starts, it checks expression

to see if it is true. If it is not, the next programming statement fol-
lowing end while is executed. If the expression is true, the “while”
statement will continue to repeat the statements between “while”
and “end while” until the expression portion of the “while” state-
ment becomes false. This tells you that the repeating statements
must be able to make the expression change to false, or the pro-
gram will be stuck in an endless “while” loop.

ABGTE Euphoria 57

A demo program using a “while” statement is available.

program 15

atom count
puts(1,"Hello, I’m Sparky I, The Counting Euphoria Program\n")
puts(1,"Watch me count to 10!\n\n")
count = 1
while count < 11 do
 printf(1,"%d\n",count)
 count = count + 1
end while

Hello, I’m Sparky I, The Counting Euphoria Program
Watch me count to 10!

1
2
3
4
5
6
7
8
9
10

If you want to repeat a group of statements for a specific
number of times, Euphoria offers the “for” statement:

for ra = start value to end value by increment do

one or more statements to repeat

until ra > end value

end for

When the “for” statement starts, it declares a temporary in-
dex variable, ra, assigning it a start value. It then processes the
statements down to the end for line. Once it reaches that point,
it changes ra’s value by adding the increment. The program then
loops back up to check if ra is larger than the end value. If not, the
statements are processed again, and ra is changed by adding the
value increment. This loop will keep repeating until ra is larger
than end value. When this occurs, ra is “undeclared,” and the pro-
gram continues with the next statement after the “end for” line.

The increment portion of the “for” statement is an optional fea-
ture. If left out, the default increment is 1. You can have a negative
increment value, so the “for” statement counts down instead of up,
but set the end value of the “for” statement to be smaller than the
start value.

ABGTE Euphoria 58

Unlike the “while” statement, the “for” statement cannot be
locked into an endless loop, because the expression change is han-
dled automatically. Also, the index variable cannot be changed by
any statements within the loop, but it can be referenced for use
(such as an element index in a sequence). If the value in the index
variable is required for later use, you should save it in a variable
before the loop ends, because both the index variable and its value
will vanish when the “for” statement ends. This temporary index
variable has an attribute called “scope” , meaning it is accessible
only for a specific duration in the program.This topic will be revisit-
ed later in this tutorial. In the meantime, run a program demo now
to demonstrate how the “for” statement can be used.

program 16

puts(1,"Hello, I’m Sparky II, The Counting Euphoria Program\n")
puts(1,"Watch me count to 5, then back again to 1!\n\n")
for count = 1 to 5 do
 printf(1,"%d\n",count)
end for
puts(1,"\n")
for count = 5 to 1 by -1 do
 printf(1,"%d\n",count)
end for

Hello, I’m Sparky II, The Counting Euphoria Program
Watch me count to 5, then back again to 1!

1
2
3
4
5

5
4
3
2
1

Both the “for” and “while” statements can be nested, meaning
that you can have smaller loops within larger ones. However, the
nested “while” and “for” statement levels should have correctly
matching “end while” and “end for” statements.

You can force both a “while” and a “for” statement to end early
using the " exit " statement. The loop ends at the moment the “exit”
statement is executed. The program will then resume at the next
statement following “end for” or “end while”. The “exit” statement
is best used as either an “emergancy brake” when something
unexpected comes up, or for creating a loop that needs to end for a
set of reasons uniquely separate from each other. A program demo
shows the “exit” statement in action.

ABGTE Euphoria 59

You have now learned everything you need to know to con-
trol the course of program execution. These tools will be valuable
in the next chapter, when you learn how to accept data from the
keyboard.

program 17

atom pet_index
sequence pets
puts(1,"Examples Of Animals You Can Keep As Pets\n")
puts(1,"==\n\n")
pets = {"Cat",
 "Dog",
 "Hamster",
 "Rat",
 "Snake",
 "Parrot",
 "Budgie",
 "Unelected Politician",
 "*END*"}
pet_index = 1

while 1 do
 if compare(pets[pet_index],"*END*") = 0 then
 exit
 else
 puts(1,pets[pet_index])
 puts(1,"\n")
 end if
 pet_index = pet_index + 1
end while
puts(1,"\nList Completed!\n")

Examples Of Animals You Can Keep As Pets
==

Cat
Dog
Hamster
Rat
Snake
Parrot
Budgie
Unelected Politician

List Completed!

ABGTE Euphoria 60

11. Advanced Data Handling Part One

Displaying data on the screen is only one side of program-human
interaction. While it is great that we can now write programs that
present text on the screen, our programs can be even more useful
if they can accept data for processing later. A program could be
written to accept keyed-in monthly expenses and compute either
a surplus or a deficit in your household budget. Euphoria has a set
of library routines to handle keyboard input. Here’s the first one
listed below:

include get.efor oE use

include
std/console.e ri = wait_key()

wait_key() causes the program to pause until a key is
pressed, then stores that value in an integer variable to the left of
the equal sign.

You will notice that wait_key() is an example of a library
routine that is externally defined in an include file, called get.e.
get.e must be present at the top of your program in order to use
this library routine.oE uses include

std/console.e

If a key generating a displayable character (alphabet, num-
bers, symbols, and punctuation) or cursor control (tab, linefeed,
backspace, etc) is pressed, the value stored in the receiving in-
teger value is the ASCII code for that value. This means you can
use puts() or print() to display the value on the screen as a text
character, or move the cursor. Keys like the function keys from
F1 through F12, arrow keys, insert and delete keys, and any key
pressed while the ALT key is pressed down generate a value high-
er than 255. These keys are meant to be defined for the use of the
programmer and do not generate a displayable screen character.

A demo program showing how wait_key() is used is available
on this page:

program 18

ABGTE Euphoria 61

include get.e
integer keystroke

puts(1,"Please press a key on the keyboard\n")
keystroke = wait_key()
puts(1,"\nThank you!\n")
printf(1,"You pressed the %s key!\n",keystroke)

use

include std/console.e

It is sometimes necessary to read in an entire character string
instead of a single character. Euphoria has a library routine that
performs this:

ro = gets(0)

Like wait_key() , gets() pauses the program run for key-
board data. Unlike wait_key() , it is not a single value but a string
of data that is stored in a variable at the left of the equal sign.
However, notice that the receiving variable is an object type vari-
able. This is necessary because a value of -1 (meaning that no key-
board data string was retrieved) may also be returned. It’s also
important to note that the Enter key that you pressed to end the
string to send to gets() is a part of the string, at the very end as
value 10.The receiving object variable will contain a sequence com-
posed of atoms that represent ASCII codes. This means puts()

and printf() can be used to display the data received by gets() .
A demo program is available to show one use of gets() from
this screen:

program 19

object name, city
puts(1, "Hello, what is your name?\n")
name = gets(0)
printf(1, "\nHello, %sWhat city are you from?\n",{name})
city = gets(0)
printf(1, "\nI’ve always wanted to go to %s", {city})

Hello, what is your name?
Fred

Hello, Fred
What city are you from?
RacoonCity
I’ve always wanted to go to RacoonCity

All the library routines introduced so far have one thing in
common, and that is the accepted keyboard data is treated like a
character string to be redisplayed as text later. This means if we
entered a value of 16.13 using gets() , it will not be stored as an
atom value of 16.13, but a 5 element long character string “16.13”.
This makes the library routines we have mentioned unsuitable
for handling numeric data. However, Euphoria does have a more
sophisticated routine that can accept both numeric and charac-
ter data:

use

include std/get.e

include get.e

rs = get(0)

ABGTE Euphoria 62

get() accepts a Euphoria data object and stores it into a receiving
sequence variable. This means you can enter any atom value,
character string representing a sequence, or even a very complex
multi-dimensional sequence value.

get() converts keyboard input to an actual Euphoria data
object and then stores it as the second element of a two sequence
value. The receiving sequence variable is assigned this sequence
value.

The first element of this sequence value serves as an error
code on whether or not the string of characters you typed is a valid
Euphoria data object. The error code is an atom value, and can be
any one of the values listed below:

• 0 — Accepted value is a valid Euphoria data object.

• -1 — End of data hit before any data objects were read.

• 1 — Accepted value is not a valid Euphoria data object.

It’s important to monitor the error code, as it tells you if the data
that was keyed in is valid. Using the “if” statement to check the
error code can help you ensure you do not receive any garbage
input.

While actual atom and sequence values can be keyed in as
is (like 45.1 or {123,{6,7,-1},17}), character strings must be
enclosed with the double quotation mark or " .

get() has many advantages over gets() in a number of ways.
First of all, you can enter both numeric and character data in any
format. Second, you can choose to send a list of data objects on a
single line separated by spaces or tabs, or enter them one at a time
using the Enter key. However, get() only reads these values one
at a time. As a result, whether you place four values on one line
and press Enter, or enter one on each line and press Enter, you
need four get() ’s in your program to read them. Finally, get()

does not include the Enter key, space, or tab values as part of the
keyboard data.

A demo is available on this page to demonstrate how get()

accepts both character and numeric data:use

include std/console.e
program 20

include get.e

object input
atom value1, value2, value3, average, error_code
sequence name

error_code = 999

ABGTE Euphoria 63

puts(1,"Hello! Enter your first name in quotes below, like \"John\":\n")

while error_code != 0 do
 input = get(0)
 error_code = input[1]
end while

name = input[2]

puts(1, "\nThank you! Now please enter any three numeric values below,\n")
puts(1, "and you will see both your name and the average of the three\n")
puts(1, "numbers you entered. Separate the numbers with the space bar:\n")

error_code = 999
while error_code != 0 do
 input = get(0)
 error_code = input[1]
end while
puts(1, "\nGot first number!\n")
value1 = input[2]

error_code = 999
while error_code != 0 do
 input = get(0)
 error_code = input[1]
end while
puts(1, "\nGot second number!\n")
value2 = input[2]

error_code = 999
while error_code != 0 do
 input = get(0)
 error_code = input[1]
end while
puts(1, "\nGot third number!\n")
value3 = input[2]

average = (value1+value2+value3)/3
printf(1,"\nHello, %s, your computed average is %4.2f\n",{name, average})

Hello! Enter your first name in quotes below, like"John":
"Fred"

Thank you! Now please enter any three numeric values below,
and you will see both your name and the average of the three
numbers you entered. Separate the numbers with the space bar:
3

Got first number!
10

Got second number!
77

Got third number!

Hello, Fred, your computed average is 30.00

ABGTE Euphoria 64

You may have played some games that are able to accept data
from the keyboard without pausing. Actually, they do pause, but
only for a tiny fraction of time to check the keyboard buffer for a
pressed keystroke. Because computers can operate at such high
speeds, this delay goes unnoticed. The next library routine would
be of interest to game designers:

ri = get_key()

get_key() stores each keystroke waiting in the keyboard buffer
into a receiving varible. Multiple get_key() ’s are required to
read more than one waiting keystroke. If there are no keystrokes
waiting, a -1 is returned instead. Unlike wait_key() , get_key()

does not pause the program.

get_key() will also accept keystrokes from special keys like
the function keys and arrow keys. A demo is ready to show how
get_key() can interrupt a countdown from 100000 to 1. When
you view the demo program’s source code, see how get_key() is
located in a program loop, like the “while” statement. This makes
sense, as the keyboard buffer should be repeatedly checked for any
waiting keystrokes.

program 21

integer keystroke, counter

keystroke = -1
counter = 10000
while keystroke = -1 and counter > 0 do
 keystroke = get_key()
 printf(1,"%5d\n",counter)
 counter = counter - 1
end while
if counter = 0 then
 puts(1, "\nHey, why didn’t you press any of the keys?\n")
end if

 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1

Hey, why didn’t you press any of the keys?

ABGTE Euphoria 65

The one keystroke that cannot be accepted by a Euphoria
program is Ctrl-C, generated by either pressing the c or break key
while holding down the Ctrl key at the same time. If you press
these combination of keys, the operating system will abruptly stop
the program. In the case of larger, more complex programs, this
can result in an unexpected loss of data. It would be preferable for
the program to know that Ctrl-C has been pressed and perform an
orderly shutdown.

First of all, we need to disable Ctrl-C so it cannot kill the pro-
gram outright. This is done by using the allow_break() library
routine:

use

include std/console.e

include file.e

allow_break(i)

Setting the parameter i to 1 will allow Ctrl-C to abruptly halt
the program, while 0 would prevent usage of Ctrl-C to halt the
program.

The most obvious benefits of allow_break() are in applica-
tions that offer menu options to users based on their security level.
If a hacker could disable a menu program using Ctrl-C, s/he then
could access the program of interest directly, bypassing security.
However, having a program issue allow_break(0) at the start of
its run would prevent this.

But remember that a program cannot directly accept a value
of Ctrl-C, allow_break() or not.How can it know when to perform
an orderly shutdown if it can’t accept that value? Well, while it
cannot accept Ctrl-C, it can DETECT it using this library routine:

use

include std/console.e

include file.e

ri = check_break()

check_break() returns the number of times Ctrl-C has been
pressed since the start of the program, or since the last time
check_break() was issued. This does not return the actual Ctrl-
C code, it just returns a value that indicates the number of times
Ctrl-C was detected by the program.

You must make sure you are using get_key() to read the
keyboard buffer, in order for check_break() to work properly,
even though it cannot read in the Ctrl-C code. A demo program has
been made available from this page to show how allow_break()

and check_break() are used to prevent Ctrl-C from stopping the
program. You need to hit Ctrl-C or Ctrl-break three times to stop
the demo from running.

include std/console.e program 22

include file.e

ABGTE Euphoria 66

integer control_break_counter, pressed_key
allow_break(0)

puts(1, "***********************************\n")
puts(1, "* The Program That Would Not Die! *\n")
puts(1, "***********************************\n")
puts(1,"\n")

control_break_counter = 0
while control_break_counter < 3 do
 pressed_key = get_key()
 if check_break() then
 control_break_counter = control_break_counter + 1
 if control_break_counter <= 2 then
 puts(1,"Neener-neener, can’t kill meeeeeeee!\n")
 end if
 end if
end while

puts(1, "\n")
puts(1, "***********************************\n")
puts(1, "* Okay, I’ll be nice and stop.... *\n")
puts(1, "***********************************\n")

* The Program That Would Not Die! *

Neener-neener, can’t kill meeeeeeee!

[1]+ Stopped eui 22

Now that you have learned how to display data on the screen,
and how to accept data from the keyboard, let’s learn some pow-
erful library routines that show you what you can really do with
this data.

ABGTE Euphoria 67

12. Advanced Data Object Handling, Part One

If you want to get the most out of the Euphoria programming lan-
guage, getting a handle on how to work with data objects should
be at the top of your list. There are a lot of library routines that
are meant for handling data objects. You can check for the type of
a data object. You can also change the way a data object is present-
ed, such as going from 2.34 to “2.34”, and can even go beyond the
simple operators of Euphoria to create your own unique data struc-
tures.This is the secret to Eu-

phoria flexibility.

Because some of the library routines in Euphoria can return
either an atom or a sequence, it is very important to test for the
type of a data object. The library routines involved are named
the same as the variable type portion of a variable declaration
statement.

To begin, atom() returns a 1 if the data object is an atom
value:
ri = atom(o)

integer() returns a 1 if the data object is an integer:

ri = integer(o)

sequence() returns a 1 if the data object is a sequence:

ri = sequence(o)

also object()

oE object() returns i a s in-
formation or value unas-
signed yet

All of these library routines will return 0 if data object o is
not the expected type. Run a demo from this screen now to demon-
strate how to test for the type of a keyed-in data value. For obvious
reasons, there is no such thing as an object() library routine.

program 23

use

include std/console.e include get.e

atom atom_received, integer_received, sequence_received
sequence inputted_string

atom_received = ’n’

ABGTE Euphoria 68

integer_received = ’n’
sequence_received = ’n’

puts(1,"Enter any numeric value (such as 5.004 or -7)\n")

while atom_received = ’n’ and integer_received = ’n’ do
 inputted_string = get(0)
 if inputted_string[1] = 0 then
 if integer(inputted_string[2]) then
 integer_received = ’y’
 puts(1,"\nThank you! This value is an integer!\n\n")
 else
 if atom(inputted_string[2]) then
 atom_received = ’y’
 puts(1,"\nThank you! This value is an atom!\n\n")
 end if
 end if
 end if
end while

puts(1,"Enter a sequence value (such as {54,-8,2.3} or \"Hi There!\")\n")

while sequence_received = ’n’ do
 inputted_string = get(0)
 if inputted_string[1] = 0 then
 if sequence(inputted_string[2]) then
 sequence_received = ’y’
 end if
 end if
end while

puts(1,"\nThank you! Program Finished!\n")

Enter any numeric value (such as 5.004 or -7)
8.002

Thank you! This value is an atom!

Enter a sequence value (such as {54,-8,2.3} or"Hi There!")
{3, -1, 0.3}
Thank you! Program Finished!

To convert a character string to either an atom or a sequence
value, you use the value() library routine:

use

include std/get.e

include get.e

rs = value(s)

This works the same way as get() , as it returns a two element se-
quence value, the first element being the error code, and the sec-
ond element, if successful, being the actual atom or sequence value
equivalent of the character string. The only difference is that the
source is a sequence variable (s) and the destination is a receiving
sequence variable (rs).

A demo is available showing how three character strings are
converted to atom and sequence values:

ABGTE Euphoria 69

program 24

include get.e

sequence character_strings, value_string
object actual_value

character_strings = {"45.99","{1,2,3,{4,4},5}","\"Euphoria\""}

for ix = 1 to 3 do
 printf(1,"Character String: %s\n",{character_strings[ix]})
 value_string = value(character_strings[ix])
 actual_value = value_string[2]
 puts(1,"Euphoria Data Object After value(): ")
 print(1,actual_value)
 puts(1,"\n\n")
end for

Character String: 45.99
Euphoria Data Object After value(): 45.99

Character String: {1,2,3,{4,4},5}
Euphoria Data Object After value(): {1,2,3,{4,4},5}

Character String: "Euphoria"
Euphoria Data Object After value(): {69,117,112,104,111,114,105,97}

You can also convert a Euphoria data object into a charac-
ter string, or as part of a formatted character string by using
sprintf() :

rs = sprintf(s,o)

sprintf() is similar to printf(), as it takes either an atom value
or a sequence representing a list of values (o), which it then edits
by using a format string (s). The format codes introduced in our
discussion on printf() are used in sprintf() as well. The only
differences between printf() and sprintf() is that sprintf()

sends the formatted string to a receiving sequence variable (rs),
and that sprintf() only requires two parameters in comparison to
printf() ’s three. A demo is available showing one possible use of
sprintf() .

program 25

sequence print_line

for line = 1 to 5 do
 print_line = sprintf("This is line %03d\n", line)
 puts(1,print_line)
end for

ABGTE Euphoria 70

This is line 001
This is line 002
This is line 003
This is line 004
This is line 005

Another way of changing the state of a data object is by al-
tering the case of alphabetic characters. Euphoria has two library
routines that can do this for you.To change any characters between
’A’ and ’Z’ in both atom and sequence data objects to lowercase, you
use the lower() library routine:

include wildcard.euse

include
std/text.e ro = lower(o)

With lower() , a character string of “Euphoria” and
“EUPHORIA” passed to this library routine as o would produce a
string of “euphoria” that is then stored in the receiving variable ro.
With single atom values like ’J’ or 74, what is stored in the receiv-
ing variable is ’j’ or 106.

The opposite of lower() is upper() , which coverts any char-
acters in both atoms and sequences that are between ’a’ and ’z’ to
uppercase:

include wildcard.euse

include
std/text.e ro = upper(o)

A character string of “Euphoria” and “euphoria” passed to up-
per() , as o would produce a string of “EUPHORIA,” which is then
stored in the receiving variable ro. With single atom values like ’z’
or 122, upper() will store ’Z’ or 90 in the receiving variable.

A demo program is available to show how upper() and
lower() works.

program 26use

include std/text.e
include wildcard.e
sequence test_string, uppered, lowered

test_string = "This is a fun way to learn Euphoria!"
uppered = upper(test_string)
lowered = lower(test_string)
printf(1,"Original String : %s\n",{test_string})
printf(1," After lower() : %s\n",{lowered})
printf(1," After upper() : %s\n",{uppered})

Original String : This is a fun way to learn Euphoria!
 After lower() : this is a fun way to learn euphoria!
 After upper() : THIS IS A FUN WAY TO LEARN EUPHORIA!

Earlier in the tutorial, we introduced the & operator, which
allows you to join atom or sequence data objects together to create
new sequences. Euphoria offers other ways of linking data objects
together, the first being append() :

rs = append(s,o)

ABGTE Euphoria 71

append() creates a new sequence, which is stored in vari-
able rs, by adding o to the end of s as an entire element. So how
does this differ from the & operator? Do we really need append()

anyways?

When & joins any two or more data objects, it creates a se-
quence that is as long as the total number of elements made up by
the participating data objects. However, append() will always cre-
ate a new sequence that is one element longer than the length of
s. The reason for this is because append() will make o the new last
element of s.

When only atoms are involved in the joining,& and append() ’s
efforts produce the same result. The difference is only apparent
when sequences are involved. A demo program is available to help
you clarify the usage of append() , with mention being made to
show how it differs from the & operator.

program 27

atom atom1, atom2
sequence seq1, seq2, union

atom1 = 83
atom2 = 4
seq1 = {1,1,1,1}
seq2 = {2,2}

puts(1,"& And append()\n")
puts(1,"==============\n\n")

printf(1,"Atom Values: %d, %d\n",{atom1,atom2})
puts(1," Using &: ")

union = atom1 & atom2
print(1,union)
puts(1,"\n")

puts(1," Using append(): ")
union = {}
union = append(union,atom1)
union = append(union,atom2)
print(1,union)
puts(1,"\n\n")

puts(1,"Sequence Values: ")
print(1,seq1)
puts(1," ")
print(1,seq2)
puts(1,"\n")
puts(1," Using &: ")

union = seq1 & seq2
print(1,union)
puts(1,"\n")

puts(1," Using append(): ")
union = {}
union = append(seq1,seq2)
print(1,union)
puts(1,"\n\n")

ABGTE Euphoria 72

& And append()
==============

Atom Values: 83, 4
 Using &: {83,4}
 Using append(): {83,4}

Sequence Values: {1,1,1,1} {2,2}
 Using &: {1,1,1,1,2,2}
 Using append(): {1,1,1,1,{2,2}

A related library routine to append() is prepend() :

rs = prepend(s,o)

prepend() creates a new sequence, which is stored in variable
rs, by adding o to the beginning of s as a single element.This means
o becomes the new first element of s, or s[1] in Euphoria terms.
Like append() , prepend() creates a new sequence that is one el-
ement longer than s. A demo program is ready to demonstrate
prepend() .

program 28

atom atom1, atom2
sequence seq1, seq2, union

atom1 = 83
atom2 = 4
seq1 = {1,1,1,1}
seq2 = {2,2}

puts(1,"& And prepend()\n")
puts(1,"==============\n\n")

printf(1,"Atom Values: %d, %d\n",{atom1,atom2})
puts(1," Using &: ")

union = atom1 & atom2
print(1,union)
puts(1,"\n")

puts(1," Using prepend(): ")
union = {}
union = prepend(union,atom1)
union = prepend(union,atom2)
print(1,union)
puts(1,"\n\n")

puts(1,"Sequence Values: ")
print(1,seq1)
puts(1," ")
print(1,seq2)
puts(1,"\n")
puts(1," Using &: ")

union = seq1 & seq2
print(1,union)
puts(1,"\n")

puts(1," Using prepend(): ")
union = {}
union = prepend(seq1,seq2)
print(1,union)

ABGTE Euphoria 73

puts(1,"\n\n")

& And prepend()
==============

Atom Values: 83, 4
 Using &: {83,4}
 Using prepend(): {4,83}

Sequence Values: {1,1,1,1} {2,2}
 Using &: {1,1,1,1,2,2}
 Using prepend(): {{2,2},1,1,1,1}

Both append() and prepend() are handy when you want to
stack atoms and sequences in a queue, like candies in a “PEZ” dis-
penser. When append() or prepend() is used to attach a data ob-
ject to a larger sequence, that data object retains its separate iden-
tity.

Sequences can also be created “on the fly” by repeating a
value so many times. The repeat() library routine was created to
perform just that:

rs = repeat(o,a)

repeat() creates a sequence value a elements long, where
each element has the value of o. repeat() can create sequences
that are made up of atom or sequence elements. These created se-
quences can be as long as you need them to be. A demo is available
showing some sequences made by repeat() .

program 29

puts(1,"Some Sequences Created By repeat()\n\n")
puts(1,"repeat(20,10):\n ")
print(1,repeat(20,10))
puts(1,"\n\n")
puts(1,"repeat({1,1,1,1,1},5):\n ")
print(1,repeat({1,1,1,1,1},5))
puts(1,"\n\n")
puts(1,"repeat(\"Tim\",4):\n ")
print(1,repeat("Tim",4))
puts(1,"\n")

Some Sequences Created By repeat()

repeat(20,10):
 {20,20,20,20,20,20,20,20,20,20}

repeat({1,1,1,1,1},5):
 {{1,1,1,1,1},{1,1,1,1,1},{1,1,1,1,1},{1,1,1,1,1},{1,1,1,1,1}}

repeat("Tim",4):
 {{84,105,109},{84,105,109},{84,105,109},{84,105,109}}

ABGTE Euphoria 74

Once you’ve created your sequences, it’s a good idea to know
how large they are if you plan to examine one or many of the
elements that make the sequence up.The length() library routine
returns the length of a sequence in number of elements:

ri = length(s)

the length of an atom is 1
, new since oE

The length of the sequence, shown here as s, is placed in the re-
ceiving variable ri. Note that the returned value is how long se-
quence s is in elements, not atoms. This means the sequences
{{1,1},{1,1}} and {1,1} are the same length in elements, even
though the former contains more atoms. A sequence value of { } ,
which is a null sequence, returns a value of 0.

A demo program is available to show how length() can be
used in a “for” statement to create a loop that adjusts to the size of
a sequence.

program 30

sequence seq
seq = {{0,0,0},{65,{7,7,7},23.1},"Timmy"}
for element1 = 1 to 3 do
 puts(1,"Elements For Sequence ")
 print(1,seq[element1])
 puts(1,":\n")
 for element2 = 1 to length(seq[element1]) do
 printf(1," Element %d: ",element2)
 print(1,seq[element1][element2])
 puts(1,"\n")
 end for
 puts(1,"\n")
end for

Elements For Sequence {0,0,0}:
 Element 1: 0
 Element 2: 0
 Element 3: 0

Elements For Sequence {65,{7,7,7},23.1}:
 Element 1: 65
 Element 2: {7,7,7}
 Element 3: 23.1

Elements For Sequence {84,105,109,109,121}:
 Element 1: 84
 Element 2: 105
 Element 3: 109
 Element 4: 109
 Element 5: 121

The next chapter will introduce library routines that search
sequences!

ABGTE Euphoria 75

13. Advanced Data Object Handling, Part Two

As you build larger, more complex sequence data objects, you are
going to need tools that can search them quickly. One way is to
write some code using “if,” “while,” and “for” statements that com-
pare each element against a specific value. A much easier way is
to take advantage of Euphoria’s sequence search library routines.

searching in oE is great-
ly expanded with new rou-
tines

These library routines allow the programmer to find elements ei-
ther using a specific value or a partial search string.

ri = find(o,s)

find() searches sequence s for element o. If found, the el-
ement number of o is stored in receiving variable ri. If not, 0 is
stored in ri.

find() starts searching a sequence from the first element
onward. If there is more than one element with the search value
present in the sequence, find() only returns the element number
of the first one. If you want to continue searching after the first
match, you will need to search a segment of the sequence, starting
with the element following the first match.

A demo program demonstrates the use of find() and also how
to match more than one element using find() :

program 31

atom found, more_finds, offset
sequence search_string

search_string = {34,5,106,72,65,5,90,17,5,13}
puts(1,"Searching Sequence ")
print(1,search_string)
puts(1," For 5\n\n")

offset = 0
more_finds = ’y’

while more_finds = ’y’ do
 found = find(5,search_string)
 if found then
 offset = offset + found
 printf(1,"5 Found As Element %d\n",offset)
 search_string = search_string[found+1..length(search_string)]

ABGTE Euphoria 76

 else
 more_finds = ’n’
 end if
end while

puts(1,"\nProgram completed\n")

Searching Sequence {34,5,106,72,65,5,90,17,5,13} For 5

5 Found As Element 2
5 Found As Element 6
5 Found As Element 9

Program completed

While find() finds a single element in a sequence, match()

allows you to search a sequence for a specfic group of elements:

ri = match(s1,s2)

match() searches sequence s2 in order to find a sequence of ele-
ments, shown here as s1. If successful, receiving variable ri is as-
signed the element number in s2 where the first element of s1 is
located.

What would each of the receiving variables contain after each
match() ?

atom element_id1, element_id2, element_id3

element_id1 = match("Al" , "David Alan Gay")
element_id2 = match({3,4,5}, {1,2,3,4,5,6,7,8,9,0})
element_id3 = match({ {50,23,4},{-1,-2} },
 { {15,89},{50,23,4},{-1,-2} })

Here are the results:

 "David Alan Gay"
 -- element_id1 is assigned the value of 7

{1,2,3,4,5,6,7,8,9,0}
 -- element_id2 is assigned the value of 3

{ {15,89}, {50,23,4}, {-1,-2} }
 -- element_id3 is assigned the value of 2

If match() cannot find what it is looking for in the searched se-
quence, then 0 is returned. A demo program is available to further
clarify match() if needed.

program 32

sequence nursery_rhyme
atom found
nurs-
ery_rhyme = "Jack and Jill went up the hill to fetch a pail of water"

ABGTE Euphoria 77

puts(1,nursery_rhyme & "\n\n")
printf(1,"Searching String For \"%s\"\n",{"hill"})
found = match("hill",nursery_rhyme)
printf(1," Found \"%s\" beginning at element %d\n\n",{"hill",found})
printf(1,"Searching String For \"%s\"\n",{"l of water"})
found = match("l of water",nursery_rhyme)
printf(1," Found \"%s\" beginning at element %d\n\n",{"l of water",
 found})
puts(1, "Searching String For ")
print(1, {97,110,100})
puts(1,"\n")
found = match({97,110,100},nursery_rhyme)
puts(1," Found ")
print(1, {97,110,100})
printf(1," beginning at element %d\n\n",found)

Jack and Jill went up the hill to fetch a pail of water

Searching String For "hill"
 Found "hill" beginning at element 27

Searching String For "l of water"
 Found "l of water" beginning at element 46

Searching String For {97,110,100}
 Found {97,110,100} beginning at element 6

now has std/search.e
with many more routines.
There is also std/regex.e
for regular expression
searching

The previous library routines we introduced in this chapter
used an actual value to match one or a specific group of elements
in a sequence. The next library routine uses “wildcards” to search
for elements in sequences.Before we introduce this library routine,
we need to discuss what wildcards are.

Wildcards are single substitution characters used in conjunc-
tion with other characters to make a generic search string. You
may have seen wildcards at work when you use the DIR command
in DOS as follows:* and ? are multiplatform

file wildcards

dir *.com — lists all files ending with an extension of .COM

Euphoria has two wildcard characters that closely follow
DOS’ version:

* — matches any 0 or more characters.

For example, a generic search string of “A*” will match values
like “Apple”,“Acorn”, and “A”. A generic search string of “*e” would
match values like “value”, “cue ”, and “e”.

? — matches any single character.

A generic search string of “g???” for example would match
values like “game”, “gone”, and “goat”. A generic search string of
“??t” would match values like “Cat”, “dot”, and “Hit”.

With wildcards now explained, we can introduce the wild-
card_match() library routine.

include wildcard.euse

include

ABGTE Euphoria 78

ri = wildcard_match(s1,s2)

wildcard_match() checks if sequence s2 matches the wild-
card pattern defined in sequence s1. A 1 is returned if s2 matches
s1, otherwise a 0 is returned. The return value is stored in the re-
ceiving variable ri.

The use of matching sequence values with wildcard pat-
terns is a little tricky. This is because wildcard_match() takes
into consideration both alphabetic case and the placement of
the wildcard characters in the pattern string. Look at the exam-
ples on the next page to see some common mistakes when using
wildcard_match() .

atom match_1, match_2, match_3

match_1 = wildcard_match("a*", "ABCDEFGHIJKLMNOPQRSTUVWXYZ")
match_2 = wildcard_match("?Z", "ABCDEFGHIJKLMNOPQRSTUVWXYZ")
match_3 = wildcard_match("PQR*","ABCDEFGHIJKLMNOPQRSTUVWXYZ")

All three variables above will be assigned a value of 0. The
first wildcard_match() line won’t match because the pattern has
a lowercase letter while the searched string is all in uppercase.The
second wildcard_match() will not match because ? was used in-
stead of *, even though “Z” is indeed the last letter of the searched
string. “?Z” means any two character string, the second charac-
ter being “Z”. The last wildcard_match() line will not match be-
cause even though “PQR” does exist in the searched string, the
pattern “PQR*” implies a match only if the searched string begins
with “PQR”.

If you want to search for a substring of characters anywhere
in the target sequence, place a * wildcard on both sides of the sub-
string. This will produce a match pattern of “*PQR*” for example.
You can also mix wildcards in a match pattern, such as “A?c*1”.
This means wildcard_match() will only get a match on this pat-
tern if the searched string’s first character is “A”, its third charac-
ter is “c”, and its last character is “1”.

A demo program is available that allows you to experiment
with pattern strings, to help you get a better understanding of
wildcard_match() :

ABGTE Euphoria 79

program 33

use

include
std/wildcard.e

include wildcard.e

sequence pattern_string, search_string
atom halt_program, matched

halt_program = ’n’

search_string = "wildcard_match() is a powerful feature of Euphoria."

while halt_program = ’n’ do
 puts(1,search_string & "\n")
 puts(1,"Enter a wildcard pattern string or \"STOP\": ")
 pattern_string = gets(0)
 pattern_string = pattern_string[1..(length(pattern_string)-1)]
 if compare(pattern_string,"STOP") = 0 then
 halt_program = ’y’
 else
 matched = wildcard_match(pattern_string, search_string)
 puts(1,"\n")
 if matched then
 puts(1,pattern_string & " matches above string.\n\n")
 else
 puts(1,pattern_string & " does not match above string.\n\n")
 end if
 end if
end while

wildcard_match() is a powerful feature of Euphoria.
Enter a wildcard pattern string or "STOP": ?

? does not match above string.

wildcard_match() is a powerful feature of Euphoria.
Enter a wildcard pattern string or "STOP": !

! does not match above string.

wildcard_match() is a powerful feature of Euphoria.
Enter a wildcard pattern string or "STOP": *

* matches above string.

wildcard_match() is a powerful feature of Euphoria.
Enter a wildcard pattern string or "STOP": STOP

If you want to write your own sequence search programs,
one important factor is the speed on finding the element you are
searching for. To optimize your search, it is best to sort the se-
quence and then look up each element until you either get a match,
or compare a value that is larger than the element you are looking
for (which means not found).

To sort a sequence to be searched, you use the sort library
routine.

include sort.euse

include std/sort.e rs = sort(s)

ABGTE Euphoria 80

sort() sorts sequence s, but does not change s. The sorted se-
quence is instead stored in receiving variable rs.The sequence to be
sorted can be made up of any combination of atoms and sequences.
The result of the sort will be a sequence with its elements sorted
in ascending order, with any atom values appearing first before se-
quence elements. Elements that are sequences are sorted based on
an element by element comparison, starting with the first element
onward. The comparison is based on the value of each element.

Run a demo program now that demonstrates how sort()

works with sample data.

program 34

use

include std/sort.e

include sort.e
sequence sorted, unsorted

unsorted = {"world","the","Euphoria","rules"}
sorted = sort(unsorted)

puts(1,"Unsorted: ")
for words = 1 to length(unsorted) do
 puts(1,unsorted[words] & " ")
end for
puts(1,"\n")
puts(1,"Sorted: ")
for words = 1 to length(sorted) do
 puts(1,sorted[words] & " ")
end for
puts(1,"\n\n")

unsorted = {{1,1,8,2},5,{1,2,3},{1,1,9},-45,{1,2,1}}
sorted = sort(unsorted)
puts(1,"Unsorted: ")
print(1,unsorted)
puts(1,"\n")
puts(1,"Sorted: ")
print(1,sorted)
puts(1,"\n")

Unsorted: world the Euphoria rules
Sorted: Euphoria rules the world

Unsorted: {{1,1,8,2},5,{1,2,3},{1,1,9},-45,{1,2,1}}
Sorted: {-45,5,{1,1,8,2},{1,1,9},{1,2,1},{1,2,3}}

This concludes your introduction to advanced data object
handling library routines. The next chapter will introduce library
routines that can enhance any arithmetic computations you may
have in your programs.

ABGTE Euphoria 81

14. Advanced Arithmetic Library Routines

Euphoria offers a set of library routines that save the programmer
from coding complex programs to handle advanced math formulas.
These library routines can handle some algebra and trigonometry
formulas, rounding down of numbers to the smallest whole num-
ber, and even the generation of random numbers. Note that some
of these library routines require a strong background in certain
areas of mathematics before you attempt to use them.see std/math.e for an ex-

panded math library

The first library routine we will introduce is sqrt() :

ro = sqrt(o)

sqrt() returns the square root of o, which is then stored in vari-
able ro.

To refresh your memory,a square root of a number is any num-
ber that is multiplied by itself to produce a number. For example,
the square root of 25 is 5, because 5 times 5 gives 25.

This library routine can accept both atom and sequence data
objects. For sequence data objects passed to sqrt() , a sequence
with the same length is generated, with each atom element a
sequare root of the elements in the original sequence.For example,
{16,0.25} passed to sqrt() returns a value of {4,0.5} . The one
word of caution is not to pass a negative atom value or a sequence
with any negative atom elements to sqrt() , or your program will
encounter a runtime error message. A demo program is available
showing how atoms and sequences are squared using sqrt() .

program 35

atom value1
sequence value2

value1 = 25
value2 = {81,{9,4},100}

puts(1, "The square root of ")
print(1,value1)
puts(1, " is ")
print(1,sqrt(value1))
puts(1,"\n")
puts(1, "The square root of ")

ABGTE Euphoria 82

print(1,value2)
puts(1, " is ")
print(1,sqrt(value2))
puts(1,"\n")

The square root of 25 is 5
The square root of {81,{9,4},100} is {9,{3,2},10}

The opposite of square-rooting a number is to raise a number
by the power of 2. Euphoria has a library routine that can raise a
number to the power 2, or any power for that matter.

Here is the library routine used to raise a data object value by
a given power:

ro = power(o1,o2)

power() raises o1 to the power of o2, the result being stored in
receiving variable ro.

Because power() can use raise both atoms and sequence data
objects to a power that in itself can also be either an atom or a se-
quence data object, conversion of values must first occur. If o1 is an
atom and o2 is a sequence, Euphoria converts o1 to a sequence val-
ue that is the same length as o2, composed of elements that equal
the value of o1. If o1 is a sequence and o2 is an atom, Euphoria
converts o2 to a sequence that is the same length as o1, composed
of elements equalling the value of o2. This concept was introduced
in“Assigning Values To Sequence Variables.”

Only after any needed conversion of atoms to sequence data
objects is completed does power() execute. A demo is available to
show how power() works with both atoms and sequences data
objects.

program 36

atom base, result
sequence base2, result2

base = 2

for exponent = 1 to 4 do
 result = power(base,exponent)
 printf(1, "%d to the power of %d is %d\n",{base,exponent,result})
end for

puts(1,"\n")

for exponent = 1 to 4 do
 base2 = repeat(10,5)
 result2 = power(base2,exponent)
 print(1, base2)
 puts(1, " to the power of ")
 print(1,exponent)
 puts(1, " is ")
 print(1,result2)
 puts(1,"\n")
end for

ABGTE Euphoria 83

puts(1, "\n")

base = 3
result2 = power(base,{2,3,4})
print(1, base)
puts(1, " to the power of ")
print(1,{2,3,4})
puts(1, " is ")
print(1,result2)
puts(1,"\n")

2 to the power of 1 is 2
2 to the power of 2 is 4
2 to the power of 3 is 8
2 to the power of 4 is 16

{10,10,10,10,10} to the power of 1 is {10,10,10,10,10}
{10,10,10,10,10} to the power of 2 is {100,100,100,100,100}
{10,10,10,10,10} to the power of 3 is {1000,1000,1000,1000,1000}
{10,10,10,10,10} to the power of 4 is {10000,10000,10000,10000,10000}

3 to the power of {2,3,4} is {9,27,81}

Another library routine related to sqrt() is log() :

ro = log(o)

log() returns the natural logarithm of a number, o. A logarithm
is the exponent that raises a number, called the base, to a specific
power.A natural logarithm is the exponent that raises a base num-
ber of 2.71828 (approximately) to a specific power. For example,
log(27) will return a value of 3.29584. If you were to raise 2.71828
to the power of 3.29584 by using power() , you would get back a
value of 26.9999. log() can handle both atoms and sequences in
the same fashion sqrt() can, returning a value that is stored in a
receiving variable, named ro here.

One note: do not pass a negative number or a zero to log() , or
your program will encounter a runtime error. Natural logarithms
are used in calculations like statistics and trigonometry, so it is
unlikely you will use this library routine much, unless you are
working in areas of mathematics that require natural logarithms.
A demo program is available if you want to see some examples of
how log() is used.

program 37

atom log1, base, result1
sequence log2, result2

base = 2.71828

log1 = log(63)
log2 = log({100,50,25})

result1= power(base,log1)
result2= power(base,log2)

printf(1,"The natural logarithm of 63 is %f\n",log1)

ABGTE Euphoria 84

printf(1,"%.5f to the power of %f is %.0f (rounded up)\n\n",
 {base,log1,result1})

puts(1,"The natural logarithm of ")
print(1,{100,50,25})
puts(1," is ")
print(1,log2)
puts(1,"\n")

printf(1,"%.5f to the power of ",base)
print(1,log2)
puts(1," is ")
printf(1,"{%.0f,%.0f,%.0f} (rounded up)\n\n",result2)

The natural logarithm of 63 is 4.143135
2.71828 to the power of 4.143135 is 63 (rounded up)

The natural logarithm of {100,50,25} is {4.605170186,3.912023005,3.218875825}
2.71828 to the power of {4.605170186,3.912023005,3.218875825} is {100,50,25} (rounded up)

When one number does not evenly divide by another, have you
wondered what the decimal part of the result means? Well, the
numbers to the right of the decimal is what is left over, shown as
a decimal fraction. For example, 3.5 returned from dividing 7 by
2 means “3 with 1 left over.” How did we get 1? Multiply .5 by the
divisor 2 and you get 1. Sometimes this remainder of a division
is just as important as the result, and usually it is preferable to
have that remainder shown as a whole number. You could use the
technique shown above to determine the remainder, or you can use
this next Euphoria library routine instead.

ro = remainder(o1,o2)

remainder() returns the remainder left over from dividing o1 by
o2, and stores it in the receiving variable ro. The value returned by
remainder() is always less than the value of o2, the divisor.

Because remainder() can be either atoms or sequences for
both the quotient and the divisor, Euphoria will convert an atom to
a sequence that will match the length of the other sequence before
remainder() is executed. The elements of this new other sequence
will have the value of the original atom value. You may want to
review power() or the chapter “Assigning Values To Sequence
Variables” if you need any help in understanding this. A demo pro-
gram is available that uses various examples of remainder() .

program 38

sequence format_string
atom leftovers, result
for-
mat_string = "10 divided by %d goes %d time(s) with %d left over.\n"
for divisor = 2 to 9 do
 leftovers = remainder(10,divisor)
 result = 10/divisor
 printf(1,format_string,{divisor,result,leftovers})
end for

ABGTE Euphoria 85

10 divided by 2 goes 5 time(s) with 0 left over.
10 divided by 3 goes 3 time(s) with 1 left over.
10 divided by 4 goes 2 time(s) with 2 left over.
10 divided by 5 goes 2 time(s) with 0 left over.
10 divided by 6 goes 1 time(s) with 4 left over.
10 divided by 7 goes 1 time(s) with 3 left over.
10 divided by 8 goes 1 time(s) with 2 left over.
10 divided by 9 goes 1 time(s) with 1 left over.

If you are working with floating point numbers and want
to convert that value to an integer, one way to do it is to use the
floor() library routine:

ro = floor(o)

floor() takes any data object, o,and rounds it down to the near-
est integer value. If o is a sequence, each atom element in that se-
quence is rounded down to the nearest integer value.

Understand that using floor() is not the same as chop-
ping the decimal fraction part off a value. While examples like
floor(64.55) or floor (32.1, 56.87, 2.044) would result in truncation
(64 and 32, 56, 2), floor(-55.3) and floor(-1.3, -0.5) would return -56
and -2,-1, respectively. If floor() receives an integer, that same
value is returned. A demo program is ready to show examples of
floor() .

program 39

object value1, value2

value1 = 5.3
value2 = -5.3

printf(1,"%.1f floor()’d gives %d\n",{value1,floor(value1)})
printf(1,"%.1f floor()’d gives %d\n",{value2,floor(value2)})
puts(1,"\n")

value1 = {35.3,-46.1,22.9,-.7345}
print(1, value1)
puts(1," floor()’d gives ")
print(1, floor(value1))
puts(1,"\n")

5.3 floor()’d gives 5
-5.3 floor()}’d gives -6

{35.3,-46.1,22.9,-0.7345} floor()’d gives {35,-47,22,-1}

Euphoria has a library routine that may be of interest to those
who want to write their own games. It involves the creation of ran-
dom numbers, a key element in any game, whether it involves ran-
domly generating a number to guess, or creating an unexpected
malfunction aboard a spaceship during a critical moment in battle.
Here is the syntax of the rand() library routine:

ABGTE Euphoria 86

ro = rand(o)

rand() will return a randomly generated number. If o is an atom
value, the number generated will be from 1 to o. If o is a sequence,
the number generated will be from a sequence composed of 1’s
to o. A randomly generated sequence value will always have the
same length as o. The largest integer value (either passed as a
single atom or as one or more elements of a sequence) rand() will
generate is 1,073,741,823. A demo program is available to show
rand() ’s use in a guess the number game.

program 40

use

include
std/console.e

include get.e

atom random_number,guessed_number, end_program
sequence input_data

puts(1,"Guess any number between 1 and 10\n")

end_program = ’n’
random_number = rand(10)

while end_program = ’n’ do
 input_data = get(0)
 if input_data[1] = 0 then
 if integer(input_data[2]) then
 guessed_number = input_data[2]
 if guessed_number = random_number then
 end_program = ’y’
 puts(1,"\nBingo!\n")
 elsif guessed_number < random_number then
 puts(1,"\nYou’re too low! Try again!\n")
 elsif guessed_number > random_number then
 puts(1,"\nYou’re too high! Try again!\n")
 end if
 end if
 end if
end while

Guess any number between 1 and 10
4

You’re too low! Try again!
8

You’re too low! Try again!
9

Bingo!

Left on its own, rand() will generate a unpredictable random
value every time it is called. However, some programs may need
to repeat the same random values more than once. This is done
by setting the random number generator’s “seed” (a source value
where all rand() -generated values are drawn from) to a certain
value. You can do this by using the library routine set_rand() :

ABGTE Euphoria 87

include machine.e

use

include
std/rand.e set_rand(a)

If you execute set_rand() to set the random number generator
seed to a, execute rand() three times to generate three different
random numbers (let’s pretend we generated 51, 67, and 2), then
execute set_rand() again using the same value of a, the next
three executions of rand() will generate the same values of 51, 67,
and 2.

If you use the same value to set the random number genera-
tor seed, the following rand() executions will always produce the
same random values, no matter how many times you re-run your
program.A demo program is available showing how to generate the
same set of random numbers based on a value from the keyboard:

program 41

use

include

std/console.e

std/rand.e

include get.e
include machine.e

atom seed, end_program
sequence input_data, prompt, line1, line2, line3
line1 = "\nYou entered "
line2 = " as the value to set the random number generator seed to.\n"
line3 = "The next 10 numbers generated by rand(100) will always be:\n"
prompt = "\nEnter any value or 0 to end this program program\n"

end_program = ’n’

while end_program = ’n’ do
 puts(1,prompt)
 input_data = get(0)
 if input_data[1] = 0 then
 if integer(input_data[2]) then
 seed = input_data[2]
 if seed != 0 then
 puts(1,line1)
 print(1,seed)
 puts(1,line2)
 set_rand(seed)
 puts(1,line3)
 for i = 1 to 10 do
 print(1,rand(100))
 puts(1, " ")
 end for
 puts(1,"\n")
 else
 end_program = ’y’
 end if
 end if
 end if
end while

ABGTE Euphoria 88

Enter any value or 0 to end this program program
7

You entered 7 as the value to set the random number generator seed to.
The next 10 numbers generated by rand(100) will always be:
42 89 53 69 55 13 2 97 58 100

Enter any value or 0 to end this program program
7

You entered 7 as the value to set the random number generator seed to.
The next 10 numbers generated by rand(100) will always be:
42 89 53 69 55 13 2 97 58 100

Enter any value or 0 to end this program program
0

To close this chapter, we will briefly introduce a series of
library routines devoted to trigonometry:

ro = sin(o) —Returns the sine of an angle

ro = cos(o) —Returns the cosine of an angle

ro = tan(o) —Returns the tangent of an angle

ro = arctan(o) —Returns the angle of a tangent (opposite of tan())

The first three library routines accept an atom or a sequence
value, o, that is an angle (in radians), and returns the appropriate
value in variable o. The last accepts an atom or sequence value
that represents a tangent and returns an angle atom or sequence,
measured in radians.

These library routines come in handy for work in trigonome-
try, such as using the law of sines and the law of cosines to deter-
mine the length of a side of a triangle, or to generate a sine wave on
a plane graph.Because trigonometry is a subject out of the scope of
this tutorial,we will focus on them long enough just to let you know
about them.If you are not familiar with trigonometry,these library
routines will not be of any interest to you. They are not mandatory
to know in order to learn how to program in Euphoria.

This concludes our introduction to math library routines in
Euphoria. The next chapter will show you how to work with files
and devices.

ABGTE Euphoria 89

15. Opening Files And Devices In Euphoria

The screen and keyboard are not the only things Euphoria pro-
grams can access on your computer. You can write programs that
read and change file data on your floppy drive or hard drive, or cre-
ate new files as a form of output. You can even access devices on
your computer such as the printer and modem. However, for the
sake of brevity, this chapter will focus more on using files on your
computer with a passing reference or two to some devices.std/io.e which has many

routines for reading and
writing files A Euphoria program accesses a file or device for use by re-

questing the operating system to check if that file or device is free.
If so, a buffer that will be used to hold data between the program
and the file or device is created, and a number is returned to the
program. This number is used by the program to reference the file
or device. Every file accessed by a Euphoria program is assigned a
unique number, so multiple files and devices can be handled with-
out any confusion. Each file or device is also given its own data
buffer. When a program outputs data to a file or device, it really
goes to the buffer assigned to that file or device.When it is full, only
then does it get sent to the file or device.

Any files or devicesbeing used by a Euphoria program remains
allocated until either the program stops running, or the program
informs the operating system that it is finished with the device or
file.When this occurs,any data that was wrtten to the buffer is sent
to the file or device, and the file and device is then free for use by
another program.

Let’s begin the process of accessing files and devices by first
showing how a Euphoria program allocates, or “opens,” a file or
device for use.

ri = open(s1,s2)

open() requests the operating system to allocate a file or device
(s1) to be used in a certain mode (s2). If allowed, the number to
reference the file or device by is stored in ri. If the file or device
cannot be allocated, -1 is stored in ri instead.

ABGTE Euphoria 90

Accessing a file or device in a particular mode (s2) involves two
parts. The first part is how you want to open the file or device. If
you want to open a file or device only as a source of data for your
program, and do not plan to send data back to it, then you want to
open this file or device in “read” mode. This means the program can
only accept data from a file or device, not send to it. In the case of
a file, this means you cannot change the data inside the file. A file
or device must exist in order to open it in “read.”

If your intention is to treat a file or device as a source of out-
put, and do not intend to accept any data from it, then you want
to open this file or device in “write” mode. This means the program
can only send data to the file or device, not read from it. In the case
of a file, opening in “write” mode will destroy any data stored in
the file. If you wish to preserve the existing data in the file when
outputting data to it, you can open the file in “append” mode, a vari-
ation of the“write” mode. “append” mode allows output data to be
tagged at the end of the existing file data.While a device must exist
in order to use “write” and “append,” a file is created if it does not
exist.

If you want to work with devices and files as both a source of
data input and a place to send data as output, then you want to
open in an “update” mode. This means programs can both send and
receive data from files and devices. A file or device must exist in
order to open it in “update” mode.

The second part of opening in a certain mode is how the data
is to be treated.If you are treating the data as something to be used
in text editors, then you want the data to be handled in text mode.
Data outputted in text mode has carriage return codes (13 or “\r ”)
added before any linefeed codes (10 or “\n ”). Data inputted in text
mode will have carriage return codes automatically removed. The
ASCII value of 26 in text mode means the end of data to be read in
the file.

If the data you are handling is more along the lines of digital
pictures or compressed archive files like .ZIP, then you should han-
dle the data in binary mode. This means the data is not altered in
any way, and all ASCII values from 0 to 255 can be read or written
unconditionally.

By combining 4 open type and 2 data handling modes together,
we produce the following 8 modes on the next page.

 Read Write Append Update

 Data Data Data Data

 ==== ===== ====== ======

 Treat data as text r w a u

 Treat data as binary rb wb ab ub

ABGTE Euphoria 91

Euphoria supports Windows 95’s long file name format when
using open() on any existing file in any of the modes listed above.
However, if you try to open a new file using modes “wb,” “w,” “ab,”
or “a” under Windows 95, the name of the new file will be truncated
to DOS’s 8.3 format (an eight character filename, then a period,
followed by a three character extension) if it is lengthy.oE works with Windows

and Unix filesystems.

The tutorial for the most part will use DOS’s 8.3 format in fair-
ness to all users with different operating systems,unless otherwise
necessary.

To open an existing file in the current directory you are in for
reading, and to handle file data as text, you would type:

integer file_id
file_id = open("text.doc" , "r")

To open an existing file in another directory on drive C: for ap-
pending data to the end of the file, and to treat the data as binary,
you type:

integer file_id
file_id = open("c:\\binary\\database.bin" , "ab")

file_id = open(
c:/binary/database.bin ,
ab)

Notice you have to use two slashes instead of one when defin-
ing the directory path. This is because \ is also a special character
prefix.Modern operating sys-

tems use / as the directo-
ry path separator. New-
er versions of Windows
allow you to use either.
When / is used, you no
longer have to double-up
on the separator.

To create a new file in a different directory on drive F: for
writing output data, and to handle data as text, you would type:

integer file_id
file_id = open(" f:\\output\\write.dta " , " w ")

To open an existing file on the C: drive for updating (using long file
names) under the Windows95 operating system, and handling the
data as text, you would type:

integer file_id
file_id = open("c:\\EuphoriaFiles\\tutorialfile.textfile","u")

You can use the open() library routine to open devices for use. The
six allowed device names are listed below:

• CON —Console (screen)

• AUX —Auxiliary serial port

• COM1 —Serial port 1

• COM2 —Serial port 2

• PRN —Parallel port printer

• NUL —Non-existent device that discards accepted output

ABGTE Euphoria 92

We will not place too much emphasis on working with devices
in this tutorial, but here is how to open the printer, a device you’ll
use often:

integer file_id

file_id = open("PRN" , "w")

Notice that accessing the printer uses a mode of write text data.
This makes sense, as printersYou must know the spe-

cific printer control codes
of your printer. Otherwise
you get just garbage.

cannot send data, and all printer
line output (in text mode) is terminated with carriage and line-
feed codes.

After going through so much reading just to learn how to open
a file or device for your program to use, you probably assume that
the process of passing data between your program and the de-
vices and files on your system is just as complex. That assumption
couldn’t be further from the truth. As a matter of fact, you have al-
ready learned about the library routines that handle data transfer
between the program and any files or devices it works with. The
next chapter will explain this in greater detail.

ABGTE Euphoria 93

16. File And Device Data Handling

You’ll recall earlier that Euphoria has a set of library routines that
allow a program to accept data from the keyboard and send data
to the screen. If the screen and keyboard can be used to access ex-
ternal data, this means they are just like files and other devices. If
this is the case, then it would be better to have the library routines
for screen and keyboard able to work with other devices and files,
instead of designing a new set of library routines that does the
same thing.

It makes sense. If Euphoria automatically assigns the num-
ber 0 for keyboard, and 1 and 2 for the screen, then replacing these
numbers with a value returned by the open() library routine
would have the input and output library routines handle data from
other sources. This means you already know how to pass data be-
tween the program and other files and devices.

Let’s expand this a little further, to help those that do not un-
derstand.

If i is a value returned by open() , then the following library
routines can be used to send data to a file or device opened for
data output:

• print(i,o) — sends a Euphoria value to a file

or device

• puts(i,o) — sends an atom or a sequence as a

character string to a file or device

• printf(i,s,o) — sends an atom or a sequence as part

of an edited string to a file or device

In short, all that was done was to replace 1 (screen) with the
value returned by open() . The library routine still works the
same way.

ABGTE Euphoria 94

The same can also be done for library routines that handle
input. If i is a value returned by open() , then the following library
routines can be used to receive data from a file or device opened for
data input:

use

include
std/console.e include get.e

rs = get(i) — retrieve a Euphoria data object from a file or

device, and store as a two element sequence

ro = gets(o) — retrieve a character string from a file or device

up to and including the ’\n’ code, or -1 if no data is available

wait_key() and get_key() only works with the keyboard.Howev-
er, Euphoria has a counterpart for get_key() , called getc() :

ri = getc(i)

getc() retrieves a single byte from a file or device, defined as
i, and stores the byte value into receiving variable ri. i is generated
by the open() library routine when it successfully opens a file or
device for input. If there is no data available to read, a value of -1
is returned.

While screen and keyboard come from distinctly separate
sources (meaning screen and keyboard data are not sharable as a
single source), it is possible, in the case of files, to retrieve infor-
mation previously stored by your program or by another Euphoria
program. For example, data stored in a file by a previous print()

can be retrieved later by using get() . Data sent to a file by puts()

or printf() can be retrieved as a string in one read (gets()) or
character by character (getc()).

When a Euphoria program is finished using a file or device
it can release (or close) it, so another program can use it, without
having to stop running in order to do this.

close(i)

close() closes a file or device, defined as i by open() . This will
send any data still in the buffer to the file or device being closed.

To help you put this all together, a demo program will show
how to open a file or device, send and receive data between files and
devices, and close a file when not needed any more.

use

include
std/console.e

program 42

include get.e
sequence input_data
integer file_id, byte

puts(1,"File And Device I/O Demo Program\n")

ABGTE Euphoria 95

puts(1,"================================\n\n")
puts(1,"Creating a new file called demo.fle on your system......\n\n")
file_id = open("demo.fle","w")
if file_id != -1 then
 puts(1,"Successfully created file demo.fle on your system!\n\n")
 puts(1,"Writing a character string of \"Euphoria\" in demo.fle\n")
 puts(1,"using puts().....\n\n")
 puts(file_id,"Euphoria")
 puts(1,"Done....closing file demo.fle\n\n")
 close(file_id)
end if
puts(1,"Press any key to continue......\n\n")

while get_key() = -1 do
end while

puts(1,"---\n")
puts(1,"Opening demo.fle on your system for reading......\n\n")
file_id = open("demo.fle","r")
if file_id != -1 then
 puts(1,"Successfully opened file demo.fle on your system!\n\n")
 puts(1,"Read character string from demo.fle\n")
 puts(1,"in one shot using gets().....\n\n")
 input_data = gets(file_id)
 if sequence(input_data) then
 printf(1,"The string read in is: %s\n\n", {input_data})
 else
 puts(1,"Error reading data from file!\n")
 end if
 puts(1,"Done....closing file demo.fle\n\n")
 close(file_id)
end if
puts(1,"Press any key to continue......\n\n")

while get_key() = -1 do
end while

puts(1,"---\n")
puts(1,"Opening demo.fle on your system for reading......\n\n")
file_id = open("demo.fle","rb")
if file_id != -1 then
 puts(1,"Successfully opened file demo.fle on your system!\n\n")
 puts(1,"Read character string from demo.fle\n")
 puts(1,"one character at a time using getc().....\n\n")
 byte = getc(file_id)
 puts(1, "The character string read in is: ")
 while byte != -1 do
 puts(1,byte)
 byte = getc(file_id)
 end while
 puts(1,"\n\nDone....closing file demo.fle\n\n")
 close(file_id)
end if
puts(1,"Press any key to continue......\n\n")

while get_key() = -1 do
end while

puts(1,"---\n")
puts(1,"Opening demo.fle on your system to clear data......\n\n")
file_id = open("demo.fle","w")
if file_id != -1 then
 puts(1,"Successfully cleared file demo.fle!\n\n")
 puts(1,"Writing a Euphoria data object of ")
 print(1,-36.5)
 puts(1," using print().....\n\n")
 print(file_id,-36.5)

ABGTE Euphoria 96

 puts(1,"Done....closing file demo.fle\n\n")
 close(file_id)
end if
puts(1,"Press any key to continue......\n\n")

while get_key() = -1 do
end while

puts(1,"---\n")
puts(1,"Opening demo.fle on your system for reading......\n\n")
file_id = open("demo.fle","r")
if file_id != -1 then
 puts(1,"Successfully opened file demo.fle on your system!\n\n")
 puts(1,"Read a Euphoria data object from demo.fle\n")
 puts(1,"using get().....\n\n")
 input_data = get(file_id)
 if input_data[1] = 0 then
 printf(1,"The value read in is: %.1f\n\n", {input_data[2]})
 else
 puts(1,"Error reading data from file!\n")
 end if
 puts(1,"Done....closing file demo.fle\n\n")
 close(file_id)
end if
puts(1,"Press any key to continue......\n\n")

while get_key() = -1 do
end while

puts(1,"---\n")
puts(1,"Opening printer PRN......\n\n")
file_id = open("LPT1","w")
if file_id != -1 then
 puts(1,"Successfully opened printer for use!\n\n")
 puts(1,"Printing a line on your printer using puts()\n")
 puts(1,"Press ’y’ to print or ’n’ to skip\n\n")
 byte = get_key()
 while byte != ’n’ do
 if byte = ’y’ then
 puts(file_id,"*************************\n")
 puts(file_id,"* Euphoria in hardcopy! *\n")
 puts(file_id,"*************************\n")
 end if
 byte = get_key()
 end while
 puts(1,"Done....closing PRN\n\n")
 close(file_id)
end if

File And Device I/O Demo Program
================================

Creating a new file called demo.fle on your system......

Successfully created file demo.fle on your system!

Writing a character string of "Euphoria" in demo.fle
using puts().....

Done....closing file demo.fle

Press any key to continue......

ABGTE Euphoria 97

Opening demo.fle on your system for reading......

Successfully opened file demo.fle on your system!

Read character string from demo.fle
in one shot using gets().....

The string read in is: Euphoria

Done....closing file demo.fle

Press any key to continue......

Opening demo.fle on your system for reading......

Successfully opened file demo.fle on your system!

Read character string from demo.fle
one character at a time using getc().....

The character string read in is: Euphoria

Done....closing file demo.fle

Press any key to continue......

Opening demo.fle on your system to clear data......

Successfully cleared file demo.fle!

Writing a Euphoria data object of -36.5 using print().....

Done....closing file demo.fle

Press any key to continue......

Opening demo.fle on your system for reading......

Successfully opened file demo.fle on your system!

Read a Euphoria data object from demo.fle
using get().....

The value read in is: -36.5

Done....closing file demo.fle

Press any key to continue......

Opening printer PRN......

Successfully opened printer for use!

Printing a line on your printer using puts()
Press ’y’ to print or ’n’ to skip

Done....closing PRN

ABGTE Euphoria 98

Whenever you open a file for use, there is a bookmark that
determines where at the byte position the next read or write will
occur in the file. When a file is opened for read, write and update
(whether in text or binary handling), the byte position is 0, mean-
ing the start of the file. For files open for append, the byte position
is the last byte of the file. Any data output will change the byte po-
sition value.

It’s possible for a Euphoria programmer to control where the
next read or write will occur in the file by setting the current byte
position to a new location. This is done by using the library routine
seek() :

include file.e

ri = seek(i1,i2)

seek() sets the next read or write in file i1 (returned by
open()) to byte position i2. i2 is the number of bytes from the first
byte in the file. For example, seek(0) would have the next read or
write occur at the first byte. seek(2999) would have the next read
or write occur at the 30,000th byte. A value of 0 is returned to re-
ceiving variable ri if seek() successfully changes the current byte
position. If unsuccessful, seek() returns a non-zero value.

You can seek() to a position past the actual end of the file.
If this happens, extra byte values of 0 will be added to the end of
the file, making it long enough to match the byte position you are
seek() -ing to.

A demo program is available to show how seek() is used to
change specific byte locations in a file:

program 43

include file.e
sequence string, seek_positions, vowels
object input_line
atom file_id, status

vowels = "aeiou"

string =
"The beauty of the seek() library routine is that you can control\n" &
"where the next write or read will occur. This will allow you to\n" &
"update any old information in your file with new data. This eliminates\n" &
"the need to maintain different versions of the same data in the\n" &
"file.\n\n"

seek_positions = {}
for element = 1 to length(string) do
 if find(string[element],vowels) then
 seek_positions = append(seek_positions,{element, string[element]})
 string[element] = ’ ’
 end if
end for
file_id = open("demo.fle","wb")
puts(file_id,string)
close(file_id)

ABGTE Euphoria 99

puts(1,"The paragraph below has been written to a file named demo.fle,\n")
puts(1,"after the vowels were removed and stored in a sequence. This\n")
puts(1,"demo will use seek() to return the vowels back to the paragraph\n")
puts(1,"in the file\n\n")
puts(1,string)
file_id = open("demo.fle","ub")
for element = 1 to length(seek_positions) do
 status = seek(file_id,seek_positions[element][1]-1)
 if status = 0 then
 puts(file_id,seek_positions[element][2])
 end if
end for
close(file_id)
file_id = open("demo.fle","rb")
input_line = gets(file_id)
puts(1,"Adding vowels now.....\n\n")
while compare(input_line,-1) != 0 do
 puts(1,input_line)
 input_line = gets(file_id)
end while

The paragraph below has been written to a file named demo.fle,
after the vowels were removed and stored in a sequence. This
demo will use seek() to return the vowels back to the paragraph
in the file

Th b ty f th s k() l br ry r t n s th t y c n c ntr l
wh r th n xt wr t r r d w ll cc r. Th s w ll ll w y t
 pd t ny ld nf rm t n n y r f l w th n w d t . Th s l m n t s
th n d t m nt n d ff r nt v rs ns f th s m d t n th
f l .

Adding vowels now.....

The beauty of the seek() library routine is that you can control
where the next write or read will occur. This will allow you to
update any old information in your file with new data. This eliminates
the need to maintain different versions of the same data in the
file.

If you want to know the current byte position in the file, you
can find out using the where() library routine:

include file.e

ri = where(i)

where() is best used when you want to find out the current
byte position where the next read or write will occur in file i. i is a
value returned by the open() statement. A demo program is avail-
able showing where() in use, returning the current byte position at
the time of opening a file, and after a few writes have been made
to the file.

program 44

include file.e
sequence list_of_words, input_string
integer file_id, current_location

list_of_words = {"Euphoria ","rocks"}

ABGTE Euphoria 100

puts(1,"This demo program will show how the current byte position is\n")
puts(1,"updated with every I/O made to a file, courtesy of the where()\n")
puts(1,"library routine. Remember that the current byte position is\n")
puts(1,"the number of bytes from the first byte in the file!\n\n")

file_id = open("demo.fle","wb")

current_location = where(file_id)
printf(1,"Opening file in write mode, the current byte position is %d\n\n",
 current_location)

for word = 1 to length(list_of_words) do
 printf(1,"Writing \"%s\" to file....\n",{list_of_words[word]})
 puts(file_id,list_of_words[word])
 current_location = where(file_id)
 if word < 2 then
 printf(1,"The next write or read will occur at %d\n\n",
 current_location)
 else
 puts(1,"Closing file\n\n")
 end if
end for

close(file_id)
file_id = open("demo.fle","ab")

current_location = where(file_id)
printf(1,"Opening file in append mode, the current byte position is %d\n\n",
 current_location)
printf(1,"Writing \"%s\" to file....\n",’!’)
 puts(file_id,"!")
puts(1,"Closing file\n\n")

close(file_id)

puts(1,"Opening file in read mode now...\n\n")
file_id = open("demo.fle","rb")
input_string = gets(file_id)
printf(1,"The file contains the following string: %s\n",{input_string})

close(file_id)

This demo program will show how the current byte position is
updated with every I/O made to a file, courtesy of the where()
library routine. Remember that the current byte position is
the number of bytes from the first byte in the file!

Opening file in write mode, the current byte position is 0

Writing "Euphoria " to file....
The next write or read will occur at 9

Writing "rocks" to file....
Closing file

Opening file in append mode, the current byte position is 14

Writing "!" to file....
Closing file

Opening file in read mode now...

The file contains the following string: Euphoria rocks!

ABGTE Euphoria 101

The next few chapters will make learning Euphoria more fun,
by writing programs that generate and manipulate colourful text
and graphics.

ABGTE Euphoria 102

17. Introduction To Graphics Modes

Multimedia is the use of graphics, text, and sound by your program
to interact with the person running it. It’s a popular trend in both
the business and home entertainment software industry. Eupho-
ria’s language set has a wealth of library routines that can allow
you to handle powerful text and graphic output. Do not be intimi-
dated by the idea of handling graphics in your programs.Euphoria
remains true to its reputation of being an easy-to-understand lan-
guage, even with graphics!

Before you are introduced to library routines that add colour
and style to your screen output, you need to know how your com-
puter screen works.

When your computer screen shows information, it is present-
ing the data using a display format, otherwise known as graph-
ics mode.

Text mode is still the
same. Use a GUI package
for pixel based graphics.

There are two types of graphics modes, a text mode and a
pixel-graphics mode. Text mode is the default setting of your com-
puter screen when your system is started up. It allows the display
of characters at specific screen locations by using a paired co-ordi-
nate system of row first,and column second.The default number of
columns is 80 characters across, and the default number of rows is
25 rows down, though these can be changed to the needs of the pro-
gram. Combining a row and a column position produces a screen
location to start displaying text at. For example, the top left corner
of the screen in text mode is 1,1 (row 1, column 1). The bottom left
corner of the screen in text mode is 25,80 (row 25, column 80).

Characters in text mode can be displayed with colour as well.
The colour the text is displayed in is called the foreground colour.
The area around each character that is not being used can also
have a colour different from the foreground colour. This is called
the background colour.

The default foreground colour for the text being displayed
in Euphoria is white, and the default background colour black, in
text mode.

ABGTE Euphoria 103

Pixel-graphics mode also allows text to be displayed, and in
a foreground colour. It also allows displaying what is known as a
pixel. Pixels are tiny dots that can be used to assemble a graphics
image. This tutorial program for example uses pixels to assemble
the graphic images of the remote, the index screen, and the grey
tiling around the viewport. This graphics mode also uses a paired
co-ordinate system to display a pixel on the screen, but with two
differences. First, the address pair to display a pixel is reversed in
comparison to text screen addresses. Pixels are displayed using a
pixel column first, pixel row last, address pair. Also, pixel row and
column locations start at 0, not 1. This means the top left pixel
corner is 0,0 (column 0, row 0). Because pixels are very small, the
row and column positions can number into the hundreds, or in the
case of high-resolution screens, the thousands.

But what is a high resolution? Well, a screen resolution is the
number of pixels available on the screen. But how does one in-
crease the number of pixels on a screen when the computer moni-
tor itself remains the same size? This is accomplished by compress-
ing the size of the pixel in each different screen resolution. For ex-
ample, a high-resolution screen would have the pixels very small
in order to fit a lot of them on one monitor.While this results in dis-
playing images with very fine detail, the image itself would appear
smaller than expected.On the other hand, a pixel-graphics mode in
low resolution would use pixels that are a little larger, seeing that
there would be fewer pixels available on the screen. This would
make graphic images appear larger in size, but the quality of the
picture would be more coarse and grainy.High-definition television
screens for example use pixels that are much smaller than in con-
ventional television sets, so the picture quality is much better.

Pixels, like text, can be displayed in a specific colour, so they
also have a foreground colour. But the similarities end when dis-
cussing background colour in pixel-graphics modes. Any screen
area not being occupied by a pixel is considered the background,
so setting the background colour affects the entire screen area.
As a result, any text shown in pixel graphics mode does not have a
background colour. Text in this case is treated more like a group of
pixels organized into a graphics shape than actual characters.

Each text and pixel graphics mode comes with a set of
colours. this set of colours is called the palette. It works much
like a painter’s palette used in the creation of art. The painter’s
palette holds a number of tins of paint, each tin holding a differ-
ent paint colour. If a new colour not on the palette is needed, one
tin is switched with another tin containing the desired colour. The
graphic mode palette works the same way, as each colour on the
palette is identified by a number.

ABGTE Euphoria 104

Each palette colour is created by mixing three elemental
colours together. These three colours are red, blue, and green. By
varying the intensities of each of the three colours differently,
a new colour can be produced. The colours of the graphics mode
palette are initially set to default levels of red, green, and blue, but
as mentioned they can be changed to make a new colour. Because
red, green and blue is used to generate the colours on a palette,
each colour is said to have an RGB intensity level.

While the computer monitor can only show one screen display
at a time, it is possible to maintain more than one virtual screen,
called a screen page, in certain graphics modes. This means you
can send screen output (using puts() for example) to one of many
screen pages your Euphoria program is juggling. The screen page
where all screen output is sent is called the active page. The screen
page currently being shown on the computer monitor is called the
display page.

The active page and the display page do not have to be the
same screen page. For example, you can be sending screen output
to one page while displaying a different page on the monitor. The
number of screen pages available depends on the amount of mem-
ory on your video card in your computer.

Before any text or pixel-graphics images can be shown on the
screen, the appropriate graphics mode must be selected. To do this,
you use the graphics_mode() library routine:

include graphics.e

ri = graphics_mode(i)

graphics_mode() sets the screen to the appropriate graphics mode,
an integer value of i. If successful, a value of 0 is returned to
the receiving variable ri. If unsuccessful, a value of 1 is returned
instead.

This is to set a DOS video
mode.

Each graphics mode is identified as a unique number, and is
either a text mode or a pixel graphics mode. Within each of these
two groups are variations on the number of pixels or characters
available for each graphics mode. As of version 1.5, here are the
accepted mode numbers you can pass to graphics_mode(), with a
description for each:

ABGTE Euphoria 105

 0 = 40x25 text, 16 grey

 1 = 40x25 text, 16/8 color

 2 = 80x25 text, 16 grey

 3 = 80x25 text, 16/8 color

 4 = 320x200 pixels, 4 color

 5 = 320x200 pixels, 4 grey

 6 = 640x200 pixels, BW

 7 = 80x25 text, BW

 11 = 720x350 pixels, BW

 13 = 320x200 pixels, 16 color

 14 = 640x200 pixels, 16 color

 15 = 640x350 pixels, BW

 16 = 640x350 pixels, 4 or 16 color

 17 = 640x480 pixels, BW

 18 = 640x480 pixels, 16 color

 19 = 320x200 pixels, 256 color

 256 = 640x400 pixels, 256 color

 257 = 640x480 pixels, 256 color

 258 = 800x600 pixels, 16 color

 259 = 800x600 pixels, 256 color

 260 = 1024x768 pixels, 16 color

 261 = 1024x768 pixels, 256 color

Not all video cards will support all of these modes. The older
the video card, the least number of the listed modes that will be
available to you.

To switch back to the previous video mode you were using,pass
a value of -1 to graphics_mode() as a parameter. You should moni-
tor for the return code generated by graphics_mode() to make sure
the graphics mode was changed successfully before attempting
any text or graphics mode operations. A demo program is available
to list the graphics modes available on your computer. Do not be
alarmed at the screen flickering or cracking while it runs.

program 45

include graphics.e
sequence screen_modes, good_modes, bad_modes
atom counter
integer screen_set_status
screen_modes = {0,1,2,3,4,5,6,7,11,13,14,15,16,17,18,19,256,257,258,259,260,
261,262,263,-999}
counter = 1
good_modes = {}
bad_modes = {}
while screen_modes[counter] != -999 do
 screen_set_status = graphics_mode(screen_modes[counter])
 if screen_set_status = 0 then
 good_modes = append(good_modes,screen_modes[counter])
 else
 bad_modes = append(bad_modes, screen_modes[counter])
 end if
 counter = counter + 1
end while
screen_set_status = graphics_mode(-1)
puts(1, "The modes that can be used for your video card are:\n")
print(1, good_modes)
puts(1, "\n\nThe modes that cannot be used for your video card are:\n")

ABGTE Euphoria 106

print(1, bad_modes)

The modes that can be used for your video card are:
{0,1,2,3,4,5,6,7,11,13,14,15,16,17,18,19,256,257,258,259,260,261,262,263}

The modes that cannot be used for your video card are:
{}

This example was run an
a Unix system.

On a Unix system the an-
swer is that it is not possi-
ble to set a video mode.

Whatever graphics mode you are in, it’s important to know
what you can and cannot do while in this graphics mode, because
going over the limits defined in the graphics mode could lead to a
program error.

std/graphics.e,
video_config() still avail-
able

This library routine will give you information about the
graphics mode you are in:

include graphics.e

rs = video_config()

When executed, video_config() will return a sequence value
made up of eight atom elements, which is stored in receiving vari-
able rs. Each element represents an attribute about the graphics
mode. The structure is as follows:

{colour monitor (1 means yes, 0 means no),
 graphics mode number,
 number of text rows,
 number of text columns,
 number of pixels across,
 number of pixels down,
 number of colours supported,
 number of pages}

Pixel count will always
be zero—there is no pixel
graphics mode in oE

If the value of number of pixels across and down are both
zero, you are in a text mode.Only pixel-graphicsmodes can support
the use of pixels. The next demo program will not only tell you
which graphics modes your system can support, it will give you the
details about each.

program 46

include graphics.e
sequence screen_modes, video_settings
atom counter
integer screen_set_status
screen_modes = {0,1,2,3,4,5,6,7,11,13,14,15,16,17,18,19,256,257,258,259,260,
261,262,263,-999}
counter = 1
while screen_modes[counter] != -999 do
 screen_set_status = graphics_mode(screen_modes[counter])
 if screen_set_status = 0 then
 video_settings = video_config()
 printf(1, "Mode %d supports the following attributes:\n\n",
 {screen_modes[counter]})
 if video_settings[1] = 1 then
 puts(1, " Has Colour\n")

ABGTE Euphoria 107

 else
 puts(1, " Has No Colour\n")
 end if
 printf(1, " Has %d text rows and %d text columns\n",
 {video_settings[3], video_settings[4]})
 if video_settings[5] + video_settings[6] > 0 then
 printf(1, " Has %d pixels across and %d pixels down\n",
 {video_settings[5], video_settings[6]})
 end if
 printf(1, " Has %d colours available\n", {video_settings[7]})
 printf(1, " Has %d display pages accessible\n\n",
 {video_settings[8]})
 puts(1, "Press Any Key To Continue\n")
 while get_key() = -1 do
 end while
 end if
 counter = counter + 1
end while
if graphics_mode(-1) then
end if

Tested on a Unix system.
All ’video modes’ produce
the same answer—only a
text screen is available.

Mode 0 supports the following attributes:

 Has Colour
 Has 24 text rows and 80 text columns
 Has 16 colours available
 Has 1 display pages accessible

Press Any Key To Continue
Mode 1 supports the following attributes:

 Has Colour
 Has 24 text rows and 80 text columns
 Has 16 colours available
 Has 1 display pages accessible

Press Any Key To Continue

Whenever you switch to any new graphics mode, the screen
automatically clears any data off the screen. However, you may
want to clear the screen without having to reset the graph-
ics mode:

clear_screen()

clear_screen() clears the screen using the current back-
ground colour. Later in the tutorial, you will learn how to set
the background colour in both text and pixel graphics mode.
clear_screen() works in any graphics mode.Because this is a rel-
atively straightforward routine to use, no demo is required.

Now that you understand how to set the screen graphics mode
to your liking,and are able to obtain information about the selected
mode, let’s move on to putting text mode displays to good use. Once
you have finished reading the next chapter, you’ll never consider
text output as dull again.

ABGTE Euphoria 108

18. Colouring And Animating Text

Most of the demos you have seen involved presenting text on the
screen. While it is very easy to create a formatted text line using
printf() , it’s entirely another matter to have text, formatted or
otherwise, to appear anywhere on the screen. The special charac-
ters ’ \t’ and ’ \n’, and generous usage of the spacebar isn’t enough
to present text in professional form, such as in columns, horizon-
tally centered, or even in colours other than white on black. This
chapter will change all that.oE is text mode — use

a GUI library for modern
graphics and windows.

position(i1,i2)

position() moves the screen cursor to any row (i1) and column
(i2) location where you want the next screen print (by puts(),
print(), or printf(), for example) to appear. For example, issuing po-
sition(15,40) will move the cursor to the 15th row and the 40th col-
umn from the top-left corner of the screen (row 1, column 1). Any
attempt to go off the screen will result in a program error. A demo
program is available to show one humourous use of position() in
displaying text.

program 47

clear_screen()
position(3,15)
puts(1, "A Program Example To Demonstrate Text Positioning")
position(4,30)
puts(1, "Written By David Gay")
position(5,20)
puts(1, "Author, \"A Beginner’s Guide To Euphoria II\"")
position(8,1)
puts(1, "Top Ten Reasons why you should purchase Euphoria:")
position(9,1)
puts(1, "==")
position(11, 5)
puts(1, "Number 10: It’s (thankfully) not a Microsoft product.")
position(12, 5)
puts(1, "Number 9: Because C is like tax laws: too complex to figure out.")
position(13, 5)
puts(1, "Number 8: Euphoria is more fun than this year’s prime time TV season.")
position(14, 5)
puts(1, "Number 7: The money spent will go to BASIC’s retirement home.")
position(15, 5)
puts(1, "Number 6: Because \"Ernest Learns Euphoria\" hits the theatres soon.")

ABGTE Euphoria 109

position(16, 5)
puts(1, "Number 5: You sound very smart when you say you work with atoms.")
position(17, 5)
puts(1, "Number 4: You can write word games you already know the answers to.")
position(18, 5)
puts(1, "Number 3: You can declare things without cross border shopping.")
position(19, 5)
puts(1, "Number 2: At last! A reason to use the { and } keys on the keyboard!")
position(20, 5)
puts(1, "Number 1: It’s a great product!!!!! :)\n\n")

 A Program Example To Demonstrate Text Positioning
 Written By David Gay
 Author,"A Beginner’s Guide To Euphoria II"

Top Ten Reasons why you should purchase Euphoria:
==

 Number 10: It’s (thankfully) not a Microsoft product.
 Number 9: Because C is like tax laws: too complex to figure out.
 Number 8: Euphoria is more fun than this year’s prime time TV season.
 Number 7: The money spent will go to BASIC’s retirement home.
 Number 6: Because"Ernest Learns Euphoria"hits the theatres soon.
 Number 5: You sound very smart when you say you work with atoms.
 Number 4: You can write word games you already know the answers to.
 Number 3: You can declare things without cross border shopping.
 Number 2: At last! A reason to use the { and } keys on the keyboard!
 Number 1: It’s a great product!!!!! :)

If you need to know where the cursor is on the screen,
you can receive the cursor location by using the library routine
get_position() :

include graphics.e
rs = get_position()

oE is textmode only

get_position() returns a two-element long string, representing
the current cursor position, to the receiving variable rs.

The sequence value returned by get_position() is composed
of two atoms, the first atom element is the current row the cursor
is on, the second, the current column the cursor is on. The format
of the sequence value is:

{current row position, current column position}

The current cursor position is always updated whenever a puts(),
print(), or printf() library routine sends any text output to the
screen. A demo program is available to show how the current cur-
sor position changes whenever text print is sent to the screen and
even when position() is used.

program 48

include graphics.e
integer element, keystroke, update
sequence some_text, current_position

ABGTE Euphoria 110

clear_screen()
element = 1
update = ’y’
some_text = "As the screen is continually updated, the cursor position\n" &
 "is updated automatically. get_position() will report the\n" &
 "current position of the cursor.\n\n"
position(1,1)
puts(1,"An example of get_position()")
position(2,1)
puts(1,"============================")
position(25,1)
puts(1,"Press Q to quit, or any other key to display a character")
position(5,1)
while element <= length(some_text) do
 if update = ’y’ then
 update = ’n’
 puts(1,some_text[element])
 current_position = get_position()
 position(23,1)
 printf(1,"Cursor at row %2d, column %2d",current_position)
 position(current_position[1],current_position[2])
 end if
 keystroke = get_key()
 if keystroke = ’q’ then
 element = length(some_text) + 1
 elsif keystroke != -1 then
 element = element + 1
 update = ’y’
 end if
end while

An example of get_position()
============================

As the screen is continually updated, the cursor position
is updated automatically. get_position() will report the
current position of the cursor.

Cursor at row 9, column 1
Press Q to quit, or any other key to display a character

If text sent to the screen is longer than the number of columns
per row, it is wrapped at the right margin of the screen to continue
on the next row below. There may be times where you want any
text that goes over the right margin to be simply truncated and
therefore not seen.

Euphoria has a library routine that allows you to choose
whether to wrap long text strings that go past the right margin or
to truncate:

include graphics.e
wrap(i)

ABGTE Euphoria 111

If parameter i is equal to 1, any printed text that would go past
the right margin would be wrapped and appear on the start of the
next row below. If parameter i is 0, any printed text that would go
past the right margin would be truncated. wrap() works in both
text and pixel-graphics mode. A demo program shows how wrap()

works based on the parameter passed to it.

program 49

include graphics.e
sequence some_string
some_string = "This is a text string that is longer than " &
 "the width of your screen. See how wrap() handles the " &
 "output of the text string when printed. "
for modes = 1 to 0 by -1 do
 wrap(modes)
 printf(1,"When wrap(%d) is used:\n\n", modes)
 puts(1,some_string & "\n\n")
end for

When wrap(1) is used:

This is a text string that is longer than the width of your screen. See how wrap()
handles the output of the text string when printed.

When wrap(0) is used:

This is a text string that is longer than the width of your screen. See how wrap

The standard 25 rows in most graphics modes is more than
enough for displaying full-screen text. But if you need to show a
lot of text data on the screen, having more rows per screen would
help.For Unix systems set the

terminal window, and
then call Euphoria.This is
the only time you can set
the number of rows and
columns.

For text modes only, Euphoria has a library routine that can
change the number of rows that can be displayed on the screen:

On Windows systems, the
number of rows can be
changed.

include graphics.e
ri = text_rows(i)

i represents the number of text rows you want the screen to show.
The accepted values are 25,28,43,and 50.If possible, text_rows()

will change the number of rows on the text mode you are in. You
will notice the rows will appear flattened. Regardless of whether
or not the number of rows on your screen has been changed suc-
cessfully, the number of rows on the screen will be returned to the
receiving variable ri.

Watch how the demo program assigned to this screen will
change the number of rows in a text mode.On a Unix system if you

resize a terminal window
(from a menu or with
a mouse) before starting
Euphoria, then Eupho-
ria will recognize and use
the available rows and
columns.

program 50

include graphics.e
integer current_rows
sequence text_length

ABGTE Euphoria 112

puts(1, "The following will demonstrate how to use text_rows() to\n")
puts(1, "increase the number of rows available in this program. Note\n")
puts(1, "how the spacing between the lines narrows. For those\n")
puts(1, "text rows that are not supported, this program will simply skip\n")
puts(1, "them. You will be required to press any key in order for this\n")
puts(1, "program to continue. Press any key to start the demonstration\n")

while get_key() = -1 do
end while

text_length = {25,28,43,50}
for ix = 1 to 4 do
 current_rows = text_rows(text_length[ix])
 if current_rows = text_length[ix] then
 for iy = 1 to text_length[ix] do
 print(1, iy)
 if iy < text_length[ix] then
 puts(1, "\n")
 end if
 end for
 while get_key() = -1 do
 end while
 end if
end for
current_rows = text_rows(25)

On a Unix system, noth-
ing happens, lines can not
be changed from within a
progrogram.

The following will demonstrate how to use text_rows() to
increase the number of rows available in this program. Note
how the spacing between the lines narrows. For those
text rows that are not supported, this program will simply skip
them. You will be required to press any key in order for this
program to continue. Press any key to start the demonstration

Another way to handle large amounts of text on the screen is
by scrolling. Scrolling involves treating the screen as a movable
window to view any part of the text. It’s like riding in a glass eleva-
tor: as you go up or down, the view from your position will appear
to vertically roll.Wordprocessors use this approach to handle docu-
ments larger than the size of the screen.

While you could write some program code to perform text
scrolling, Euphoria has a powerful library routine that can do this
for you:

include graphics.e
scroll(i1,i2,i3)

scroll() makes a segment of screen text, starting from row i2 to
row i3 inclusive, roll by i1 rows. The roll is towards the top (roll up)
if i1 is negative, or towards the bottom (roll down) if i1 is positive.

If the text scrolls towards the top of the screen, extra blank
rows will appear starting at the bottom row of the scroll area. If
the text scrolls towards the bottom of the screen, extra blank rows
will appear starting at the top row of the scroll area.

scroll() works in both text and pixel graphics modes. A
demo program is available showing one example of how scroll()

works.

program 51

ABGTE Euphoria 113

include graphics.e

integer keystroke, current_position

clear_screen()

position(5,1)
puts(1, repeat(’Í’,80))

position(20,1)
puts(1, repeat(’Í’,80))

position(11,25)
puts(1, "ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»")

position(12,25)
puts(1, "º Welcome To The SCROLL ZONE º")

position(13,25)
puts(1, "ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ¼")

position(22,1)
puts(1, "Press 8 for up, 2 for down, or q to quit this program")

keystroke = get_key()
current_position = 11

while keystroke != ’q’ do
 if keystroke = ’8’ and current_position > 6 then
 scroll(1,6,19)
 current_position = current_position - 1
 end if
 if keystroke = ’2’ and current_position < 17 then
 scroll(-1,6,19)
 current_position = current_position + 1
 end if

 keystroke = get_key()
end while

The default code page and
font (determining which
characters are in output)
is different for Windows
and Unix systems.

integer keystroke, current_position
clear_screen()
position(5,1)
puts(1, repeat(’Ã‡’,80))
position(20,1)
puts(1, repeat(’Ã‡’,80))
position(11,25)
puts(1,"Ã–Ã‡Â»")
position(12,25)
puts(1,"Âº Welcome To The SCROLL ZONE Âº")
position(13,25)
puts(1,"ÃflÃ‡Å´")
position(22,1)
puts(1,"Press 8 for up, 2 for down, or q to quit this program")
keystroke = get_key()
current_position = 11
while keystroke != ’q’ do
 if keystroke = ’8’ and current_position > 6 then
 scroll(1,6,19)
 current_position = current_position - 1
 end if
 if keystroke = ’2’ and current_position < 17 then
 scroll(-1,6,19)
 current_position = current_position + 1
 end if
 keystroke = get_key()
end while

ABGTE Euphoria 114

Typically a Windows con-
sole will output charac-
ters that make it easy to
draw boxes on the screen.

For a Unix system, you
have to explicitly set the
font and codepage to one
to provide these drawing
characters.

The keycodes reported by
Windows and Unix are
different—same comput-
er and same keyboard.
For this reason this demo
program will not work on
a Unix computer without
rewriting the keycode log-
ic.

Ã‡

 Ã–Ã‡Â»
 Ã– Welcome To The SCROLL ZONE Âº
 ÃflÃ‡Å´

Ã‡

Press 8 for up, 2 for down, or q to quit this program

Perhaps the best way to present text is in colour. This tutorial,
for example, uses colour to separate Euphoria statements and spe-
cific points apart from the regular text. There is a library routine
you can use to present text in a certain colour.

include graphics.e
text_color(i)

text_color() causes any following screen text to be printed in the
colour i. Any text already on the screen will not have its foreground
colour changed. To start printing separate text in a new colour,
you have to issue text_color() again. i is a number representing
a colour in the palette of the text or pixel-graphic mode you are
in. While some numbers may mean different colours in different
graphic modes, the first 16 colours are as follows:

 1 = blue

 2 = green

 3 = cyan

 4 = red

 5 = magenta

 6 = brown

 7 = white

 8 = gray

 9 = bright blue

 10 = bright green

 11 = bright cyan

 12 = bright red

 13 = bright magenta

 14 = yellow

 15 = bright white

 (note: 0 = black)

When your program terminates, any screen text after will ap-
pear in the colour set by the last text_color() issued. As a result
your program should issue a text_color(7) (white) followed by a
puts(" \ n ") before it completes. text_color() works in any text or
pixel-graphics modes. A demo program is available to show one use
of text_color() .

program 52

include graphics.e
integer foreground_colour
sequence list_of_colours, already_used

clear_screen()

ABGTE Euphoria 115

list_of_colours = {"blue","green","cyan","red","magenta","brown",
 "white","gray","bright blue","bright green",
 "bright cyan","bright red","bright magenta",
 "yellow","bright white"}

already_used = {}

for ix = 1 to 10 do
 foreground_colour = rand(15)
 while find(foreground_colour,already_used) do
 foreground_colour = rand(15)
 end while
 already_used = already_used & foreground_colour
 text_color(foreground_colour)
 printf(1, "Text in %s\n",{list_of_colours[foreground_colour]})
end for

On a Unix terminal, the
actual colors displayed
can depend on the termi-
nal being used and its col-
or settings.

Text in red
Text in bright green
Text in blue
Text in bright blue
Text in green
Text in gray
Text in bright red
Text in bright white
Text in white
Text in yellow

To set the background colour of any text printed in a text
mode, or the entire background of a screen in pixel graphics mode,
you use the following library routine:

include graphics.e

bk_color(i)

In text mode, issuing bk_color() will cause the next screen text
to be printed in the background colour i. Any text already on the
screen will not have its background colour changed.

In pixel-graphics mode, the entire screen background will be
changed instantaneously to the new colour i. This differs from text
mode where only the background of any printed text following
bk_color() is affected. In addition, any parts of graphic images on
the screen that are in black (0) will show the background colour
underneath when it is changed to any non-black colour. A demo
program is available showing the differences between text and
pixel-graphics modes where bk_colour() is concerned.

program 53

include graphics.e
clear_screen()
text_color(15)
bk_color(2)
position(13,9)
puts(1,"When using bk_color() in text mode, only the background colour")
position(14,10)
puts(1,"of the text itself is affected. Press any key to continue...")
while get_key() = -1 do

ABGTE Euphoria 116

end while
if graphics_mode(18) = 0 then
 text_color(15)
 bk_color(2)
 position(14,10)
 puts(1,"When using bk_color() in pixel-graphics mode, the background")
 position(15,10)
 puts(1,"colour of the entire screen is changed. Press any key to end.")
 while get_key() = -1 do
 end while
 if graphics_mode(-1) then
 puts(1,"Resetting to the previous screen does not work for you!")
 end if
end if

 When using bk_color() in text mode, only the background colour
 When using bk_color() in pixel-graphics mode, the background
 colour of the entire screen is changed. Press any key to end.

oE text mode colors work.
But, effects needing pix-
el graphics are not avail-
able.

Rather than have text sit motionless on the screen, you can
make it more interesting to look at through animation, as in mov-
ing groups of text horizontally and vertically around the screen.To
perform this trick of movement, you must be able to grab text right
off the screen, then re-display it at a new location. Euphoria has
two library routines that can do this for you.

include image.e

rs = save_text_image(s1,s2)

save_text_image() captures a rectangular area of text on your
screen, storing the saved data in receiving variable rs. The rectan-
gular area is created by specifying the top left corner (s1) and the
bottom right corner (s2). s1 is a sequence made up of two atom ele-
ments, the first element being the top left row of the screen, the sec-
ond being the top left column of the screen, so the format of s1 is:

ABGTE Euphoria 117

{top left row, top left column}

s2 is also a sequence made up of two atoms, the first being the
bottom right row, the second being the bottom right column:

{bottom right row, bottom right column}

The saved data in rs is a sequence made up of sequence elements.
Each sequence element represents a row of text in the rectangular
area of the screen that was saved. The sequence elements them-
selves are made up of atom values. The odd-numbered elements
are the actual text characters, and the even-numbered elements
are values representing the combined foreground and background
colours of each text character. So saving a rectangular area con-
taining the following text:

Welcome to
Euphora!

would retrieve the value:

{
{87,13,101,13,108,13,99,13,111,13,109,13,101,13,32,13,84,13,111,13},
{69,13,117,13,112,13,104,13,111,13,114,13,105,13,97,13,33,13,32,13}
}

The foreground/background colour value always FOLLOWS
the text character it is associated with. This value, called the
attribute byte, is created by multiplying the background number
by 16, then adding the foreground colour number to the result. In
the example above, the text foreground was 13 or bright magenta
with a background of 0 or black, so the attribute byte was 0 times
16, giving 0, then we added 13 to the result, giving 13.

Now that you have saved the image, you want to redisplay it
in a new location on the screen.The following library routine below
will do this:

include image.e

display_text_image(s1,s2)

display_text_image() displays s2, a sequence of sequences
containing text and colour attributes, on the screen at location s1.

s1 is the top left corner on the screen where you would display
the sequence s2, so the format of s1 would be:

{top left row, top left column}

ABGTE Euphoria 118

s2 would very likely be the saved data obtained by the
save_text_image() library routine. You could, however, create
your own sequences to be displayed by display_text_image() us-
ing the structure shown to you earlier. Both save_text_image()

and display_text_image() only work in text_modes. A demo
program is available to show how save_text_image() and
display_text_image() moves a block of text around the screen.Under Unix, because

the keycodes differ, this
demonstration is ineffec-
tive.

program 54

include image.e
sequence stored_image
integer input_key, line, column
line = 1
column = 1
bk_color(2)
clear_screen()
text_color(14)
position(2,2)
puts(1, "******************************")
position(3,2)
puts(1, "* Use the left, right, up, *")
position(4,2)
puts(1, "* and down arrow keys to *")
position(5,2)
puts(1, "* move box, press Q to quit! *")
position(6,2)
puts(1, "******************************")
stored_image = save_text_image({1,1},{7,32})
input_key = get_key()
while input_key != ’q’do
 display_text_image({line, column},stored_image)
 if input_key = 328 and line > 1 then
 line = line - 1
 end if
 if input_key = 336 then
 line = line + 1
 end if
 if input_key = 331 and column > 1 then
 column = column - 1
 end if
 if input_key = 333 then
 column = column + 1
 end if
 input_key = get_key()
end while
bk_color(0)
text_color(7)

 * Use the left, right, up, *
 * and down arrow keys to *
 * move box, press Q to quit! *

The next chapter promises to be more entertaining,as it shows
you how to work with pixels and even graphic shapes in a pixel
graphics mode.

ABGTE Euphoria 119

19. Creating Pixel Graphics Images

Personal computers have undergone major changes since they
were introduced in the early 1970’s. The most significant change is
the way the person works with the computer. Before the creation
of Windows and Mac OS, you had to enter cryptic commands on a
prompt. Today, we operate our computers using a graphics-based
menu. Graphics are present in any software written these days be-
cause people relate to images easier than actual system commands.

Pixel graphics apply to
DOS and Eu3 only.

Now you would open a
WINDOW in a GUI and draw
on a canvas—the ideas
are similar to those de-
scribed here.

The smallest element to work with in pixel-graphics modes
is the pixel. Pixels can be placed anywhere on the screen, and can
appear in any of the colours supported in the graphics mode you
are in. Euphoria has a library routine that can set one or more
pixels to any colour.

include graphics.e

pixel(o,s)

pixel() sets either one or a series of pixels starting at a position on
the screen to a colour. s represents a sequence value, made up of
two atom elements, that is the screen location of the pixel:

{pixel column location, pixel row location}

if o is an atom value, this value represents the colour number to
set one pixel to at position s. If o is a sequence, this value is a series
of colour numbers to set a group of pixels to, beginning at s, and
then advancing one pixel to the right onward. Let’s look at some
examples of pixel on the next page.

pixel(6,{200,100})

This will set a pixel located at pixel column 200 and pixel row 100
to colour number 6, which is brown.

pixel({9,2,14},{63,120})

This will:

ABGTE Euphoria 120

• set a pixel located at pixel column 63 and pixel row 120 to 9,
which is grey

• set a pixel located at pixel column 64 and pixel row 120 to 2,
which is green.

• set a pixel located at pixel colomn 65 and pixel row 120 to 14,
which is yellow.

If you are working with a series of pixels on the same pixel
row,it is faster to issue pixel() once with a series of colours than
to set them individually one at a time. pixel() works only in pixel-
graphics modes. A demo is available showing how pixel() is used to
create a shape on the screen.

program 55.ex

include graphics.e
integer x_or_y_work_variable
if graphics_mode(18) then
 puts(1, "640 X 480 mode, 16 colours, not supported!\n")
else
 text_color(15)
 position(1,1)
 puts(1,"Drawing A Shape Using pixel()")
 position(25,1)
 puts(1, "Press q to end this program")
 for ix = 100 to 300 do
 pixel(9, {ix , ix})
 end for
 pixel(repeat(12,400),{100,100})
 x_or_y_work_variable = 300
 for ix = 300 to 500 do
 pixel(10, (ix & x_or_y_work_variable))
 x_or_y_work_variable = x_or_y_work_variable - 1
 end for
 for ix = 100 to 300 do
 pixel(11, {100, ix})
 pixel(13, {500, ix})
 end for
 for ix = 100 to 500 do
 pixel(14, {ix, 300})
 end for
 while get_key() != ’q’ do
 end while
 if graphics_mode(-1) then
 puts(1, "Unable To Reset\n")
 end if
end if

ABGTE Euphoria 121

You can find out what colour one or a series of pixels on the screen
is set to by using the get_pixel() library routine:

include graphics.e

ro = get_pixel(s)

If s is in the format:

{pixel column location, pixel row location}

then the colour of the pixel at that location is returned, and is
stored in receiving variable ro. If s is in the format:

{pixel column location, pixel row location, number of pixels}

then a series of colours is returned as a sequence, and stored in
receiving variable “ro.”

This sequence is all the colours of the pixels starting at that
pixel column and pixel row location, and continuing right for the
specified number of pixels.

one_colour = get_pixel({167,231})

This will return the colour of one pixel located at pixel column 167
and pixel row 231. The value is stored in variable “one_colour.”

series_of_colours = get_pixel({1500,10,15})

This will return the colours of 15 pixels, beginning at pixel column
500 and pixel row 10, and stopping at pixel column 514 and pixel
row 10. The sequence is stored in variable “series_of_colours.”

ABGTE Euphoria 122

get_pixel() only works in pixel-graphicsmodes.Do not attempt
to obtain a pixel colour at a location that is off the screen. A demo
program is available showing how to grab a series of pixels and
then redisplay them several times to make a shape.

program 56

include graphics.e
sequence copy_buffer
if graphics_mode(18) then
 puts(1, "Mode 18 not supported\n")
else
 pixel({10,10,10,10,10,10,10,10,10,10,10,10,15,15,15,15,15,15,15,15,
 15,15,15,15,12,12,12,12,12,12,12,12,12,12,12,12},{300,100})
 position(20,1)

 puts(1, "Press 1 to continue")

 while get_key() != ’1’ do
 end while

 copy_buffer = get_pixel({300,100,36})

 for ix = 205 to 220 do
 pixel(copy_buffer,{300,ix})
 end for

 position(20,1)

 puts(1, "Press 2 to end program")

 while get_key() != ’2’ do
 end while

 if graphics_mode(-1) then
 puts(1, "Reset failed!\n")
 end if
end if

Remember the demo program that created a shape using pix-
el()? While this worked well, it was awkward using pixel() to cre-
ate even this simple shape.Euphoria has a library routine that can
draw a line of pixels on the screen using a series of pixel screen
locations:

ABGTE Euphoria 123

include graphics.e

draw_line(i,s)

i represents the colour number to draw a line of pixels in. s is a
sequence made up of two or more sequence elements, where each
element is a pixel location on the screen.

Here’s the structure of the sequence used by draw_line() to
make a line:

{{pixel column location, pixel row location},

 {pixel column location, pixel row location},

 {pixel column location, pixel row location},...}

draw_line() draws the line starting with the first two elements. If
there is a third pixel location as an element, the line continues to
be drawn using the second and third elements. If there is a fourth
pixel location as an element, then the line continues to be drawn
using the third and fourth elements. This goes on until the entire
sequence is processed. Here’s how draw_line() draws a line that
closes in on itself:

draw_line(14,{{50,50},{150,50},{150,150},{50,150},{50,50}})

A demo is ready to show how to draw a shape using draw_line():

program 57

include graphics.e
if graphics_mode(18) then
 puts(1, "640 X 480 mode, 16 colours, not supported!\n")
else
 text_color(15)
 position(1,1)
 puts(1, "Drawing A Shape Using draw_line()")
 position(25,1)
 puts(1, "Press q to end this program")
 draw_line(9,{{100,100},{300,300}})
 draw_line(12,{{100,100},{500,100}})
 draw_line(10,{{300,300},{500,100}})
 draw_line(11,{{100,100},{100,300}})
 draw_line(13,{{500,100},{500,300}})
 draw_line(14,{{100,300},{500,300}})
 while get_key() != ’q’ do
 end while
 if graphics_mode(-1) then
 puts(1, "Unable To Reset\n")
 end if
end if

ABGTE Euphoria 124

If you really want to draw a shape, Euphoria has a library
routine that draws a polygon. A polygon is any 2-D plane figure
with more than 4 sides, though with this library routine you can
draw squares and triangles too:

include graphics.e

polygon(i1,i2,s)

Like draw_line(), polygon() uses the same pixel location format,
s, to draw a shape on the screen, with the shape being drawn in
a colour, i1. polygon() , however, uses a “fill” parameter (i2). Fill
simply means to colour in the area bordered by the line that forms
the shape. If it is 1, the area will be filled in using the same colour
as the line. If it is 0, the area will be left empty. This way, you can
control whether you have a wireframe shape or a solid shape.

Also, to complete the shape of the polygon, you do not have to
specify a pixel location to close the shape. polygon() automatically
draws a line using the last element of s to the first element of s as
pixel locations.

The order of the elements representing pixel locations in se-
quence s is important, as it dictates the shape of the polygon. when
creating a shape using polygon(), you should order the elements
in a circular pattern, unless your intention is to create a bizarrely-
formed shape.

polygon() only works in pixel-graphicsmodes.A demo program
is available that demonstrates some examples of shapes drawn
by polygon().

program 58

include graphics.e

ABGTE Euphoria 125

include image.e

if graphics_mode(18) = 0 then
 text_color(15)
 position(1,34)
 puts(1,"Polygon Fun!")
 position(30,30)
 puts(1,"Press any key to end")

 position(6,16)
 puts(1,"polygon(6,1,{{10,50},{100,50},{100,140},{10,140}})")
 polygon(6,1,{{10,50},{100,50},{100,140},{10,140}})

 position(13,16)
 puts(1,"polygon(13,0,{{55,160},{10,240},{100,240}})")
 polygon(13,0,{{55,160},{10,240},{100,240}})

 position(19,16)
 puts(1,"polygon(2,1,{{30,260},{100,260},{80,340},{10,340}})")
 polygon(2,1,{{30,260},{100,260},{80,340},{10,340}})

 position(25,16)
 puts(1,"polygon(12,0,{{10,360},{55,360},{55,400},{100,400},")
 position(26,16)
 puts(1," {100,440},{10,440}})")
 polygon(12,0,{{10,360},{55,360},{55,400},{100,400},
 {100,440},{10,440}})

 while get_key() = -1 do
 end while
 if graphics_mode(-1) then
 puts(1,"Reset Failure")
 end if
end if

Drawing shapes with multiple sides is not too difficult, even with-
out library routines like polygon(). Drawing oval shapes is a dif-
ferent matter entirely. A background in trigonometry was the only
way you could draw any kind of circle or ellipse shape.

Fortunately, Euphoria comes to the rescue with a library
routine that makes drawing circles and ellipses easy:

include graphics.e

ellipse(i1,i2,s1,s2)

ABGTE Euphoria 126

ellipse() draws an ellipse on the screen in colour i1. You have the
option of having the area bordered by the circle to be filled (i2)
using colour i1. A value of 1 means fill the area, while 0 means do
not fill. The ellipse is drawn by defining a rectangular area on the
screen, which will control the size and kind of ellipse that will be
drawn. The area requires two pixel locations, an upper left corner
(s1) and lower right corner (s2) in order for it to be defined. Both of
these sequence values follow the format listed below:

{pixel column location, pixel row location}

If you specify an area that is a perfect square, the oval drawn will
be a circle. ellipse() only works in pixel-graphics modes. A demo
program is ready to demonstrate how ellipse()’s defining of a
rectangular area will dictate the shape and size of the circle.

program 59

include graphics.e
integer input_key, tl1, tl2, br1, br2, update
tl1 = 200
tl2 = 100
br1 = 400
br2 = 300
update = ’y’
if graphics_mode(18) then
 puts(1, "Mode not available")
else
 position (28,1)
 puts(1, "Press 1 to widen horizontally, 2 to narrow horizontally")
 position (29,1)
 puts(1, " 3 to widen vertically, 4 to narrow vertically")
 position (30,1)
 puts(1, " q to quit")
 input_key = get_key()
 while input_key != ’q’ do
 input_key = get_key()
 if update = ’y’ then
 update = ’n’
 ellipse(15, 0, {tl1,tl2},{br1,br2})
 polygon(3,0, {{tl1,tl2},{br1,tl2},{br1,br2},{tl1,br2}})
 end if
 if input_key = ’1’ then
 ellipse(0, 0, {tl1,tl2},{br1,br2})
 polygon(0,0, {{tl1,tl2},{br1,tl2},{br1,br2},{tl1,br2}})
 tl1 = tl1 - 3
 br1 = br1 + 3
 update = ’y’
 end if
 if input_key = ’2’ then
 ellipse(0, 0, {tl1,tl2},{br1,br2})
 polygon(0,0, {{tl1,tl2},{br1,tl2},{br1,br2},{tl1,br2}})
 tl1 = tl1 + 3
 br1 = br1 - 3
 update = ’y’
 end if
 if input_key = ’3’ then
 ellipse(0, 0, {tl1,tl2},{br1,br2})
 polygon(0,0, {{tl1,tl2},{br1,tl2},{br1,br2},{tl1,br2}})
 tl2 = tl2 - 3
 br2 = br2 + 3
 update = ’y’
 end if
 if input_key = ’4’ then
 ellipse(0, 0, {tl1,tl2},{br1,br2})
 polygon(0,0, {{tl1,tl2},{br1,tl2},{br1,br2},{tl1,br2}})
 tl2 = tl2 + 3
 br2 = br2 - 3
 update = ’y’
 end if
 end while
 if graphics_mode(-1) then

ABGTE Euphoria 127

 puts(1, "Mode not available")
 end if
end if

The next chapter will show you how to make graphic images
more animated instead of sitting motionless on the screen.

ABGTE Euphoria 128

20. Pixel-Graphics Animation And Palette Handling

You remember from the chapters on text mode programming
that you can create moving text in Euphoria. This is also possi-
ble with pixel graphic images. You can make images created with
draw_line(), polygon() and ellipse() appear to move around the
screen by redisplaying the images over and over while varying the
screen location.Another form of animation is quickly changing one
or more image colours without having to redisplay the image itself.

DOS and Eu3 only

Graphics is now done with
GUI libraries. Windows,
Unix, and multiplatform
libraries are available.

Just as save_text_image() and display_text_image() are used
to grab and redisplay text in text mode, Euphoria has library rou-
tines to grab and redisplay pixel images in pixel-graphics mode.

include image.e

rs = save_image(s1,s2)

save_image() saves an image within a rectangular area on
the screen. The area is stored as a sequence made up of sequence
elements that represent rows of pixel colours. The value is stored
in receiving variable rs, and consists ofthe following structure:

{{pixel colour, pixel colour, pixel colour, pixel colour,...}

 {pixel colour, pixel colour, pixel colour, pixel colour,...}

 {pixel colour, pixel colour, pixel colour, pixel colour,...},

 ...}

Both the top left corner (s1) and the bottom right corner (s2) of
the defined rectangular area being saved follow the format below:

{pixel column location, pixel row location}

Once you have captured the image using save_image(), you
can then redisplay it using display_image():

include image.e

display_image(s1,s2)

n

display_image() displays a sequence value, s2, containing pix-
el colours at location s1 on the screen. Most likely s2 is a sequence
variable containing the data retrieved by the save_image() library
routine. You could, however, create an image to display with this
library routine by following the format on the previous page. s1 is
the location on the screen to display the image, and follows the for-
mat below:

ABGTE Euphoria 129

{pixel column location, pixel row location}

The first pixel colour in s2 will be displayed at screen location
s1. Because the data in s2 implies a rectangular shape, s1 is where
the top left corner of the image is displayed.

Both save_image() and display_image() only work in pixel-
graphics modes. A demo program is available to show how to use
both save_image() and display_image() to make a bouncing ball an-
imation.

program 60

include image.e
include graphics.e
sequence ball, bounce
bounce =
{200,200.125,200.375,200.75,201.25,201.875,202.625,203.5,204.5,205.625,
206.875,208.25,209.75,211.375,213.125,215,217,219.125,221.375,223.75,226.25,
228.875,231.625,234.5,237.5,240.625,243.875,247.25,250.75,254.375,258.125,
262,266,270.125,274.375,278.75,283.25,287.875,292.625,297.5,302.5,307.625,
312.875,318.25,323.75,329.375,335.125,341,347,353.125}
if graphics_mode(18) then
 puts(1, "Mode Set Failure")
else
 clear_screen()
 ellipse(5, 1, {200,200}, {300,300})
 for iy = 234 to 266 do
 for ix = 200 to 300 do
 if get_pixel({ix, iy}) = 5 then
 pixel(15,{ix, iy})
 end if
 end for
 end for
 for iy = 267 to 300 do
 for ix = 200 to 300 do
 if get_pixel({ix, iy}) = 5 then
 pixel(9,{ix, iy})
 end if
 end for
 end for
 ball = save_image({193,193},{308,308})
 clear_screen()
 position(1,1)
 puts(1, "Press q to end this bouncing ball demo!")
 while 1 = 1 do
 if get_key() = ’q’ then
 exit
 end if
 for ix = 1 to length(bounce) do
 display_image({270,bounce[ix]},ball)
 end for
 for ix = length(bounce) to 1 by -1 do
 display_image({270,bounce[ix]},ball)
 end for
 end while
 if graphics_mode(-1) then
 puts(1, "Mode Set Failure")
 end if
end if

ABGTE Euphoria 130

Another kind of animation is colour-shifting, where one or
more colours that the text or graphic image is in is changed. One
way of doing it is to perform a save_image() or save_text_image(),
search through the retrieved sequence value for the colour to be
changed, and change where a match is made. Once done, you re-
display using either display_image()or display_text_image().How-
ever, that is a lot of work just to change the colour of something
displayed on the screen. Can we change the image colour without
having the image itself redisplayed?

The answer is yes, by changing the palette of the graphics
mode you are in. Changing any of the numbers on the palette to
another colour will be instantaneously shown on the screen in any
text or image that uses the colour. To do this, you first need to get
a copy of the palette:

include image.e

rs = get_all_palette()

get_all_palette() returns the entire colour set of a palette
as a sequence, which is then stored in receiving variable rs. The
sequence is composed of sequence elements, where each element
is the red, green, and blue intensities that make up a colour in the
palette. The first element is the RGB intensity level for colour 0
(black), the second element is the RGB intensity level for colour 1
(blue), and so forth. These elements are made up of 3 atom values,
the first being the level of red, the second being the level of green,
the third being the level of blue.

To help clarify, the format of the sequence representing the
palette of the current graphics mode you are in is shown below:

ABGTE Euphoria 131

{{red level, green level, blue level}, <-----colour 0

 {red level, green level, blue level}, <-----colour 1

 {red level, green level, blue level}, <-----colour 2

 {red level, green level, blue level},...} <-----colour 3

Each red, green, and blue level can have a value from 0 (no
intensity) to 63 (maximum intensity). get_all_palette() works in
any text or pixel graphics mode. A demo program is available from
this page. It will show the RGB intensities for each colour in a
palette of a given screen mode.

program 61

include graphics.e
include image.e

sequence colour_list,rgb_levels

colour_list = {{"BLACK",0},{"BLUE",0},{"GREEN",0},{"CYAN",0},{"RED",0},
 {"MAGENTA",0},{"BROWN",0},{"WHITE",0},{"GRAY",0},
 {"BRIGHT BLUE",0},{"BRIGHT GREEN",0},{"BRIGHT CYAN",0},
 {"BRIGHT RED",0},{"BRIGHT MAGENTA",0},{"YELLOW",0},
 {"BRIGHT WHITE",0}}

if graphics_mode(3) = 0 then
 rgb_levels = get_all_palette()
 if graphics_mode(-1) then
 puts(1,"Reset Failure!")
 end if
end if

if graphics_mode(3) = 0 then
 for rgb = 1 to length(colour_list) do
 colour_list[rgb][2] = rgb_levels[rgb]
 end for
 position(1,10)
 puts(1," RGB Intensity Makeup")
 position(2,10)
 puts(1," --------------------")
 position(3,10)
 puts(1,"Colour Red Green Blue")
 position(4,10)
 puts(1,"============== === ===== ====")
 for colours = 1 to length(colour_list) do
 position(5+colours,10)
 printf(1,"%-14s %2d %2d %2d",
 {colour_list[colours][1],colour_list[colours][2][1],
 colour_list[colours][2][2],
 colour_list[colours][2][3]})
 end for
 position(25,10)
 puts(1,"Press any key to end")
 while get_key() = -1 do
 end while
 if graphics_mode(-1) then
 puts(1,"Reset Failure!")
 end if
end if

ABGTE Euphoria 132

Now that you have a copy of the palette, you can start chang-
ing colour numbers to mean a different colour. This is done by
changing either one or more of the RGB intensity levels assigned
to that colour.

Here is the library routine that can change a colour’s RGB in-
tensity:

include graphics.e

ro = palette(i,s)

palette() changes the colour number i to another colour by
assigning it new RGB intensity levels stored in s. If successful,
the previous RGB intensity levels will be returned as a sequence,
to be stored in receiving variable ro, and any image or text on the
screen that uses the colour i will immediately show the change. If
unsuccessful, -1 is returned.

s is a sequence composed of 3 atom elements, namely the red,
green, and blue intensity levels of what colour i is being set to:

{red intensity level, green intensity level, blue intensity level}

The returned sequence value representing the old RGB inten-
sity of the colour being changed (if successful) is also made up of
threee atom elements, and is in the same format shown on the pre-
vious page.

The atom elements in the sequence passed to palette() must
be between the values of 0 and 63 inclusive.palette() works in both
text and pixel-graphics modes. It’s always a good idea to save the
returned value from palette(), or even using get_palette() to save
an old copy of all the colours of the palette, before attempting to
change any colour. A demo program is available from this screen,
showing how to change the colour number associated with yellow
to a new colour.

program 62

ABGTE Euphoria 133

include graphics.e
object changed_palette
integer Red_, Green_, Blue_, input
if graphics_mode(18) then
 puts(1, "Mode Set Failure")
else
 for ix = 0 to 60 do
 ellipse(14, 1, {250-ix, 180-ix}, {350+ix, 280+ix})
 ellipse(15, 0, {249-ix, 179-ix}, {351+ix, 281+ix})
 end for
 Red_ = 0
 Green_ = 0
 Blue_ = 0

 changed_palette = palette(14, {Red_, Green_, Blue_})

 Red_ = changed_palette[1]
 Green_ = changed_palette[2]
 Blue_ = changed_palette[3]
 input = get_key()
 position(1,9)
 puts(1,"This program will demonstrate how to modify the palette")
 position(2,9)
 puts(1,"colour code for yellow into another colour by manipulating")
 position(3,9)
 puts(1,"the RGB colour code. Use 1 and 2 to change the red tint,")
 position(4,9)
 puts(1,"3 and 4 to change the green tint, and 5 and 6 to change the")
 position(5,9)
 puts(1,"blue tint. Press q when you are finished using this program.")
 while input != ’q’ do
 if input = ’1’ and Red_ > 0 then
 Red_ = Red_ - 1
 end if
 if input = ’2’ and Red_ < 63 then
 Red_ = Red_ + 1
 end if
 if input = ’3’ and Green_ > 0 then
 Green_ = Green_ - 1
 end if
 if input = ’4’ and Green_ < 63 then
 Green_ = Green_ + 1
 end if
 if input = ’5’ and Blue_ > 0 then
 Blue_ = Blue_ - 1
 end if
 if input = ’6’ and Blue_ < 63 then
 Blue_ = Blue_ + 1
 end if
 changed_palette = palette(14, {Red_, Green_, Blue_})
 position(28,19)
 printf(1, "Red: %.2d Green: %.2d Blue: %.2d",
 {Red_,Green_,Blue_})
 input = get_key()
 end while
 if graphics_mode(-1) then
 puts(1, "Mode Set Failure")
 end if
end if

ABGTE Euphoria 134

If you want to change all the colours in the palette, you can
either issue palette() once for every colour, or use a Euphoria
library routine created to change all colours at once.

include graphics.e

all_palette(s)

all_palette() is used to change all colours of a palette in the
current graphics mode. s is a list of new RGB intensities for the
entire palette to be set to, and is a sequence made up of sequence
elements. The element position represents a colour, starting with
0 (black) for the first element, 1 (blue) for the second element, 2
(green) for the third element, and so forth. Each element of s is
made up of three atom elements, the first being the red intensity
level, the second being the green intensity level,and the third being
the blue intensity level:

{{red level, green level, blue level}, <---- new colour for 0

 {red level, green level, blue level}, <---- new colour for 1

 {red level, green level, blue level}, <---- new colour for 2

 {red level, green level, blue level},...} <---- new colour for 3

As with palette(), each red, green, and blue intensity must
be between the values of 0 and 63 inclusive. Any text or image on
the screen that is using the colours changed by all_palette() will
instantaneously show the changes on the screen once this library
routine is executed. This is handy if you are performing a large
scale of colour changing involving many images or text on the
screen. Using all_palette() to change a series of colours is much
faster than using palette() to change each colour individually.
all_palette() works in both text and pixel-graphics modes. A demo
program is available to show how colours 1 through 5 are changed
using all_palette().

ABGTE Euphoria 135

program 63

include graphics.e
include image.e

sequence colours_one_to_five, original

if graphics_mode(18) = 0 then
 original = get_all_palette()

 clear_screen()

 text_color(7)

 puts(1,"This program will attempt to demonstrate all_palette() by\n")
 puts(1,"changing 5 colour numbers without having to redisplay\n")
 puts(1,"the text again.\n\n")

 colours_one_to_five = original
 colours_one_to_five[2..6] = {{0,63,0},{0,63,0},{0,63,0},{0,63,0},
 {0,63,0}}

 for ix = 0 to 15 do
 text_color(ix)
 print(1,ix)
 puts(1," ")
 end for

 for retry = 1 to 2 do
 text_color(7)
 position(20,1)
 if retry = 1 then
 puts(1,
 "These are the colours present in the default palette.\n")
 puts(1,
 "Press any key to change the first 5 colours to green.\n")
 end if
 if retry = 2 then
 all_palette(colours_one_to_five)
 puts(1,
 "Colour numbers from 1 to 5 now have an RGB setting \n")
 puts(1,
 "of {0,63,0}, or pure green. Press any key to end. \n")
 end if
 while get_key() = -1 do
 end while
 end for

 all_palette(original)

end if

if graphics_mode(-1) then
 puts(1,"reset failure\n")
end if

ABGTE Euphoria 136

It is important to understand how to change palettes in graph-
ics modes, as you will need to do so when dealing with .BMP files, or
Windows bitmaps. The next chapter will introduce you to bitmaps,
as well as how to direct screen output (text or pixel graphics im-
ages) to multiple screen pages.

ABGTE Euphoria 137

21. Bitmaps And Screen Pages

This final chapter on text and pixel-graphics output will focus on
bitmaps and screen pages. Euphoria allows the programmer to
use bitmapped (.BMP) files created by popular paint programs
like Neopaint and Windows Paintbrush, without needing to write
any code to read in the data. This saves a lot of time in graphics
programming. The programmer also has the option of redirecting
screen output to more than one virtual screen page, and deciding
which page to show on the screen.DOS graphics and Eu3

only

Before using any .BMP files in your program, you have to
read them in. This is easily done using the read_bitmap() library
routine.

include image.e

ro = read_bitmap(s)

read_bitmap() reads in the data stored in a .BMP file, s,and stores
that data in receiving variable ro as a sequence value. The se-
quence value is composed of two elements. The first element is the
palette,a sequence containing the RGB instensity levels for colours
the .BMP file used. The second element is a sequence containing
the pixels themselves, arranged in a format that display_image()
can use to show on the screen:

{{{red level, green level, blue level},...},

 {{pixel colour, pixel colour, pixel colour,...},

 {pixel colour, pixel colour, pixel colour,...},

 {pixel colour, pixel colour, pixel colour,...},...}}

If the palette of the .BMP file uses the same colour scheme as
the palette of the graphics mode you are in, it’s no hassle. You
just store the second element of the sequence value returned
by read_bitmap() in a variable, and then use the library rou-
tine display_image() to display the contents of that variable on
the screen.

ABGTE Euphoria 138

If the .BMP file uses a palette colouring scheme different from
the palette of the graphics mode you are in, you have to do some
extra steps before displaying the .BMP file on the screen. First you
take the first element of the sequence returned by read_bitmap()
(the .BMP’s palette), and divide it by four. You then pass the ad-
justed palette to all_palette(), to change the graphic mode palette
to match that of the .BMP file. Once this is done, you then take the
second element of the sequence returned by read_bitmap(), store it
in a variable, then use display_image() to present it on the screen.

Why use all_palette() to have the graphic mode’s palette ad-
justed to match that of the .BMP file’s palette? Pretend you are at-
tempting to display a .BMP file of a flower, and petals use colour 2
to show a faded pink. In any of the graphic modes, colour 2 is green.
So when you try to display this picture of the flower, the petals will
appear…you guessed it…GREEN, not PINK. By adjusting the the
palette to match that used by the .BMP file, the picture shows up
properly.

Why divide the .BMP file palette by four before using it with
all_palette()? The red, green, and blue intensity levels of a .BMP
file palette go from 0 to 255. In Euphoria, the graphic mode palette
for red, green, and blue intensities go from 0 to 63. This means the
.BMP file palette uses an intensity scheme that is four times the
size of the graphics mode palette. To properly adjust for this, you
must divide by four to bring it in line with what the graphic mode
can use.

.BMP files using 2, 4, 16, or 256 colours are supported. If
something goes wrong during the reading of the .BMP file data
by read_bitmap(), the library routine will return any one of the
following error codes:

• 1 = open failed (probably spelt the name of the file
wrong)

• 2 = unexpected end of file (the end of the file was reached
before all the required data was read in

• 3 = unsupported format (Euphoria may not recognize that
format even though other paint programs can

load it with no problems)

A demo program shows how to load a .BMP file and display it,
with a note about adjusting the palette first before displaying it.

program 64

include graphics.e
include image.e
sequence demo_bitmap
if graphics_mode(18) then
 puts(1, "Mode Failure")
else
 demo_bitmap = read_bitmap("d2105a.bmp")
 position(3,10)

ABGTE Euphoria 139

 puts(1, "This image was made using Windows Paintbrush program.")
 position(4,10)
 puts(1, "It uses a different palette numbering scheme than what")
 position(5,10)
 puts(1, "Euphoria has, so the colours come out wrong. But if you")
 position(6,10)
 puts(1, "press ’n’..........")
 display_image({200,200}, demo_bitmap[2])
 while get_key() != ’n’ do
 end while
 position(3,10)
 puts(1, "......we apply the palette read in with the bitmap after ")
 position(4,10)
 puts(1, "dividing it by four to scale it for use with Euphoria. ")
 position(5,10)
 puts(1, "The all_palette() statement is handy for displaying bitmaps")
 position(6,10)
 puts(1, "with a different colour palette. Press ’q’ to quit now. ")
 all_palette((demo_bitmap[1]/4))
 while get_key() != ’q’ do
 end while
 if graphics_mode(-1) then
 puts(1, "Mode Failure")
 end if
end if

ABGTE Euphoria 140

Your Euphoria programs can take screen images and save
them into a .BMP file to be viewed and edited by a paint pro-
gram, or loaded and displayed by another Euphoria program us-
ing read_bitmap().

include image.e

ri = save_bitmap(s1,s2)

save_bitmap() creates a Windows .BMP file, s2, using data stored
in s1. s1 is a two element sequence, the first being a sequence
representing the palette of the .BMP file being created, and the
second being a sequence representing the coloured pixels that
make up the .BMP file data. s1 matches the format introduced
in read_bitmap().

The palette for the .BMP file you are reading is easily obtained
using get_all_palette(). Because .BMP file palettes use red, green,
and blue intensities between 0 and 255, you must multiply the
palette returned by get_all_palette() by 4.

Getting the .BMP file data is even easier.You use save_image()
to grab whatever image on the screen you want saved in the
.BMP file.

Once the .BMP file palette and data are obtained, you use
append() to join them together to make a new sequence, which
save_bitmap() uses to create your new BMP file.

If the .BMP file data sequence was created other than by us-
ing save_image(),make sure all sequence elements are of the same
length. Note that some paint programs do not support a 4-colour
.BMP file, even though save_bitmap() produces 2, 4, 16, and 256
colour .BMP files.

ABGTE Euphoria 141

save_bitmap() returns an integer value to report how well
things went:

• 0 = .BMP file created successfully (it works!)

• 1 = .BMP file open failed (probably mis-spelled the name)

• 4 = .BMP file invalid mode (invalid graphic mode or parame-
ters received)

A demo is available, showing the steps to create a .BMP file.

program 65

include graphics.e
include image.e
atom blue, increment, status
sequence palette_mode,new_blue, previous_blue, bitmap_data, bitmap_file
blue = 30
increment = 1
if graphics_mode(18) then
 puts(1,"Unable to go into mode 18!")
else
 palette_mode = get_all_palette()
 position(1,3)
 text_color(11)
 puts(1,"How to build a bitmap using Euphoria, Part I")
 position(24,5)
 puts(1,"Press any key to continue demo")
 for ix = 0 to 50 by 4 do
 ellipse(2,0,{100+ix,100-ix},{199-ix,199+ix})
 ellipse(2,0,{100-ix,100+ix},{199+ix,199-ix})
 polygon(1,0,{{50,50},{50,249},{249,249},{249,50}})
 end for
 position(20,1)
 puts(1,"1) Define an area on the screen you want to save")
 while get_key() = -1 do
 if blue = 63 then
 increment = -3
 elsif blue = 30 then
 increment = 3
 end if
 blue = blue + increment
 new_blue = {0,0,0}
 new_blue[3] = blue
 previous_blue = palette(1,new_blue)
 end while
 polygon(0,0,{{50,50},{50,249},{249,249},{249,50}})
 bitmap_data = save_image({50,50},{249,249})
 polygon(0,1,{{50,50},{50,249},{249,249},{249,50}})
 for ix = 3 to 18 do
 position(ix,10)
 print(1,palette_mode[-2+ix])
 end for
 position(20,1)
 puts(1,"2) Get the current mode screen palette..........")
 while get_key() = -1 do
 end while
 palette_mode = palette_mode * 4
 for ix = 3 to 18 do
 position(ix,10)
 print(1,palette_mode[-2+ix])
 end for
 position(20,1)
 puts(1,"3)and scale it for use as a bitmap palette. ")
 while get_key() = -1 do
 end while
 clear_screen()
 puts(1,"You then use both the palette and the bitmap data to\n")
 puts(1,"construct the bitmap using save_image..\n")
 bitmap_file = {}
 bitmap_file = append(bitmap_file,palette_mode)
 bitmap_file = append(bitmap_file,bitmap_data)

ABGTE Euphoria 142

 while get_key() = -1 do
 end while
 if graphics_mode(-1) then
 puts(1,"Unable to reset mode!")
 end if
 status = save_bitmap(bitmap_file,"d2107a.BMP")
 if status != 0 then
 puts(1,"Bitmap creation failure!")
 end if
end if

ABGTE Euphoria 143

If you find the steps taken to assemble a sequence used by
save_bitmap() to create a .BMP file a little daunting, Euphoria has
another approach that is somewhat simpler:

include image.e

ri = save_image(o,s)

save_screen() saves either the entire screen or a rectangular
area of the screen to a Windows .BMP file, named s. If o is equal
to 0, everything displayed on the screen is saved to .BMP file s. If
o is a sequence value, it defines a rectangular area on the screen
that is to be saved to .BMP file s. o follows the structure format
listed below:

{{top left pixel colmn, top left pixel row},

 {bottom right pixel column, bottom right pixel row}}

save_screen() uses the palette of the current graphics mode
you are in as the .BMP file’s palette. The defined rectangular area
on the screen is the data that make up the .BMP file image. When
o is 0, the rectangular area is from the top left and the bottom right
corners of the screen, and is defined automatically for you.

Like save_bitmap(), save_screen() returns and integer value
based on the whether or not the .BMP file was created successfully.
They are the same as those values returned by save_bitmap().Also,
save_screen() creates .BMP files that have 2, 4, 16, or 256 colours.
Some paint programs cannot read 4 colour .BMP files, though any
image created by save_bitmap() and save_screen() can be read
by read_bitmap().

save_screen() only works in pixel-graphics modes. The demo
program is a remake of the save_bitmap() demo program, using
save_screen() instead to create a .BMP file.

ABGTE Euphoria 144

program 66

include graphics.e
include image.e
atom blue, increment, status
sequence palette_mode,new_blue, previous_blue
blue = 30
increment = 1
if graphics_mode(18) then
 puts(1,"Unable to go into mode 18!")
else
 palette_mode = get_all_palette()
 position(1,3)
 text_color(11)
 puts(1,"How to build a bitmap using Euphoria, Part II")
 position(24,5)
 puts(1,"Press any key to continue demo")
 for ix = 0 to 50 by 4 do
 ellipse(2,0,{100+ix,100-ix},{199-ix,199+ix})
 ellipse(2,0,{100-ix,100+ix},{199+ix,199-ix})
 polygon(1,0,{{50,50},{50,249},{249,249},{249,50}})
 end for
 position(20,1)
 puts(1,"Define an area on the screen you want to save")
 while get_key() = -1 do
 if blue = 63 then
 increment = -3
 elsif blue = 30 then
 increment = 3
 end if
 blue = blue + increment
 new_blue = {0,0,0}
 new_blue[3] = blue
 previous_blue = palette(1,new_blue)
 end while
 all_palette(palette_mode)
 polygon(0,0,{{50,50},{50,249},{249,249},{249,50}})
 status = save_screen({{50,50},{249,249}},"d2109a.bmp")
 polygon(0,1,{{50,50},{50,249},{249,249},{249,50}})
 clear_screen()
 puts(1,"save_screen() produces the same result as save_bitmap()\n")
 puts(1,"but without the steps shown in the save_bitmap() demo.\n")
 while get_key() = -1 do
 end while
 if graphics_mode(-1) then
 puts(1,"Unable to reset mode!")
 end if
end if

ABGTE Euphoria 145

With handling .BMP files now explored, let’s move on to
handling screen pages.

Each screen page is assigned a number, beginning with screen
page 0. The default active page (where screen output is sent) and
the default display page (the page that you want displayed on the
screen) are both screen page 0.

To change the screen page where all screen output is sent to,
you use the following library routine below:

include image.e

set_active_page(i)

i is the screen page number you want screen output to be sent to.
The number of pages available depends on the graphics mode you
are in.

If the new active page is not the same as the display page,
you will see no changes on the screen when you perform any kind
of screen output. Only when you change the display page to the
new active page will you see what was sent. You cannot change the
active page if you are in partial screen window under Windows.
Only if you are in DOS or a full screen window under Windows.
If you are uncertain on how many screen pages you have in the
graphics mode you are in, use video_config().

To select a screen page you want displayed on the screen, you
use the following library routine:

include image.e

set_display_page(i)

i is the screen page number you want displayed on the screen. The
number of pages you can display depends on the graphics mode
you are in.

If the new display page is not the same as the active page, you
will see no changes on the screen when you perform any kind of
screen output. Only when you change the active page to the new
display page will you see what was sent. Like set_active_page(),
set_display_page() only works in DOS or in a full screen window
under Windows.

A demo program will use set_active_page() and
set_display_page() to first send screen output to each separate
screen page, then to display each screen page one at a time.

program 67

include graphics.e
include image.e
include get.e
integer file_id
sequence capture_buffer, video_data

video_data = video_config()

ABGTE Euphoria 146

clear_screen()
printf(1, "%d pages available, 5 pages required\n", {video_data[8]})
if video_data[8] < 5 then
 puts(1, "Sorry, you have insufficient pages on your video card\n")
else
 puts(1, "Stand By, Loading Each Virtual Page\n")

 set_active_page(1)
 file_id = open("now.bin","rb")
 capture_buffer = get(file_id)
 close(file_id)
 display_text_image({1,1}, capture_buffer[2])

 set_active_page(2)
 file_id = open("this.bin","rb")
 capture_buffer = get(file_id)
 close(file_id)
 display_text_image({1,1}, capture_buffer[2])

 set_active_page(3)
 file_id = open("is.bin","rb")
 capture_buffer = get(file_id)
 close(file_id)
 display_text_image({1,1}, capture_buffer[2])

 set_active_page(4)
 file_id = open("ppower.bin","rb")
 capture_buffer = get(file_id)
 close(file_id)
 display_text_image({1,1}, capture_buffer[2])

 set_active_page(0)

 clear_screen()
 puts(1, "Done....to cycle through all the four pages, press ’n’.\n")
 puts(1, "Press any key to start cycling now.\n")
 while get_key() = -1 do
 end while

 for ix = 1 to 4 do
 set_display_page(ix)
 while get_key() != ’n’ do
 end while
 end for

 clear_screen()
end if

set_active_page(0)
set_display_page(0)

ABGTE Euphoria 147

If you want to know what screen page you have made either
an active page or a display page, there are two library routines that
can help you find out.

To determine which screen page is the current active page,
you use:

include image.e

ri = get_active_page()

get_active_page() returns the screen page number that screen out-
put is being sent to. The screen page number is stored in receiving
variable ri.

To determine which screen page is the current display page,
you use:

include image.e

ri = get_display_page()

get_display_page() returns the screen page number that is being
displayed. The screen page number is stored in receiving vari-
able ri.

You now know how to create programs that use colourful text
and graphic images.But just in case you do run into some difficulty
using graphics,particularly in SVGA (Super Video Graphics Adap-
tor) mode, where you use colours of 256 and higher, you may need
to use a video graphicsstandard called VESA instead of Euphoria’s
method of working with the video card:

include machine.e

use_vesa(i)

ABGTE Euphoria 148

If i is 1, Euphoria uses the VESA graphics standard to gen-
erate SVGA mode graphics. Otherwise, 0 means Euphoria uses its
own methods. You should issue use_vesa() before using the graph-
ics_mode() library routine. However, it’s rare that you need to use
this library routine.

Euphoria programs on their own can do a lot. But what if you
can access the features of your operating system? The next chapter
shows you how!

ABGTE Euphoria 149

22. Euphoria And DOS, Part One

The operating system is the bridge between the program and the
actual hardware of your computer. If a program can directly access
operating system features, it would be able to handle tasks that
would normally be beyond the scope of the programming language
that it is made of. Euphoria has a set of library routines that allow
access to the date and time, run DOS programs and commands,
accept values from outside the program as parameters, and much
more!How Euphoria inter-

faces to operating sys-
tems has not changed
much—various routines
apply to many platforms

If you are writing programs for other people to use, the one
feature people like to see most often is the date and time on the
screen as they work at their computer. Euphoria has a library
routine that returns the date and time to your program.

rs = date()

date() returns a sequence value composed of eight atom el-
ements, which is stored in receiving variable rs The sequence is
the date and time on the computer, formatted in the following
manner:

{number of years since 1900,
 month number (where January is 1),
 day of month (starting at one),
 hour (between 0 and 23),
 minute (between 0 and 59),
 second (between 0 and 59),
 day of the week (where Sunday is 1),
 number of days since the start of the year}

If the first element of this sequence is greater than or equal to 100,
then you are dealing with dates in the 21st century. For example,
101 is actually the year 2001. A demo program is available to show
the system date and time in human readable form after date() is
used to get them.

program 68

integer curr_year, curr_day, curr_day_of_year,
 curr_hour, curr_minute, curr_second

ABGTE Euphoria 150

sequence system_date, word_week, word_month, notation,
 curr_day_of_week, curr_month

word_week = {"Sunday",
 "Monday",
 "Tuesday",
 "Wednesday",
 "Thursday",
 "Friday",
 "Saturday"}

word_month = {"January",
 "February",
 "March",
 "April",
 "May",
 "June",
 "July",
 "August",
 "September",
 "October",
 "November",
 "December"}

system_date = date()

curr_year = system_date[1]
curr_month = word_month[system_date[2]]
curr_day = system_date[3]
curr_hour = system_date[4]
curr_minute = system_date[5]
curr_second = system_date[6]
curr_day_of_week = word_week[system_date[7]]
curr_day_of_year = system_date[8]

if curr_hour >= 12 then
 notation = "p.m."
else
 notation = "a.m."
end if

if curr_hour > 12 then
 curr_hour = curr_hour - 12
end if

if curr_hour = 0 then
 curr_hour = 12
end if

puts(1, "\nHello!\n\n")
printf(1, "Today is %s, %s %d, 19%d.\n", {curr_day_of_week,
 curr_month,
 curr_day, curr_year})
printf(1, "The time is %.2d:%.2d:%.2d %s\n", {curr_hour, curr_minute,
 curr_second, notation})
printf(1, "It is %3d days into the current year.\n", {curr_day_of_year})

Hello!

Today is Wednesday, March 30, 19111.
The time is 10:45:57 a.m.
It is 89 days into the current year.

ABGTE Euphoria 151

As a programmer, you may be interested in time of a differ-
enct kind, as in elapsed time taken to complete a process. This is
particularly the case if you are interested in learning how long a
section of code in your program takes to complete, or even to delay
program execution for an interval of time. Here’s the library rou-
tine that can help you do this:

ra = time()

time returns an atom value, representing the number of seconds
elapsed since a fixed point in time which can be stored in receiving
variable ra. The fixed point in time time() measures against is
the moment the Euphoria program started running, so executing
time() at the very start of your program would return a value
very close to, if not equal to, 0.

To measure an interval of time, or to delay program execution
for a set number of seconds, you execute time() at two different
points of the program run, storing each returned value in separate
atom variables, by subtracting the first returned value from the
second one, you obtain a measurement in seconds between these
two points.

When you look at a clock, such as your wristwatch or a wall-
mounted one, you notice that it advance one second at a time. This
means its measurement of time has a resolution of one second.
MSDOS on the other hand has a resolution of 0.055 seconds, so its
resolution is more precise.This means the smallest amount of time
you can measure using time() , by default, is 0.055 seconds [Note:
On Win32 \Linux \FreeBSD it’s about 0.01 seconds]. A demo pro-
gram is available to show how to use time() as a timer.

program 69

include graphics.e
atom minutes, seconds, elapsed_seconds, halt_program
clear_screen()
position(25,1)
text_color(9)
puts(1,"Press Q To Quit Demo Or Let Run For 5 Minutes")
text_color(2)
halt_program = ’ ’
while halt_program != ’q’ do
 halt_program = get_key()
 elapsed_seconds = time()
 minutes = elapsed_seconds / 60
 seconds = remainder(elapsed_seconds, 60)

 position(10, 30)
 printf(1, "Program run time: %.2d:%.2d", {minutes, seconds})
 if minutes >= 4 then
 if seconds >= 50 then
 if seconds >= 55 then
 text_color(12 + 16)
 else
 text_color(14)
 end if
 end if
 end if

 if minutes >= 5 then
 clear_screen()
 halt_program = ’q’
 end if
end while

ABGTE Euphoria 152

0.055 seconds resolution is a very small fraction of time, too small
to perceive, and is fine enough to serve your programming pur-
poses.

However, for programming that requires a very fine resolution
of time, 0.055 seconds may be too large. If you want to measure
time in even smaller steps, you have to force the operating system
to fetch the time more often per second. By default, the time is
checked 18.2 times per second, here is a library routine that forces
more checking per second and thus giving you a finer resolution
of time:

include machine.e

tick_rate(i) [Note: DOS32 only]

i represents the number of interrupts per second.An interrupt
is a pause where the operating system stops to go get something,
such as a keystroke, or, in this case, the time. Because computers
run very fast, the pause is unnoticeable.The higher i is in value, the
more often the time is checked, and the finer the time resolution
will become.

To figure out how to get the resolution you want, simply di-
vide one by the desired time resolution. For example, if you want
to have time advance by 0.025 seconds, you divide one by 0.025,
giving 40. This means the operating system must check the time
40 times a second to get a resolution of 0.025 seconds, so you is-
sue tick_rate(40).

ABGTE Euphoria 153

The time resolution always resets back to 0.055 when a Eu-
phoria program stops running (normally or by any error). You can
issue tick_rate(0) to set it back to 0.055 if you want the time reso-
lution back to default without ending the program run. While you
can set the time resolution as fine as you want, you cannot change
the time resolution to something more than 0.055 seconds. If the
program encounters a “causeway” error, or if your system locks up,
you should reboot your computer immediately to set the time reso-
lution back to normal, or it will run too quickly.

A demo program is available to show how to properly use
tick_rate()

program 70

include machine.e
atom precision_rate, ticker, seconds
precision_rate = .01
ticker = 1/precision_rate
tick_rate(ticker)
clear_screen()
position(22,1)
puts(1,"Press Any Key To End This Program")
seconds = 0
while get_key() = -1 do
 position(12,24)
 seconds = time()
 printf(1,"Program Running For %03.2f Seconds",seconds)
end while
clear_screen()

dir() contains information on either a single file or a directory
containing files (s). The information returned is a sequence value
that is stored in receiving variable ro. dir() works exactly like the
DOS command DIR.

If s is a directory name, a shortcut path like .. (parent directo-
ry) or . (current directory) or a wildcard filename like *.COM, the
sequence returned is made up of sequence elements, where each
element represents information on a file or subdirectory.

ABGTE Euphoria 154

If s is a filename, like DAVID.GIF, or any wildcard filename
that matches only one file, the sequence returned is made up of a
single sequence element, representing information on that one file.
Here is the structure of the returned sequence:

{{s1, s2, i3, i4, i5, i6, i7, i8, i9},
 {s1, s2, i3, i4, i5, i6, i7, i8, i9},...}

Each sequence element is in turn made up of 2 sequences (s1
and s2) and seven integer elements (i3 to i9). Each is explained
below:

 s1 - File or directory name s2 - Attribute(s)

 i3 - Size in bytes i4 - Year modified

 i5 - Month modified i6 - Day modified

 i7 - Hour modified i8 - Minute modified

 i9 - Second modified

The attributes element (s2) contains a list of single characters
that describes the file or directory (s1). Each of the characters are
described below:

 d - directory r - read only file

 h - hidden file s - system file

 v - volume id a - archive file

It’s possible to have the attributesas a null sequence or {},meaning
a nonsystem file that is erasable, visible, and unchanged.

While you can pass a Windows 95 long file or directory name
to dir(), the file and directory names returned are in the DOS
8.3 format. If the file or directory name passed into dir() does not
exist or is invalid, the library routine will return a value of -1. A
demo program is available to demonstrate the use of dir() to list
directory files.

program 71Under Unix, the keycodes
are incorrect, so the pro-
gram only shows the first
screen.

include file.e
include graphics.e

sequence entry_type, format_string

integer keystroke, update, display_from, length_window, current_entry
object cur_dir_info

clear_screen()

position(21,1)
text_color(7)
puts(1,"Page Up And Page Down Keys : Scroll Data ")
position(22,1)
text_color(7)
puts(1,"Up And Down Arrow Keys: Move Highlight Line ")
position(23,1)
text_color(7)
puts(1,"ENTER Key: Get File Or Directory Attributes ")
position(24,1)
text_color(7)

ABGTE Euphoria 155

puts(1,"Press Q Key To Quit Program")

position(2,1)
puts(1,
" Object Object Object Date Time \n")

puts(1,
" Name Type Size Modified Modified\n")

puts(1,
"____________ ___________ _______ __________ ________\n")
format_string = "%-12s %11s %7d %04d\\%02d\\%02d %02d:%02d:%02d\n"
display_from = 1
length_window = 10
cur_dir_info = dir(".")
current_entry = 1
update = ’y’
keystroke = 0
while keystroke != ’q’ do
 keystroke = get_key()

 if keystroke = 13 then
 position(18,1)
 puts(1,repeat(’ ’,78))
 if length(cur_dir_info[current_entry][2]) > 0 then
 position(18,1)
 text_color(7)
 puts(1,"Entry Attributes: ")
 for attribz = 1 to length(cur_dir_info[current_entry][2]) do
 puts(1,cur_dir_info[current_entry][2][attribz])
 puts(1, " ")
 end for
 text_color(8)
 end if
 end if

 if keystroke = 337 then
 if (display_from + length_window - 1) <
 length(cur_dir_info) then
 display_from = display_from + 1
 current_entry = display_from
 update = ’y’
 end if
 end if

 if keystroke = 329 then
 if display_from > 1 then
 display_from = display_from - 1
 current_entry = display_from
 update = ’y’
 end if
 end if

 if keystroke = 336 then
 if current_entry < length(cur_dir_info) and
 current_entry < (display_from + length_window - 1) then
 update = ’y’
 current_entry = current_entry + 1
 end if
 end if

 if keystroke = 328 then
 if current_entry > 1 and current_entry > display_from then
 update = ’y’
 current_entry = current_entry - 1
 end if
 end if

ABGTE Euphoria 156

 if update = ’y’ then

 update = ’n’
 position(6,1)
 for line = display_from to (display_from + (length_window-1)) do
 if line <= length(cur_dir_info) then
 if find(’d’,cur_dir_info[line][2]) then
 entry_type = "<DIRECTORY>"
 else
 entry_type = " -FILE- "
 end if
 if current_entry = line then
 text_color(15)
 else
 text_color(8)
 end if
 printf(1,format_string,{cur_dir_info[line][1],
 entry_type,
 cur_dir_info[line][3],
 cur_dir_info[line][4],
 cur_dir_info[line][5],
 cur_dir_info[line][6],
 cur_dir_info[line][7],
 cur_dir_info[line][8],
 cur_dir_info[line][9]})
 else
 puts(1,repeat(’ ’,78) & "\n")
 end if
 end for
 end if
end while

clear_screen()

ABGTE Euphoria 157

 Object Object Object Date Time
 Name Type Size Modified Modified
____________ ___________ _______ __________ ________

. <DIRECTORY> 24576 2011\03\30 11:10:44

.. <DIRECTORY> 32768 2011\03\30 11:07:35
01.ex -FILE- 74 1997\05\01 06:14:22
02.ex -FILE- 99 1997\05\01 06:24:56
03.ex -FILE- 15 1997\05\01 06:16:42
04.ex -FILE- 59 1997\05\01 21:08:40
05.ex -FILE- 58 1997\05\01 06:19:00
06.ex -FILE- 66 1997\05\01 06:23:34
07.ex -FILE- 464 1997\05\01 06:22:52
08.ex -FILE- 550 1997\05\01 06:46:00

Page Up And Page Down Keys : Scroll Data
Up And Down Arrow Keys: Move Highlight Line
ENTER Key: Get File Or Directory Attributes
Press Q Key To Quit Program

If you want to know what directory you are currently in, you
can use the following library routine:

include file.e
rs = current_dir()

current_dir() returns a sequence value representing the current
working directory. If you were running a Euphoria program in di-
rectory “C:\STUFF”, and you issue current_dir() , the value re-
turned to receiving variable rs would be “C:\STUFF”. You could
then pass this sequence value to dir() to obtain directory infor-
mation.

A short demo is available to show how current_dir()

works:

program 72

include file.e
sequence where_am_i
where_am_i = current_dir()
puts(1,"Hello!\n")
printf(1,"This demo runs from directory %s\n",{where_am_i})

mint@mint ~/Desktop $ eui 72
Hello!
This demo runs from directory /home/mint/Desktop

Having the ability to access all DOS commands and programs from
a Euphoria program means having access to nearly all features of
your computer. This gives the program incredible scope beyond the
limits of the language. This library routine allows such access:

system(s,i)

ABGTE Euphoria 158

system() will pass a string, s, representing a command for DOS
to execute for you. It can be DOS command like cd, dir, rename, or
deltree. The string can also be the name of a program, either writ-
ten in Euphoria or in another programming language. i handles
the kind of return to the Euphoria program once the command is
finished running:

• 0 —clear the screen by restoring graphics mode of Eupho-
ria program

• 1 —beep, wait for key press, and then restore graph-
ics mode

• 2 —do not restore graphics mode

Be careful with option 2 as the choice of return. It should only
be used when the graphics mode is not going to be changed by the
DOS command.

system() can be used to design Euphoria programs that in-
stall software, or to handle handle the programs on your comput-
er using a flexible menu. A demo program uses system() to ac-
cess the DOS command TYPE, in order to display your AUTOEX-
EC.BAT file.

program 73

system("type C:\\autoexec.bat | more ",2)

We will conclude our discussion of Euphoria and DOS in the next
chapter by showing how to use DOS to control the execution of a
Euphoria program, and also how to end the program in more ways
than one.

ABGTE Euphoria 159

23. Euphoria And DOS, Part Two

The previous chapter showed how a Euphoria program accessed
the operating system for needed resources. But it is also possible
to have DOS influence the way a Euphoria program runs, such as
passing values to the program upon startup, like the way you pass
the drive letter to FORMAT to indicate which drive to format. You
can also control the way a Euphoria program terminates, even
when the termination is a result of a program error.

Just as library routines can accept parameters to process, a
program can accept parameters from the user in order to operate in
a certain way based on the received values. For example, when you
use XCOPY to copy files from one part of your hard drive to anoth-
er (or to a floppy disk), you can state if you want subdirectories to
be copied as well.

Even though it looks like a different kind of program is run-
ning when program parameters are used, it’s really the same pro-
gram running in a slightly different way.

To allow your Euphoria programs to accept parameters from
the MS-DOS prompt, or from the Run window in Windows, you use
this library routine:

rs = command_line()

command_line() returns the string used to start your Euphoria
program, along with any parameters following the program name.
This line is stored as a sequence value in receiving variable rs.

The sequence value returned by command_line() is made up
of sequence elements, each element representing a word in the
string used to start the Euphoria program.

command_line() works whether you run your Euphoria
program through the interpreter EX.EXE, or as a stand-alone file
.EXE created by BIND.BAT. But the returned sequence value will
differ based on the method used.

If the Euphoria program is run by EX.EXE, the sequence
value is:

ABGTE Euphoria 160

{the EX.EXE file name (including the directory where it is stored),
 the name of your Euphoria program being run,
 the first parameter the program accepts,...}

If the Euphoria program is an .EXE file, the sequence value is:

{the Euphoria program name (including the directory where it is stored),
 the Euphoria program name (including the directory where it is stored),
 the first parameter the program accepts,...}

When command_line() is used in a program that is stand-alone
created by BIND.BAT, the first and second elements are the same
value. This ensures the the parameters following the program
name are in the same element positions, no matter how the Eupho-
ria program is started.

Depending on the number of parameters following the pro-
gram name, the sequence value returned by command_line() can
be any length in terms of elements. If no parameters are entered
after the program, the smallest the sequence value can be is two
elements long.

It’s the elements from the third position onward that you
should focus attention on, as these are where the parameters are
located. You can condition groups of statements to execute only
when certain parameters are received by you program.

A demo program is available to show how to use
command_line() in a Euphoria program, but one important note:
you may view both the batch file source and the source of the Eu-
phoria program the batch file runs and sends parameters to, but do
NOT run the Euphoria program itself!

program 74

sequence command_line_data

atom number_of_parameters

clear_screen()

command_line_data = command_line()

number_of_parameters = length(command_line_data) - 2

if number_of_parameters = 0 then
 puts(1, "\nPlease run the demo BATCH file to execute this program\n")
else
 printf(1, "\n%d parameter(s) were passed to this program\n\n",
 {number_of_parameters})
 for ix = 3 to length(command_line_data) do
 printf(1, "%s is parameter %d\n", {command_line_data[ix],
 ix-2})
 end for
end if

ABGTE Euphoria 161

Here’s the associated batch file:

Type the contents of the
“bat” file to see the follow-
ing result.

demo/74.bat

@PP

74.bat

4 parameter(s) were passed to this program

cats is parameter 1
dogs is parameter 2
budgies is parameter 3
mice is parameter 4

Another way of passing parameters to your program is by accept-
ing the values of environment variables in DOS. You are proba-
bly familiar with the PATH variable (where the operating system
searches for a program if it is not found in the current directory you
are in).

ro = getenv(s) [Note: DOS32 only]

The value assigned to the environment variable, shown here as s,
is stored as a sequence in receiving variable ro. If the environment
variable has no assigned value, then a value of -1 is returned
instead. Run a demo program now that gets information on the
PATH variable.

program 75

object path_settings
clear_screen()
path_settings = getenv("PATH")
if sequence(path_settings) then
 puts(1,
 "\nThe following directories are in your DOS PATH variable:\n\n")
 for ix = 1 to length(path_settings) do
 if path_settings[ix] = ’;’ then
 puts(1, "\n")
 else
 puts(1, path_settings[ix])
 end if
 end for
 puts(1, "\n\nScan completed. Have a nice day!\n")
else
 puts(1, "\nNo variable PATH found. You really should set the path\n")
 puts(1, "variable in DOS. It will allow you to run programs in\n")
 puts(1, "different directories without typing the full path name!\n")
end if

Executed on a Unix sys-
tem. The following directories are in your DOS PATH variable:

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games

Scan completed. Have a nice day!

ABGTE Euphoria 162

Contolling the execution of a Euphoria program includes how
it terminates. So far, the programs you have seen ended after the
last statement was executed. Sometimes it is necessary to halt
the program when something it requires is missing (such as a file)
rather than continue onward. To do this, you would either need to
segment your program as conditioned groups of code, each depen-
dant on the outcome of processing from previous groups, or you can
use this very simple library routine:

abort(i)

When executed,the Euphoria program immediately stops,and
the value i is returned to the operating system. A batch file could
use the returned value to proceed based on how the Euphoria pro-
gram ended. While it is entirely up to you to how to assign mean-
ings to the values returned by abort() , most programmers define
0 to mean the program ended normally.

The beauty of abort() is that the program ends quickly and
cleanly immediately after it is executed, no matter how deep in the
program’s execution you are in. It also allows the program to com-
municate why it ended so you know what is wrong, not to mention
forcing you to design programs to be able to handle all possible con-
ditions. A demo program shows how abort() is used in conjuction
with a batch file.

program 76

sequence parms, workarea

integer no_of_parms, bad_first, bad_second

parms = command_line()

no_of_parms = length(parms) - 2

if no_of_parms < 2 then
 abort(1)
else
 workarea = parms[3]
 bad_first = 0
 bad_second = 0
 for ix = 1 to length(workarea) do
 if workarea[ix] < ’0’ or workarea[ix] > ’9’ then
 bad_first = 1
 exit
 end if
 end for

 workarea = parms[4]
 for ix = 1 to length(workarea) do
 if workarea[ix] < ’0’ or workarea[ix] > ’9’ then
 bad_second = 1
 exit
 end if
 end for

 if bad_first then
 abort(2)
 end if

ABGTE Euphoria 163

 if bad_second then
 abort(3)
 end if

 puts(1, parms[3] & parms[4] & "\n\n")

 abort(0)
end if

Here’s the associated batch file:

@echo off
ex d2307a.ex %1 %2
if errorlevel 3 goto err3
if errorlevel 2 goto err2
if errorlevel 1 goto err1
if errorlevel 0 goto err0
:err3
echo Second parameter is non-numeric
goto finished
:err2
echo First parameter is non-numeric
goto finished
:err1
echo Two numbers required to join
goto finished
:err0
echo Program completed normally
:finished

Despite all the best planning and all the possible contingencies
you have imagined, no program is perfect. There will come a time
when you program will encounter an error and it will stop abruptly
because of it. Normally when this happens, a file called EX.ERR is
generated containing details about the problem, Also, there previ-
ous graphics mode you were in before starting the program is not
restored, making characters on the screen unreadable.While a Eu-
phoria programmmer can just look inside the EX.ERR file and find
out what went wrong, suppose this program was run by a person
you wrote it for? or worse, sold the program to!!!

So with the person running your program staring at the
screen that either has cryptic programming diagnostics, or is to-
tally unreadable, you can believe he or she is going to be worried
about what to do next. A more appropriate way is to have the pro-
gram send a screen message explaining what to do next, and who
to contact for assistance.The message should also be in easy-to-un-
derstand terms. Euphoria has a library routine that sets a screen
message to be displayed in case of program failure:

include machine.e

crash_message(s)

ABGTE Euphoria 164

crash_message() does not display a message, s, on the screen
when it is executed. Rather, it simply tells Euphoria what to dis-
play in case a syntax error (such as an undeclared variable name)
occurs, and also for errors that occur during program execution,
like trying to divide by zero or using invalid element numbers.
These are called run-time errors.You can format the message using
special characters like " \ n " or " \ t ", to give it a certain appear-
ance. When an error occurs, the graphics mode is set to text mode
before your message is displayed. It will appear at the top of the
screen. You can issue crash_message() as many times as needed,
but the message of the most recent crash_message() will be the
one that appears if an error occurs. Still, you may want to issue
crash_message() every time a section of your program begins
running if each section requires different handling instructions.

Euphoria always generates an EX.ERR file whether or not you
use crash_message() . Your crash_message() should include a
note to send the EX.ERR file to you for analysis. A demo program
is available to show how crash_message() in a divide by zero sit-
uation.

program 77

include machine.e

atom result

crash_message("**************************************\n"&
 "* An error has been encountered that *\n"&
 "* is so serious the software must *\n"&
 "* stop running now. *\n"&
 "* *\n"&
 "* Please Email the file ex.err to *\n"&
 "* moggie@interlog.com. Thank you! *\n"&
 "**************************************\n")

for ix = 100 to 0 by -1 do
 result = 100 / ix
 printf(1,"%d divided by %d gives %f\n",{100,ix,result})
end for

* An error has been encountered that *
* is so serious the software must *
* stop running now. *
* *
* Please Email the file ex.err to *
* moggie@interlog.com. Thank you! *

A final way to make DOS control the way a Euphoria program
runs is by use of DOS’ redirection symbols. Earlier in the tutorial,
we stated that the number 0 was by default defined for keyboard
input, and 1 and 2 were by default assigned for screen output. By
using the following DOS redirection symbols below, the source of
input (0) and destination for output (1 and 2) can be changed:

ABGTE Euphoria 165

euphoria program < input file or device

euphoria program > output file or device

The DOS redirection symbol < means keyboard input library
routines will read data from an input file or device other than
the keyboard. The DOS redirection symbol > means (text) screen
output library routines will send data to an output file or device

other than the computer screen.

The use of the open() library routine in conjuction with input
and output library routines is more effective than using the DOS
redirect symbols. However, DOS redirect symbols serve as a handy
“ad-hoc” way to force your program to handle input and output
that do not involve the keyboard and screen.Your operating system
manual contains more details on how to use redirection symbols
and other DOS features to change data flow to and from your writ-
ten programs.

Go to the next chapter now to learn about the binary number
system and how it can be used with the Euphora programming
language!

ABGTE Euphoria 166

24. An Introduction To Bits And Bytes

If you remember from our discussion on variables, we introduced
the byte, a stored value between 0 and 255. You may have asked
yourself, “why 255? why not a much easier to remember range like
0 ot 10, or 0 to 100, as in the metric system?” Well, remember that
the only language a computer understands is a set of instructions
composed of 1’s and 0’s, or binary language. If so, one would expect
that computers would use a similar standard composed of 1’s and
0’s to represent numbers.

Because computers only understand the values of 0 and 1,
they use a system called the “binary system” to represent stored
numbers. To understand how it works, we need to go back to school
to review how humans represent numbers.

Humans use a numbering system called the decimal system,
because we can relate to groups of 10 easily (no doubt because
we have 10 fingers). The decimal system states each digit is the
number of groups of 10, where each group is raised to a power
based on the position from right to left:

 5 4 1 3

5 groups of 1000 (103)-----^

4 groups of 100 (102)---------^

1 group of 10 (101)-------------^

3 groups of 1 (100)-----------------^

The exponent that raises 10 to a power starts at 0 from the right-
most digit, and increases by a value of 1 as you go left.

With computers using the binary system, a base of 2, not 10,
is used. This is because the computer only uses two digits in its
numbering system. Yet the representation of a number under the
binary system is the same as in the decimal system:

 1 0 1 1 0

1 group of 16 (or 24)------^

0 groups of 8 (or 23)---------^

1 group of 4 (or 22)------------^

1 group of 2 (or 21)---------------^

0 groups of 1 (or 20)------------------^

ABGTE Euphoria 167

For your information, the value 10110 is pronounced “one - zero -
one - one - zero,” not “ten-thousand-one-hundred-ten.” The terms
“thousand,” “hundred” and “ten” describe groups in the decimal
system.

The binary number 10110 is equal to 22. You can determine
the value of any binary number by adding up all the powers of
2 represented by the binary digit 1, also known as a BIT (BInary
digiT). For example, 10100 is equal to 2 + 4 +16, which equals 22.

You can also convert any decimal number to binary by follow-
ing these instructions (you will need a calculator and a sheet of pa-
per for this):

• Divide number n by 2.

• If the result of the division ends in .5, write down the
value 1 on the sheet of paper, and then change the result
to an integer (for example, 12.5 to 12). Otherwise, just
write down the value 0.

• Take the results and make it the next number n to divide
by 2, and go to step 1.Repeat these steps until you produce
a value less than 1. When you are done, reverse the digits
written on the paper.

For example, the value of 23 is 10111.We work it out by dividing 23
by 2 to get 11.5 (1), 11 by 2 to get 5.5 (1), 5 by 2 to get 2.5 (1), 2 by 2
to get 1 (0), 1 by 2 to get 0.5 (1).You then reverse the digits produced
to change 11101 to 10111.

These bits are important when we talk about bytes. A byte,
as defined by the American Standard Code for Information Inter-
change, is made up of 8 bits:

Binary Decimal Binary Decimal Binary Decimal

00000000 0 00000101 5 00001010 10

00000001 1 00000110 6 : :

00000010 2 00000111 7 11111101 253

00000011 3 00001000 8 11111110 254

00000100 4 00001001 9 11111110 255

It is at this point you understand why a byte has a value beween 0
and 255. 0 equals 00000000 and 255 equals 11111111.

ABGTE Euphoria 168

There are two problems with this. The first problem is the
largest value a byte can hold is 255. In order to represent larger
values, you have to use more than one byte. So, putting two bytes
together makes a what is called a word. Using 16 bits, a word can
represent values between 0 and 65536.There is also a double word,
which is made up of four bytes (32 bits) and can represent extreme-
ly large values.

The other problem is that the values bytes, words, and dou-
ble words can represent are unsigned, or positive only. This prob-
lem is solved by two approaches. First, the leftmost bit position is
used only to show if the number is negative or positive. Second,
a method called two’s complement is used to represent negative
numbers.

Here is how a binary number is shown as negative using two’s
complement on a binary number 00010010 (34):

• First 00100010 is reversed to 11011101 (called one’s com-
plement)

• You then add binary 1 to the reversed value:

11011101

+00000001

11011110 (-34 in decimal)

You’ll notice that addition using binary numbers follows the same
rules as with decimal numbers: when adding two numbers pro-
duces a sum larger than a single digit, you carry left to the next
column. Adding 1 and 1 produces 10, where the 1 is carried over to
the next column to the left.

The use of two’s complement to store negative values works
with 8 bit, 16 bit, or 32 bit values. The only disadvantage of using
two’s complement is that the range of numbers supported drops
for positive numbers. For example, a byte that can handle nega-
tive numbers now only represents numbers between -128 and
+127, and a word can only represent numbers between -32768 and
+32767, both inclusive. however, it is up to the programmer to de-
cide whether or not to have signed values.

The understanding of how bits and bytes work is not manda-
tory in order to write programs in Euphoria. After all, Euphoria
handles the storage and manipulation of binary values behind the
scenes so you really do not see any use of bits, bytes, words, and
double words, nor do you have to convert numbers to two’s comple-
ment if you want them negative.

So you probably ask, “what is the point of learning about bits
and bytes if Euphoria handles all that for me automatically?”

ABGTE Euphoria 169

Well, in addition to getting a better feel on how the comput-
er really stores data, there are other benefits. First, because 8 bits
make up a byte, you could use single byte to keep track of 8 differ-
ent conditions in your program, where each 1 bit means a condition
is true. Also, if you are interested in data compression, using less
than 8 bits to represent values would be helpful.

A good understanding of bits and bytes is also handy in
graphics, where you want to merge images together, without any
black area around either image being merged.

This is rough territory for the person who has never pro-
grammed. If you are not ready to learn the Euphoria library rou-
tines that handle bits and bytes,use the remote to skip to “Creating
Library Routines And Variable Types.” Otherwise, just go to the
next page!

ABGTE Euphoria 170

25. Working With Bits

In this chapter,we will dig deeper into the theory of bits by actually
using them in Euphoria programs. There are library routines that
can convert integer values to a sequence representing binary val-
ues and back.Also, you will learn how boolean logic works with val-
ues at the binary digit level. You are already familiar with boolean
logic when you learned about logical expressions. This chapter will
expand a bit on this in order to handle bits.

If you plan to manipulate values at the bit level, probably for
use as condition switches in your program, you need to actually see
them. The best way to do this is have them shown as a sequence,
where each element is an atom having a value of 1 or 0. This way,
you can perform element indexing of single bits or an entire range
of them.

Here is the library routine that lets you access bits in integer
values:

include machine.e

rs = int_to_bits(a,i)

This returns a sequence value containing the rightmost number
of bits (i) in integer value a, to be stored in receiving variable rs.
The sequence is made up of atom elements representing bit values
starting from the right. We use a instead of i as the integer value
in case you want to work with integer values outside the range of
-1073741824 and +1073741823. Only atom data objects can hold
values outside that range.

The returned sequence value is actually reversed in appear-
ance, because the rightmost bits start at element 1. For exam-
ple, bit 20 is element 1, bit 21 is element2, bit 22 is element 3, and
so forth.

int_to_bits() will return the rightmost bits of negative
numbers too. Just remember that negative numbers always use
the two’s complement format.

ABGTE Euphoria 171

The number of bits parameter depends on the size of the inte-
ger value you are accessing for bits.A byte-sized integer only needs
to have a maximum of 8 bits returned, while word and double-word
sized integers will require you to go as high as 16 or even 32 bits to
return. A demo program shows how to return bits from different
integer values.

program 78

include graphics.e
include image.e
atom blue, increment, status
sequence palette_mode,new_blue, previous_blue
blue = 30
increment = 1
if graphics_mode(18) then
 puts(1,"Unable to go into mode 18!")
else
 palette_mode = get_all_palette()
 position(1,3)
 text_color(11)
 puts(1,"How to build a bitmap using Euphoria, Part II")
 position(24,5)
 puts(1,"Press any key to continue demo")
 for ix = 0 to 50 by 4 do
 ellipse(2,0,{100+ix,100-ix},{199-ix,199+ix})
 ellipse(2,0,{100-ix,100+ix},{199+ix,199-ix})
 polygon(1,0,{{50,50},{50,249},{249,249},{249,50}})
 end for
 position(20,1)
 puts(1,"Define an area on the screen you want to save")
 while get_key() = -1 do
 if blue = 63 then
 increment = -3
 elsif blue = 30 then
 increment = 3
 end if
 blue = blue + increment
 new_blue = {0,0,0}
 new_blue[3] = blue
 previous_blue = palette(1,new_blue)
 end while
 all_palette(palette_mode)
 polygon(0,0,{{50,50},{50,249},{249,249},{249,50}})
 status = save_screen({{50,50},{249,249}},"d2109a.bmp")
 polygon(0,1,{{50,50},{50,249},{249,249},{249,50}})
 clear_screen()
 puts(1,"save_screen() produces the same result as save_bitmap()\n")
 puts(1,"but without the steps shown in the save_bitmap() demo.\n")
 while get_key() = -1 do
 end while
 if graphics_mode(-1) then
 puts(1,"Unable to reset mode!")
 end if
end if

The opposite of this is to take a binary number and convert it
into an integer value.The is approach might be taken when you are
using bits to represent a list of conditions, and for efficient storage
want to bundle them all into a single integer value.

ABGTE Euphoria 172

To convert a binary number into an integer value, you use the
following library routine below:

include machine.e

ra = bits_to_int(s)

bits_to_int() takes sequence s representing a binary number
and converts it to a positive integer value, which is stored in receiv-
ing variable ra. s is made up of atom elements that represent the
bits of the binary number. Each element is either 0 or 1 in value.

The elements in s representing bits appear in reverse order,
where element 1 is the rightmost bit. For example, element 1 is bit
20, element 2 is bit 21, element 3 is bit 22 and so forth.

The receiving variable is an atom and not an integer for the
same reason mentioned in our discussion with int_to_bits() .
You may want to produce integer values beyond the range of
-1073741824 and +1073741823. Only atom variables can support
integers beyond that range.

You will notice that bits_to_int() only produces positive in-
teger values. This is because the leftmost bit (the last element in
the sequence) is assumed to be a part of the integer value, and not
a sign bit. This shouldn’t be a problem, as there wouldn’t be a rea-
son to convert a list of binary digits arranged in two’s complement
format if you are using each bit as an outcome of a condition test.

A demo program is available to show how bits_to_int() us
used to store bit patterns into a single byte value.

program 79

include graphics.e
include image.e
include get.e
integer file_id
sequence capture_buffer, video_data

video_data = video_config()

clear_screen()
printf(1, "%d pages available, 5 pages required\n", {video_data[8]})
if video_data[8] < 5 then
 puts(1, "Sorry, you have insufficient pages on your video card\n")
else
 puts(1, "Stand By, Loading Each Virtual Page\n")

 set_active_page(1)
 file_id = open("now.bin","rb")
 capture_buffer = get(file_id)
 close(file_id)
 display_text_image({1,1}, capture_buffer[2])

 set_active_page(2)
 file_id = open("this.bin","rb")
 capture_buffer = get(file_id)
 close(file_id)
 display_text_image({1,1}, capture_buffer[2])

ABGTE Euphoria 173

 set_active_page(3)
 file_id = open("is.bin","rb")
 capture_buffer = get(file_id)
 close(file_id)
 display_text_image({1,1}, capture_buffer[2])

 set_active_page(4)
 file_id = open("ppower.bin","rb")
 capture_buffer = get(file_id)
 close(file_id)
 display_text_image({1,1}, capture_buffer[2])

 set_active_page(0)

 clear_screen()
 puts(1, "Done....to cycle through all the four pages, press ’n’.\n")
 puts(1, "Press any key to start cycling now.\n")
 while get_key() = -1 do
 end while

 for ix = 1 to 4 do
 set_display_page(ix)
 while get_key() != ’n’ do
 end while
 end for

 clear_screen()
end if

set_active_page(0)
set_display_page(0)

You can also reference one or more bits by a process called
“masking.” Masking involves comparing a value (let’s call it “A”)
against a second value (let’s call it “B”) in such a way that B’s bit
pattern either obtains or filters out specific bits in A. B is called the
mask value. Boolean logic at the bit level is used in masking.There
are three types of masks, with the first two being shown below:

11110000 - value 11010010 - value

00001111 - OR mask 01111110 - AND mask

-------- --------

11111111 - OR result 01010010 - AND result

In an OR mask, the result bit positions only contain 1 if the value,
the mask, or both, have matching bit positions containing 1. In and
AND mask, the result bit positions only contain 1 if both the value
and the mask have matching bit positions containing 1.

The third type of mask is called XOR (rhymes with “sore”
but starting with a “Z” sound). It can best be described as a cross
between an OR and something like a backwards AND where two 1
bits result in a 0. Here’s how it works below:

11011100 - value

00011100 - XOR mask

11000000 - XOR result

ABGTE Euphoria 174

In an XOR mask, the result bit positions only contain 1 when either
the value or the mask (but not both!) have matching bit positions
containing 1.

With masks now understood, let’s show some library routines
that perform AND, OR and XOR bit operations in Euphoria.

ro = and_bits(o1,o2)

and_bits() performs AND operations using values o1 and o2 to
create a result that is stored in receiving variable ro.The bits in the
result stored in ro will only be 1 if the matching bit positions in o1
and o2 are both 1. o1 and o2 can be atoms or sequences containing
atom elements.

If o1 is an atom and o2 is a sequence (or vice-versa), then the
rule of mixing atoms and sequences in a binary expression (where
the atom value is converted to a sequence having the same length
as the other sequence value, and made up of elements having the
value ofthe original atom) applies. and_bits() can handle any
accepted values up to and including 32 bits in size.

The result produced by and_bits() may be a negative value if
the process causes the leftmost bit to be set to 1. This is because the
leftmost bit is considered a sign bit. A demo program shows how
and_bits() works with some atoms and sequences.

program 80

include machine.e
atom precision_rate, ticker, seconds
precision_rate = .01
ticker = 1/precision_rate
tick_rate(ticker)
clear_screen()
position(22,1)
puts(1,"Press Any Key To End This Program")
seconds = 0
while get_key() = -1 do
 position(12,24)
 seconds = time()
 printf(1,"Program Running For %03.2f Seconds",seconds)
end while
clear_screen()

 ro = or_bits(o1,o2)

or_bits() performs OR operations using values o1 and o2 to
create a result that is stored in receiving variable ro. The bits in
the result stored in ro will only be 1 if the matching bit positions
in either o1, o2, or both, is a value of 1. o1 and o2 can be atoms or
sequences containing atom elements.

ABGTE Euphoria 175

if o1 is an atom and o2 is a sequence (or vice-versa), then the
rule of mixing atoms and sequences in a binary expression (where
the atom value is converted to a sequence having the same length
as the other sequence value, and made up of elements having the
value of the original atom) applies. or_bits() can handle any
accepted values up to and including 32 bits in size.

The result produced by or_bits() may be a negative value if
the process causes the leftmost bit to be set to 1. This is because the
leftmost bit is considered a sign bit. A demo program shows how
or_bits() works with some atoms and sequences.

program 81

include file.e
sequence where_am_i
where_am_i = current_dir()
puts(1,"Hello!\n")
printf(1,"This demo runs from directory %s\n",{where_am_i})

 ro = xor_bits(o1,o2)

xor_bits() performs XOR operations using values o1 and o2 to
create a result that is stored in receiving variable ro. The bits in
the result stored in ro will only be 1 if either of the matching bit
positions in o1 and o2 are 1, but not both. o1 and o2 can be atoms
or sequences containing atom elements.

If o1 is an atom and o2 is a sequence (or vice-versa), then the
rule of mixing atoms and sequences in a binary expression (where
the atom value is converted to a sequence having the same length
as the other sequence value, and made up of elements having the
value of the original atom) applies. xor_bits() can handle any
accepted values up to and including 32 bits in size.

The result produced by xor_bits() may be a negative value if
the process causes the leftmost bit to be set to 1. This is because the
leftmost bit is considered a sign bit. We’ve modified the or_bits()

demo program to use xor_bits() instead, to show the one differ-
ence between XOR and OR.

program 82

system("type C:\\autoexec.bat | more ",2)

The last bit-handling library routine for this chapter is listed
below:

ro = not_bits(o)

ABGTE Euphoria 176

not_bits() reverses each bit in value o to its opposite state
(for example, 1 to 0 or 0 to 1). o may be an atom value, or a sequence
made up of atom elements.not_bits() can handle accepted values
up to and including 32 bits. The inverted result is stored in receiv-
ing variable ro. If the leftmost bit is changed to 1, the value placed
in ro will be negative because this bit is the sign bit. A demo pro-
gram is ready to show how not_bits() works with sequence and
atom values.

program 83

sequence command_line_data

atom number_of_parameters

clear_screen()

command_line_data = command_line()

number_of_parameters = length(command_line_data) - 2

if number_of_parameters = 0 then
 puts(1, "\nPlease run the demo BATCH file to execute this program\n")
else
 printf(1, "\n%d parameter(s) were passed to this program\n\n",
 {number_of_parameters})
 for ix = 3 to length(command_line_data) do
 printf(1, "%s is parameter %d\n", {command_line_data[ix],
 ix-2})
 end for
end if

The next chapter will show you how you can save numbers
larger than 255 outside your program, whether it is an integer or
a floating point number.

ABGTE Euphoria 177

26. Working With Bytes

The puts() library routine is handy for sending character output
to files and the screen.But the one drawback it has is that only byte
values, or values between 0 and 255, can be used. Any attempt to
send a larger value out to a file or screen will result in data loss.
This occurs because only the lower 8 bits are sent.However,Eupho-
ria has a set of library routines that convert large integer and even
floating point numbers to a series of bytes. One option of sending
values larger than 255 to the screen or file is to use the print()

library routine. The end result, in the case of files, is an outputted
character string (for example, -2453 is stored as a 5 byte string
“-2543”). It works, but it is very wasteful in terms of data storage.
So it stands to reason that if a value like 255 can be represented as
a single byte, then values like 65535 can be represented using only
two bytes rather than 5 bytes when using print() . Here is the li-
brary routine that can help you do this:

include machine.e

rs = int_to_bytes(a)

int_to_bytes() takes a signed integer value, a, and converts it
into a 4 element long sequence representing 4 bytes. The integer
is represented as a rather than i because int_to_bytes() works
with 32 bit numbers, and only atom data objects can be that large.
Integers are only 31 bits long. The 4 element sequence is returned
to the receiving variable rs. Each element is a bundle of 8 bits, with
the lowermost 8 bits (2 to the power of 0 to 2 to the power of 7) start-
ing in the first element. To clarify, the structure of the 4-element
sequence looks like this, with meanings shown for each element:

 {byte, byte, byte, byte}

bits 20 to 27 ----^

bits 28 to 215----------^

bits 216 to 223----------------^

bits 224 to 231----------------------^

Once an integer is converted to a series of bytes, you can write
each byte out to files using puts() without any risk of data loss. If
you want to handle extremely large numbers that require 64 bits
instead of 32 bits, then int_to_bytes() will return the lowermost
32 bits of these numbers.

ABGTE Euphoria 178

So now you have a way to convert large integer values into
a series of bytes. It would be just as handy to have the ability to
take those same bytes and convert them back into the original in-
teger value. Here is a library routine that can do this for positive
integers:

include machine.e

ra = bytes_to_int(s)

bytes_to_int() takes a sequence value, s, representing a 32 bit
number, and converts it to a positive integer. The positive integer
value is then stored in receiving variable ra. ra is an atom because
bytes_to_int() works with 32 bit long numbers. The sequence
passed to bytes_to_int() is made up of 4 atom elements, where
each element is a bundle of 8 bits, starting with the lowermost
bits (bit 20 to 27) being the first element. The structure of the se-
quence is the same as introduced in int_to_bytes() . As a matter
of fact, you can use the sequence generated by int_to_bytes() as
a parameter for bytes_to_int() if you are working with positive
numbers.

However, bytes_to_int() does not convert properly when
you are trying to bring back a negative number previously into
4 bytes by int_to_bytes() . This does not mean, however, you
cannot bring back the negative integer value. It means you will
have to do a little extra work in order to bring it back.

To bring back a negative number previously converted by
int_to_bytes() :

• Use int_to_bits() to convert the 4th element of the sequence
created by int_to_bytes() into a 32 element sequence, and look
at the 32nd element. If it is 1, you have a negative number.

• Use not_bits() to reverse the bits in the int_to_bytes() se-
quence.

• Use the result of not_bits() as the sequence you pass to
bytes_to_int().

• Add 1 to the integer created by bytes_to_int(), then multiply
the integer by -1. The integer should be the correct value.

Run a demo program now that uses int_to_bytes() and
bytes_to_int() to store positive and negative integers to a file on
your computer.

program 84

object path_settings
clear_screen()
path_settings = getenv("PATH")
if sequence(path_settings) then
 puts(1,

ABGTE Euphoria 179

 "\nThe following directories are in your DOS PATH variable:\n\n")
 for ix = 1 to length(path_settings) do
 if path_settings[ix] = ’;’ then
 puts(1, "\n")
 else
 puts(1, path_settings[ix])
 end if
 end for
 puts(1, "\n\nScan completed. Have a nice day!\n")
else
 puts(1, "\nNo variable PATH found. You really should set the path\n")
 puts(1, "variable in DOS. It will allow you to run programs in\n")
 puts(1, "different directories without typing the full path name!\n")
end if

The numbers we have worked with have been integer values.
Remember also that programs work with floating-point (numbers
with a decimal) as well. If you remember from the start of the
tutorial, we represent very large and very small numbers using
standard notation:

6.13451e+009 (meaning 6.13451 Ã˙ 1000000000, or 6134510000)

4.52e-005 (meaning 4.52 Ã˙ .00001, or.0000452)

The decimal number being multiplied by the power of 10 is called
the mantissa, and is never larger than 10. In the binary number-
ing system, there is no such thing as a decimal point, so you can’t
have numbers like 101111.01 for example. Instead, an organiza-
tion in the U.S.A. called the Institute of Electrical and Electronic
Engineers (IEEE) created a floating point standard that address-
es this problem nicely. The floating point standard created by the
IEEE comes in two sizes, on using 32 bits, and the other using 64
bits. Please note these formats are being introduced to you for your
personal interest only:

1 bit + 8 bits + 23 bits = 32 bits

(sign bit) (exponent) (mantissa)

1 bit + 11 bits + 52 bits = 64 bits

(sign bit) (exponent) (mantissa)

Because Euphoria automatically handles how the exponent and
mantissa portions are created and used in the representation of
binary floating numbers, we will not go any further at this point.
All you need to know is what the IEEE 32 bit and 64 bit floating
point formats are when mentioned in the library routines you
will learn next. If you are interested, there are FAQ’s about IEEE
floating points on the internet.

To convert a floating point number to a 4-byte (32 bit) IEEE
format, you use the following library routine:

include machine.e

rs = atom_to_float32(a)

ABGTE Euphoria 180

atom_to_float32() will convert a floating point value, a, to a 4
element long sequence value, each element being an atom. The se-
quence will be stored in receiving variable rs. The sequence value
represents the 32 bit IEEE format introduced previously.a can be a
negative or positive value,and can even be an integer value, though
it will still be converted to the 32 bit IEEE floating point format. To
convert the 4 element sequence back to the original value, you do
the following:

include machine.e

ra = float32_to_atom(s)

To convert a floating point number to an eight-byte (64 bit) IEEE
format you use the following library routine:

include machine.e

ra = atom_to_float64(a)

atom_to_float64() will convert a floating point value, a, to an 8
element long sequence value, each element being an atom. The se-
quence will be stored in receiving variable rs. The sequence value
represents the 64 bit IEEE format introduced previously.a can be a
negative or positive value,and can even be an integer value, though
it will still be converted to the 64 bit IEEE floating point format. To
convert the 8 element sequence back to the original value, you do
the following:

include machine.e

ra = float64_to_atom(s)

The use of these powerful floating point library routines allows for
efficient storage of floating point data in files. Once you use either
atom_to_float32() or atom_to_float64() , you can use puts()

to write each element of the sequence. When it is time to bring
the data back from the file into the data, float32_to_atom()

or float64_to_atom() can be used once all the bytes previously
written out are obtained using the . library routine.

You should be careful not to use atom_to_float32() on float-
ing point numbers that, because of size and accuracy, must use the
IEEE 64 bit format. There is a risk you could lose data accuracy (if
not part of the data value itself) if you are not careful about this. A
demo program uses these 4 library routines to save data to a file.

ABGTE Euphoria 181

program 85

sequence parms, workarea

integer no_of_parms, bad_first, bad_second

parms = command_line()

no_of_parms = length(parms) - 2

if no_of_parms < 2 then
 abort(1)
else
 workarea = parms[3]
 bad_first = 0
 bad_second = 0
 for ix = 1 to length(workarea) do
 if workarea[ix] < ’0’ or workarea[ix] > ’9’ then
 bad_first = 1
 exit
 end if
 end for

 workarea = parms[4]
 for ix = 1 to length(workarea) do
 if workarea[ix] < ’0’ or workarea[ix] > ’9’ then
 bad_second = 1
 exit
 end if
 end for

 if bad_first then
 abort(2)
 end if

 if bad_second then
 abort(3)
 end if

 puts(1, parms[3] & parms[4] & "\n\n")

 abort(0)
end if

The next chapter of this tutorial will show you how to create
your own library routines and variable types!

ABGTE Euphoria 182

27. Creating Library Routines And Variable Types

The library routines and variable types in Euphoria should be
more than enough for anyone to write full-featured programs.
However, some exceptions may arise where the programmer needs
to design custom library routines and variable types. In addition,
custom library routines can also help a programmer design pro-
grams in a modular manner, organizing very large programs into
easily identifiable sections of code that the programmer can keep
better track of.Another advantageof using custom library routines
is that they can be used in other programs without having to re-
invent the wheel every time you write a new program. Also, you
can insert library routinescreated by other Euphoria programmers
into your program. Custom library routines save time and effort in
software creation!

You will remember from our introduction to library routines
that library routines are either procedures or functions. As a re-
sult, you can either create a function or a procedure. Any library
routines you create must be declared in the program, just like vari-
ables, before being used. When declaring a custom library routine,
you must state the following:

• Whether the library routine is a procedure or a function.

• The name of the library routine.

• The number and type of parameters the library routine ac-
cepts. This is optional.

• The programming statements that will process the parame-
ters accepted by the library routine.

• The value returned if the library routine is a function.

To declare a library routine that is a procedure, here is the
syntax required:

ABGTE Euphoria 183

procedure name(parameter declaration, parameter declaration, ...)

 one or more Euphoria statements to execute

end procedure

To declare a library routine that is a function, here is the syntax
required:

function name(parameter declaration, parameter declaration, ...)

 one or more Euphoria statements to execute

 return value

end function

The custom functions and procedures you create will of course
have a name, just as variables have a name. If your procedure or
function accepts values, probably for the purpose of processing
them, you need to have parameter declarations as well. Declaring
parameters is the same as declaring variables, which makes sense.
Parameters are in fact variables that accept the values passed to
functions and procedures.The one or more Euphoria statements to
execute is the actual muscle of the library routine, which can con-
sist of assignment statements and other library routines, either
supplied by Euphoria or created by other programmers. The end
of the library routine is always terminated by a end procedure or
end function. The return statement is used to end the library rou-
tine’s execution the moment it is executed. In procedures, it’s rare
you would need it, unless you plan to end the procedure in midrun.
However, in functions, it’s needed, because the “return ” statement
returns a value (either an atom or a sequence) back to the program
that called the function.

Here’s the simplest example of a custom procedure:

procedure print_some_lines()

 puts(1, " lines\n ")

 puts(1, " lines\n ")

 puts(1, " lines\n ")

end procedure

print_some_lines()

The first five lines define a procedure called print_some_lines().
This procedure accepts no parameters.When executed, it will print
three lines of text. The procedure starts running when it is called
by name (the print_some_lines() following the declaration portion).
Let’s build on it a bit more by adding parameters:

procedure print_some_lines(integer repeat, sequence line_to_print)
 for count = 1 to repeat do
 puts(1, line_to_print & " \n ")
 end for
end procedure

print_some_lines(10, " Hi There! ")

ABGTE Euphoria 184

The procedure can now accept two parameters. The first one,
“repeat,” controls the number of lines to be printed.The second one,
“line_to_print,” is what is printed “repeat” times. These parame-
ters are declared inside the procedure, as part of the declaration of
the procedure itself. Now we have a procedure where its run can be
controlled by the parameters it receives. Let’s change it to a func-
tion to have it return a value back:

integer status_of_print

function print_some_lines(integer repeat, sequenc line_to_print)
 if repeat > 50 then
 return 2
 else
 for count = 1 to repeat do
 puts(1, line_to_print & " \n ")
 end for
 return 1
 end if
end function

sta-
tus_of_print = print_some_lines(10, " Hi There ")

Now the library routine will only print a maximum of 50 lines, re-
turning a value of 1 to let the program that called it know that it
printed some lines. Any attempt to print more than 50 lines will
cause the library routine to return a value of 2, and print noth-
ing at all. You will notice the way we execute print_some_lines()
has changed, by making it a part of an assignment statement,
which is how functions in general are run.After print_some_lines()
finishes executing, the returned value is stored in variable
“status_of_print.” A demo program is available to show how to cre-
ate a function that draws a text square on the screen:

program 86

include machine.e

atom result

crash_message("**************************************\n"&
 "* An error has been encountered that *\n"&
 "* is so serious the software must *\n"&
 "* stop running now. *\n"&
 "* *\n"&
 "* Please Email the file ex.err to *\n"&
 "* moggie@interlog.com. Thank you! *\n"&
 "**************************************\n")

for ix = 100 to 0 by -1 do
 result = 100 / ix
 printf(1,"%d divided by %d gives %f\n",{100,ix,result})
end for

ABGTE Euphoria 185

You can also design custom variable types in the same manner
you design custom library routines. As a matter of fact, declaring
a variable type is like designing a one parameter function.

type name(parameter declaration)
 one or more Euphoria statements to execute
 return true or false value
end type

Declaring a custom variable type first involves choosing a name for
it.Next, a parameter declaration is required to accept the value the
custom variable type will hold.one or more Euphoria statements to
execute will define what values the custom variable type is allowed
to hold. This is done by running a series of tests on the parameter
accepted.The outcome of these tests will determine whether a true
or false value is returned once the group of code is finished run-
ning.At this point, we have two questions to ask: how do we declare
a variable of a custom type instead of integer, sequence, atom, or
object, and how do we actually execute the “type-end type” group?

If you created a variable type called “housepet,” and wanted to
declare a variable called “cat” of type “housepet,” you would say:

housepet cat

As to how to execute “type-end type” group, it is started every
time we attempt to assign a value to a variable using that custom
type:

• Euphoria starts the type-end type group declaring the cus-
tom variable type, using the assigned variable as the param-
eter.

• TheEuphoria statementsexecuted withinthe type-end type
group tests the parameter value, and a value of 1 or 0 is
returned.

• If the value returned is 1, the assignment statement that trig-
gered the type-end type sets the variable to the assigned
value, otherwise the program will end with a type check error
message.

Let’s put it altogether in this program example:

ABGTE Euphoria 186

type fruit(sequence unknown_fruit)
 sequence valid_fruit
 valid_fruit = { " bananas " , " apples " , " oranges " , " pears " }
 return find(unknown_fruit, valid_fruit)
end type

fruit fruit_check
fruit_check = " pears "
puts(1, " Program Run Completed\n ")

We’ve created a custom variable type called “fruit,” and declared
a variable called “fruit_check” of type “fruit.” When we attempt to
assign a value to “fruit_check” with the value “pears,” the “type-end
type” group is executed using “pears” as the parameter. As you
can see in the “type-end type” the returned value is the result of
a find() library routine. If find() cannot find “pears” in the se-
quence value stored in the variable “valid_fruit,” a 0 will be re-
turned. However, we can tell that 1 instead will be returned be-
cause “pears” is in the list. As a result, no type check error will oc-
cur, and the value “pears” is assigned successfully to “fruit_check”
when the “fruit” type group finishes running. The next statement
following the assignment of “fruit_check” with “pears” is then exe-
cuted. Had we used the following assignment statement instead:

fruit_check = " yams "

then the “type-end type” group would have returned a 0, and the
program would immediately halt with the following message:

type_check failure, fruit_check is {121’y’,97’a’,109’m’,115’s’}

Custom variable types can help detect any problems during pro-
gram design. A programmer can state certain values like time,
phone numbers,postal or zip codes, etc, which must follow specified
value ranges. If a program process takes a value outside an accept-
able range, the “type-end type ” group will return a 0 value, causing
the program to halt on a type check error. A demo program shows
another example of using variable types created by the program-
mer, this time using helpful diagnostic messages.

program 87

include machine.e

sequence actual_binary_number, binary_bits, series_of_values

clear_screen()

puts(1,"A Simple Example Of Using int_to_bits()\n")

puts(1,"======================================\n\n")

ABGTE Euphoria 187

puts(1,"Decimal Binary\n")

puts(1,"======= ================================\n\n")

series_of_values = {1,-1,500,-500}

for element = 1 to length(series_of_values) do

 binary_bits = int_to_bits(series_of_values[element],32)

 actual_binary_number = {}

 for bits = length(binary_bits) to 1 by -1 do

 actual_binary_number = actual_binary_number &

 (binary_bits[bits] + 48)

 end for

 printf(1,"%5d %32s\n",

 {series_of_values[element],actual_binary_number})

end for

puts(1,"\n\n")

puts(1,"(Note: int_to_bits() returns the bits in reversed sequence.\n")

puts(1," The output displayed has been adjusted to show the bits as they\n")

puts(1," are meant to appear in a binary number)\n")

But your learning of custom library routines does not end at
this point. There are other questions that need to be answered. For
example, are any variables used in one library routine accessible
by other library routines, or even the entire program? Do we have
to keep everything that makes up a program in a single source
file, or can certain parts be stored in several source files? The next
chapter will address this when we learn about scope and using
include files.

ABGTE Euphoria 188

28. Program Scope And Include Files

The programs you have been writing so far have used variables
that are accessible anywhere within the program. This is conve-
nient, but if you plan to use a variable for a short process, wouldn’t
it be memory efficient to be able to “undeclare” it? Also, it would
be faster to design a program that uses plug-in sections that are
included into the program with a single line, instead of retyping or
copying source code that already exists elsewhere. Euphoria can
handle both problems very easily!

Previously, we briefly touched on scope when we were dis-
cussing the “for” statement, where the variable it automatically
creates and increments during the loop only exists while the loop
repeats. When the “for”statement completes executing, the vari-
able is no longer available for use. This variable, therefore, is said
to have “scope.”

Scope coverage has been
greatly expanded. See the
documentation.

All Euphoria symbols, such as variables, library routines and
type groups, has a scope, or a range limit in the program where it
can be referenced.The scope begins the moment it is declared.This
means it is impossible to use something before it is declared, so the
example listed below is incorrect:Scope of routines is now

for the entire file. It is pos-
sible to use a routine that
is declared later in the
file—a huge change from
Eu.

marbles = marbles + 1
atom marbles

In addition, the following listed below is also incorrect:

atom count_3s
for counter = 1 to 500 do
 count_3s = count_3s + 3
end for
printf(1, " %d %d\n " ,{count_3s, counter})

When run, you should get a message saying that variable “counter”
was not declared. In actual fact, it was, but it only stayed around
long enough for the “for” statement to complete counting to 500.
The moment the “for” statement stopped, the variable “counter”
was, in essence, “undeclared.” By the time program execution
reached the line where printf() is used, the variable “counter” did
not exist any more.

ABGTE Euphoria 189

Which brings us to an important question: just how far does a
variable, library routine, or type group’s scope extend?

If a variable is declared automatically by a “for” statement, its
scope ends at the “end for” line, and any program statements fol-
lowing can no longer reference it. If a variable is declared inside a
function, procedure, or type group, its scope ends at either the “end
type,” “end procedure,” or “end function” line. This means other li-
brary routines, type groups, or even the main program can’t access
it. These kinds of variables are referred to as “private” variables,
because only the “for” statement, library routine, or type group the
variable was declared inside can reference it. Once any of these
processes stop running, the variable is “undeclared,” freeing up
memory.

If a variable is declared outside a library routine or a type
group, then the variable’s scope extends from the point of declara-
tion to the end of the program. These kinds of variables can be ref-
erenced inside a library routine, a type group, or by programming
statements being executed inside a “for” statement, and are called
“local” variables. The demo programs you have run up to now use
local variables.

It’s possible to have a local variable and a private variable
with the same name. When executing the library routine or type
group it is declared in, the private variable is dominant over the
local variable.

Type groups and library routines declared in your program
have a scope that starts at the point of declaration to the end of the
file they are declared in. They can be referenced by other library
routines and type groups, but only if they are declared AFTER.
Look at the following example below:

No longer a restrictin in
oE4

procedure alpha()
 clear_screen()
end procedure

procedure beta()
 alpha()
end procedure

It is perfectly legal for procedure “beta” to call procedure “alpha”
because “alpha” was declared before “beta.”A routine can call any rou-

tine that is declared in the
same file. The scope of variables, library routines, and type groups need

not be bordered within the confines of a single source file. This
means you could reference variables, library routines and type
groups that are not even present in your program, but in another
source file. This is where the include files comes in.

ABGTE Euphoria 190

You can place any variable, library routine, or type group dec-
larations inside include files (.e) that are separate from the pro-
gram. To use any of these in your program, you reference the in-
clude file with the include statement. In the include file where any
variables, library routines or type groups are stored, you have to
use the word “global” as part of the declaration. global means the
scope of the variable, library routine or type group extends indefi-
nitely. It’s important to use lobal in any variable, library routine or
type group that is declared in an include file, otherwise the scope
of each is assumed to be local.

Global is still a keyword
but not recommended for
most use. Instead, use ex-
port in this situation.

Here are some examples of declarations with the word
global:

global object grab_bag

global function add_two(atom first, atom second)

 atom sum

 sum = first + second

 return sum

end function

export is preferred to glob-
al

As a result, include files allow you to design programs that
are made up of plug-in code, referenced by the include state-
ment at the top of the program. The file name the include state-
ment references can be be an absolute file and directory path
(c:\utilities\icons.e), or a relative file name (graphics.e). If a rela-
tive file name is used, Euphoria will first search for it in the same
directory the program is currently in. If not found, it will then look
in “euphoria\include”. The environment variable EUDIR sets the
exact path of “euphoria.”

more nesting levels now Include files can in turn contain include statements referenc-
ing other include files, up to 10 levels deep of nesting. Each include
statement must be on a single line by itself.

A demo program is available to show how to use include files
containing externally defined variables and a procedure.

program 88

include machine.e
sequence bit_patterns
atom integer_value
clear_screen()
puts(1,"How bits_to_int() is used to convert a sequence of 8 bits into\n")
puts(1,"a single byte value.\n")
puts(1,"==\n\n")

bit_patterns = {{1,1,1,1,0,0,0,0},
 {1,0,1,0,1,0,1,0},
 {1,1,1,0,0,1,1,1},
 {1,0,0,0,0,0,0,1},
 {1,1,1,1,1,1,1,1}}

for bit_groups = 1 to length(bit_patterns) do
 integer_value = bits_to_int(bit_patterns[bit_groups])

ABGTE Euphoria 191

 print(1,bit_patterns[bit_groups])
 printf(1," can be stored in a value of %3d\n",integer_value)

end for

Before running the above demo, copy and paste the following
into your editor and name the file ’d2808a.e’. Then put the file in
your euphoria \ include directory:use export instead of glob-

al

The next chapter is the final one in this tutorial, so its pur-
pose is to introduce library routines that were not easily classi-
fied into the subjects you have covered. Turn the page now to be-
gin wrapping up your introduction to the Euphoria programming
language!

ABGTE Euphoria 192

29. Wrapping It Up With Mouse And Sound Support

This last chapter of the tutorial will teach you how to use other
input and output devices besides the keyboard and screen. Most
users today prefer the use of a mouse over a keyboard because it
does not involve memorizing complex commands. Just move the
mouse pointer to a graphics icon and click. Also, nothing adds a lit-
tle dimension to a game than sound.Sound allows the programmer
to get a person’s attention by emitting a beep from the speaker,
along with a message on the screen. Euphoria programs can use
a mouse easily, without any need to understand device driver pro-
gramming. It is available in all graphics modes. In a pixel graphics
mode, the mouse pointer appears as an arrow pointing toward the
top left. In text modes, it appears as a solid block. Mouse usage in
modes beyond 640 x 480 pixels is possible only in Windows/95+oE does not do Dos sound

routines

oE does not do DOS mouse
routines.

A mouse point is displayed on the screen using the same co-
ordinate system that pixels use, namely a pixel column first, pix-
el row last pair. Whenever the mouse is used, something called an
event is generated. For example, an event can be the mouse being
moved across the pad, or one of the mouse buttons being clicked.
Your system can only keep track of one event at a time, so previ-
ous events are always being replaced with new ones. A Euphoria
program can get the last event generated when a mouse is used by
using this library routine:

include mouse.e

ro = get_mouse()

get_mouse() will return a three-element long sequence that
represents the last even generated, to be stored in receiving vari-
able ro. Each element of the sequence is an atom value, the mean-
ing of which is shown below:

{event, pixel column, pixel row}

The event is an integer value that describes what the mouse did:

ABGTE Euphoria 193

 1 --- Mouse moved

 2 --- Left button pressed

 4 --- Left button released

 8 --- Right button pressed

 16 --- Right button released

 32 --- Middle button pressed

 64 --- Middle button released

The pixel column and pixel row is where the mouse point-
er was displayed when the event occured. It’s possible to have an
event integer that is the sum of two actions happening simulta-
neously, such as the right button being held down while the mouse
moves across the pad (8 + 1 = 9). The pixel column and pixel row
returned could either mean the very tip of the mouse pointer, or
the pixel locaton the mouse pointer is pointing at.The only way you
can determine this is by testing. If it is the very tip of the mouse
pointer being returned, and you want to use get_pixel() to return
the colour of the pixel, you have to subtract 1 from both the pixel
column and pixel row to get the correct pixel location. If you want
to get the actual text column and text row of the mouse pointer,you
may have to scale the returned pixel column and pixel row using
division.

get_mouse(), when used for the very first time, will turn on
your mouse pointer. Your mouse driver must be loaded before you
can get mouse events. If no mouse event has been generated since
the last use of get_mouse(), a value of -1 is returned. get_mouse()
by default returns every event that occurs when your mouse is
used. Sometimes this is not practical, as a lot of events can occur
in a short period of time, causing you to miss the events that you
wan to check for. It would be nice to screen out those mouse events
you are not interested in, concentrating on the mouse events that
are important.

include mouse.e

mouse_events(i)

mouse_events() allows you to select which events (i)
get_mouse() should report. i is actually a sum of the specific events
you want reported. For example, mouse_events(42) means you
want get_mouse() to report only events that involve the left, mid-
dle, or right buttons being pressed (2 + 8 + 32). Any other events
that occur will be ignored. mouse_events() can be re-issued at any
time to change what events you want get_mouse() to report. The
very first call to mouse_events() will turn on the mouse pointer
for you.

On the subject of mouse pointers, there are times where
you need to turn the mouse pointer on or off. For example, you
may want to turn off the mouse pointer when you plan to use
save_image() to copy an area of the screen where the mouse point-
er is currently over. Here’s the library routine that can do this
for you:

ABGTE Euphoria 194

include mouse.e

mouse_pointer(i)

i serves as the toggle switch that controls whether your
mouse pointer is visible or not. A value of 0 means the mouse
pointer is hidden. Any positive value will make the mouse point-
er visible again. There’s an important note to make regarding
the multiple usage of mouse_pointer(). For example, if you issue
mouse_pointer(0), say, 3 times, you must issue mouse_pointer(1)
the same number of times (3 in this example) to make your mouse
pointer appear again. Therefore, it is extremely important for you
to keep track of where the mouse pointer is being turned off and
on in your program.

Now that we’ve wrapped up mouse feature, let’s wrap up the
tutorial by introducing your last library routine to learn.

include graphics.e

sound(i)

sound() emits a sound from your speaker. i is the frequency
of the sound. The higher the value of i, the higher the pitch gen-
erated. A demo sums up all the library routines you have learned
here, by using the mouse to emit different sounds by clicking parts
of shape!

program 89

include machine.e

atom single_value, ANDed_atom, work_value, ANDer_atom
sequence bunch_of_values, ANDed_sequence, returned_bits

clear_screen()

ANDer_atom = 484848

bunch_of_values = {222222,333333,444444}
single_value = 123456

printf(1,"ANDing %6d and %6d\n\n",{single_value,ANDer_atom})

ANDed_atom = and_bits(single_value,ANDer_atom)

work_value = single_value
returned_bits = int_to_bits(work_value,32)
printf(1,"%6d ---------> ",work_value)
for bits = 32 to 1 by -1 do
 print(1,returned_bits[bits])
end for
puts(1,"\n")

work_value = ANDer_atom
returned_bits = int_to_bits(work_value,32)
printf(1,"%6d ---------> ",work_value)
for bits = 32 to 1 by -1 do
 print(1,returned_bits[bits])
end for
puts(1,"\n")
puts(1,repeat(’-’,50) & "\n")

work_value = ANDed_atom
returned_bits = int_to_bits(work_value,32)
printf(1,"%6d ---------> ",work_value)
for bits = 32 to 1 by -1 do
 print(1,returned_bits[bits])
end for
puts(1,"\n\n")

ABGTE Euphoria 195

puts(1,"\nPress Any Key To Continue.......\n\n")
while get_key() = -1 do
end while

clear_screen()

ANDed_sequence = and_bits(bunch_of_values,ANDer_atom)
puts(1,"ANDing ")
print(1,bunch_of_values)
printf(1," and %6d\n\n",ANDer_atom)

for element = 1 to length(bunch_of_values) do
 work_value = bunch_of_values[element]
 returned_bits = int_to_bits(work_value,32)
 printf(1,"%6d ---------> ",work_value)
 for bits = 32 to 1 by -1 do
 print(1,returned_bits[bits])
 end for
 puts(1,"\n")

 work_value = ANDer_atom
 returned_bits = int_to_bits(work_value,32)
 printf(1,"%6d ---------> ",work_value)
 for bits = 32 to 1 by -1 do
 print(1,returned_bits[bits])
 end for
 puts(1,"\n")
 puts(1,repeat(’-’,50) & "\n")

 work_value = ANDed_sequence[element]
 returned_bits = int_to_bits(work_value,32)
 printf(1,"%6d ---------> ",work_value)
 for bits = 32 to 1 by -1 do
 print(1,returned_bits[bits])
 end for
 puts(1,"\n\nPress Any Key To Continue.......\n\n")
 while get_key() = -1 do
 end while
end for
puts(1,"Result is ")
print(1,ANDed_sequence)
puts(1,"\n")

You have reached the end of this tutorial, but not the end of
your adventures in Euphoria. The best way to get a strong grasp
of this powerful language is by first writing very small programs,
then build larger ones. Do not be daunted by any error messages
you get. They are easy to understand. However, there is a segment
in the appendices at the end of this tutoria on error messages when
running EX.EXE, just in case you get a little confused.

ABGTE Euphoria 196

30. Appendix A: Predefined Constants

Most values either used by library routines, or returned by library
routines, have a special meaning. For example, in graphics library
routines like text, the colour blue is represented by the value 1, and
obtaining a Euphoria object using gets() successfully will cause
the library routine to return a value of 0. To make all these values
easy to remember, a Euphoria symbol related to a variable is used
to give absolute values a literal name. The declarable symbols are
called constants.

Like variables, constants are literals used to reference RAM
addresses using a symbolic name. Like variables, constants must
be declared before use, and are assigned a value. They also follow
the same naming rules that variables, library routines, and other
Euphoria symbols do. But the similarities stop here at this point.
While variables can have their values changed at any time, a
constant can only be given a value once, and is locked with that
value for the duration of the program run.As you can see, the name
constant fits perfectly to describe this kind of declarable symbol.

When a constant is declared, it is given its permanent value as
part of the declaration statement:

constant variable name = expression

An expression, as you remember, can be a single value, or an
arithmetic, logical, or relational expression. You can use other con-
stants, library routines, and variables as part of the expression
but once you declare the constant with its value, you cannot use an
assignment statement to change the constant’s value again. Con-
stants are best used for subjects that are unchangable, such as the
value of PI or the speed of light. In externally declared library rou-
tines, the include files that define the library routines also contain
a list of constant values you can use in place of the absolute values.
For example, if you want to draw a bright magenta line, you specify
in draw_line() BRIGHT_MAGENTA as the colour to use.

ABGTE Euphoria 197

Constants can be local and global, but never private, so they
cannot be declared inside type groups or library routines. A demo
program is available not only an example of constants being used,
but also lists some of the constants that are declared in include
files, like image.e, graphics.e and file.e. [note: before running the
demo, you will need to make sure the the file constants.txt is avail-
able, and modify the open() function accordingly]oE now has enum, a way

of creating constants that
are sequentially num-
bered for you.

program 88

probably works, but not
tested

integer constants_file, current_record, input_key, update

sequence database, input_record

constant number_of_records = 49,
 field_1_start = 1, field_1_end = 24,
 field_2_start = 25, field_2_end = 35,
 field_3_start = 36, field_3_end = 37,
 field_4_start = 38, field_4_end = 110,
 field_5_start = 111

procedure display_data(sequence record)
 sequence dline1, dline2, dline3, dline4, constant_name, include_file,
 constant_value,library_routines_where_used,
 constant_description

 dline1 = "Constant Name: %s\n"
 dline2 = "Constant Description: %s\n"
 dline3 = "Constant Value: %s\n"
 dline4 = "Declared In Include File: %s\n"

 constant_name = record[field_1_start..field_1_end]
 include_file = record[field_2_start..field_2_end]
 constant_value = record[field_3_start..field_3_end]
 library_routines_where_used = record[field_4_start..field_4_end]
 constant_description = record[field_5_start..length(record)]
 position(4,1)
 for line = 1 to 7 do
 puts(1,repeat(’ ’,75) & "\n")
 end for
 position(4,1)
 printf(1,dline1,{constant_name})
 printf(1,dline2,{constant_description})
 printf(1,dline3,{constant_value})
 printf(1,dline4,{include_file})
 puts(1,"\nExamples Of Library Routines Where Used:\n")
 puts(1,library_routines_where_used & "\n")
end procedure

clear_screen()
current_record = 1
database = {}
input_key = 0
update = ’y’

constants_file = open("constants.txt","r")

for ix = 1 to number_of_records do
 input_record = gets(constants_file)
 input_record = input_record[1..length(input_record)-1]
 database = append(database,input_record)
end for

position(1,1)
puts(1,"Euphoria Constants Dictionary")
position(2,1)
puts(1,"=============================")
position(13,1)
puts(1,"Press < and > to move about")
position(14,1)
puts(1,"Press Q to quit")

ABGTE Euphoria 198

while input_key != ’q’ do

 if input_key = ’.’ or input_key = ’>’ then
 if current_record < number_of_records then
 current_record = current_record + 1
 update = ’y’
 end if
 end if

 if input_key = ’,’ or input_key = ’<’ then
 if current_record > 1 then
 current_record = current_record - 1
 update = ’y’
 end if
 end if

 if update = ’y’ then
 update = ’n’
 display_data(database[current_record])
 end if

 input_key = get_key()

end while

clear_screen()

ABGTE Euphoria 199

31. Appendix B: Error Messages When Running EX.EXE

During your writing of Euphoria programs, you will encounter
error messages. The error messages are generated when using
EX.EXE (either directly by calling EX.EXE or indirectly when
using BIND.BAT). While the error messages are very easy to un-
derstand, first-time users may find some difficulties solving them.
This appendix will help explain what the text in EX.ERR means,
and will give detailed descriptions of what some of the more com-
monly seen error messages are saying.

When a program aborts with an error, you will see the follow-
ing information:

program.ex:nnnn
error message

The first line states the name of the program you were running,
with a line number after the colon where the error occurred. The
line below is the error message describing the problem. A copy of
these two lines are also stored in EX.ERR, which is generated at
the time of the error. There is also additional information in the
EX.ERR file:

GlobalLocal Variables (a list of variables and the
values they contain follow) Sequence variableswill be shown
with both actual and character values for each element. If include
files, type groups, and library routines are used in your program,
the variables will be grouped based on the program sections they
are declared in. If the error occurred in a procedure, function, type
group, whether in an included file or in the program itself, it will
be shown as well. For example, you could see the following text if
it occurred in a procedure:

program.ex:nnnn in procedure procedure_name() But all this
is just a snapshot of what was going on at the time the program
aborted. The really important information is of course the error
message. It tells you WHY the program halted in error.While there
are many error messages generated by EX.ERR, here are some
that you will encounter often:

ABGTE Euphoria 200

type_check failure, variable is n this means you tried to
assign a value in a variable that does not support the data object
type of the value. For example, a sequence variable may be acci-
dentally assigned an atom value, or vice-versa, or an integer vari-
able is being assigned a value that is larger than the accepted inte-
ger range.

sequence found inside character string this means you
have a sequence that has one or more sequence elements. Some li-
brary routines only accept sequences that are made up of atom el-
ements.

subscript value n1 is out of bounds, reading from a
length-n2 sequence this means you have attempted to access an
element within a sequence that does not exist. For example, if you
try to reference element 10 in a 5 element sequence, you will get
this message.

slice ends past end of sequence (n1 > n2) this means a
range of elements you were trying to extract from a sequence has
the end range position n1 going beyond the maximum sequence
length n2.

can’t open include file path this means the include file
you supplied in the include statement was not found. You either
misspelt the name, or you are using the wrong directory.

sequence lengths are not the same (n1 != n2) this means
two sequences you are using in an operation, like addition, are of
different lengths. n1 is the first sequence length, n2 is the second
sequence length. You also get this message if you are using the if
statement to directly compare a sequence variable with a sequence
value.

syntax error - expected to see …, not … thismeansEX.EXE
found a symbol that was different from what it expected. For ex-
ample, if you left out then in an if statement, you would get this
message.You may also see EX.EXEstating was obtained instead of
an expected symbol. This could mean you left out an end if, end for,
or end while.

true/false condition must be an ATOM this means a sequence
was used in a logical or relational expression portion of a state-
ment such as the while statement.

unknown escape character this means you paired the \ special
character operator with another character that Euphoria does not
accept as valid when paired.

may not change the value of a constant this means you
tried to change a constant value. Constants cannot be changed to
another value.

ABGTE Euphoria 201

a loop variable name is expected here this means you used
either a reserved word like global, or a symbol with an illegal
character as the control variable that is incremented during the for
statement loop.

no value returned from function this means you forgot to add
the return statement in the function you created in your program.

attempt to subscript an atom this means a value in an object
variable was an atom when you tried to reference one or more
elements in what you expected to be a sequence.

slice length is less than 0 (-n1) this means you attempted
to perform a reversed range that went beyond the legal [n+1..n]
limit. The value -n1 is the number of elements out of bounds of the
legal reversed range limit.

symbol has not been declared this means you either misspelt
a symbolic name (such as a variable or library routine), forgot to
declare it, or forgot to use the global keyword with the variable or
library routine declared in the include file.

The best way to understand errors is through experience.
Good luck!!

ABGTE Euphoria 202

32. A Brief History of Euphoira

Robert Craig, is the head of RDS, and also the man who created
the Euphoria programming language.Here is a brief history of the
Euphoria programming language written in his own words. You’ll
find that when reading it, you’ll learn much about the man who
created the language, as well as the language itself.

A Brief History of Euphoria

Back in 1989 my brother Dave, who is also a software developer,
bought an Atari Mega ST with a whopping 4 Mb of memory. I was
very impressed and I wanted one too, but I didn’t know how to
justify buying one.

I decided I would do some kind of long term hobby project in
the compiler development area, since that is what my background
is.After several months of day dreaming I finally decided – I would
design and implement a new programming language loosely based
on my Master’s thesis at the University of Toronto. In my Master’s
research I had examined John Backus’ FP language. John Backus
is the guy who developed the first Fortran compiler for IBM.

Euphoria (it didn’t have a name back then – just language ‘X’)
took the concept of atoms and sequences from FP, but is totally dif-
ferent in all other respects. Also, in FP an atom can be a number or
a string. I didn’t like that. I thought a string should be a sequence
of characters, so you could apply subscripting, appending etc. to it,
just like all other sequences. The idea of slicing came from Ada.

Within a few months I had a working prototype interpreter for
Euphoria. I had designed it as best I could for maximum speed. I
eagerly performed the first sieve benchmark test – Euphoria was
250 times *slower* than C on the Atari. I was not particularly dis-
appointed. I thought a Euphoria interpreter *should* be tremen-
dously slower than compiled, optimized C code, given all the flex-
ibility, dynamic storage allocation, subscript checking etc. Over
the next 3 years I continued to add to the language and to improve
the speed.

ABGTE Euphoria 203

Speed became something of an obsession for me. On at least
3 occasions I completely re-wrote thousands of lines of the inter-
preter, just to get a modest boost in performance. Euphoria is now
only a few times slower than fully-optimized C on many bench-
marks, even while performing subscript checking, uninitialized
variable checking,integer overflow checking etc, that C doesn’t
do. The gap is even narrower if you program’s speed is determined
largely by file I/O, or calls to library routines.

My full-time day job was getting very boring at the same time
that Euphoria was getting more interesting. Finally a good oppor-
tunity arose and I quit my day job so I could port Euphoria to the
IBM PC, finish v1.9, and release it as shareware. v1.9 was released
in July 1993. Since then, I’ve been very pleased with the reaction
to it, and although there isn’t a lot of money in it, the registration
rate continues to climb.

After v1.2 (March 94) I had to go back to a real programming
job for a couple of years.Version 1.3 (May 95) and 1.4 (May96) were
produced while I was working full-time at a “day” job. It was quite
a strain to do this. I’m glad I’m back on Euphoria full-time.

The addition of the Euphoria Web page in January 1996,
and the Euphoria list server (thanks to John Kimne) in June 1996
helped a small user community to grow up around Euphoria. Up
until then, users did not know each other, and all tech support had
to come from me. I am very grateful to the many people who have
set up their own Euphoria Web pages, and to those who have freely
contributed source code and programs for other to use.

My wife, Junk Miura, left her job as a compiler developer a
year ago, so she could pursue other entrepreneurial interests.Late-
ly she has contributed to the programming effort. For v1.5 she
wrote the savescreen() library routine and the HOW2REG.EX pro-
gram that takes you through the options for registering Euphoria.

Euphoria (ex.exe) consists of 15,000 lines of C code that is
compiled by WATCOM C/32 and is bound with the Causeway DOS
extender of Michael Devore.

A Windows WIN32 version can be built from the same source
by setting a C #define symbol. An alpha release of the WIN32
version should be out in a few months. It will not make the DOS
version obsolete, rather, users will have a choice of which one to
use for a particular application.The core language and most of the
library routines will be the same. Most of the C source code will
be shared.

After several years I am more excited than ever about this
project, and I will continue to work on it full time for the foreseable
future.

Robert Craig,
Rapid Deployment Software, February 1997

